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ABSTRACT. A study was conducted to address the wind energy potential over Lake Michigan to support a commercial wind farm.  
Lake Michigan is an inland sea in the upper mid-western United States.  A laser wind sensor mounted on a floating platform was 
located at the mid-lake plateau in 2012 and about 10.5 kilometers from the eastern shoreline near Muskegon Michigan in 2013.  
Range gate heights for the laser wind sensor were centered at 75, 90, 105, 125, 150, and 175 meters.  Wind speed and direction 
were measured once each second and aggregated into 10 minute averages.  The two sample t-test and the paired-t method were 
used to perform the analysis.  Average wind speed stopped increasing between 105 m and 150 m depending on location.  Thus, the 
collected data is inconsistent with the idea that average wind speed increases with height. This result implies that measuring wind 
speed at wind turbine hub height is essential as opposed to using the wind energy power law to project the wind speed from lower 
heights.  Average speed at the mid-lake plateau is no more that 10% greater than at the location near Muskegon.  Thus, it may be 
possible to harvest much of the available wind energy at a lower height and closer to the shoreline than previously thought.  At 
both locations, the predominate wind direction is from the south-southwest.  The ability of the laser wind sensor to measure wind 
speed appears to be affected by a lack of particulate matter at greater heights.. 
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1. Introduction 
A study of wind speed and direction in Lake Michigan 

was conducted to help determine if the wind energy 
potential was sufficient for further exploration of wind 
farm development.  Lake Michigan is an inland sea in the 
United States bordering on the states of Michigan, 
Illinois, Indiana, and Wisconsin with a maximum length 
of 494 km, a maximum width of 190 km, a surface area of 
58,000 km2, and an average depth of 85 m.  A study by 
Elliott et al (1986) estimated Class 5 wind power was 

                                                         
* Corresponding author: standric@gvsu.edu 

available in the areas of highest wind energy potential.  
These are the exposed offshore areas, islands and 
exposed capes, and points along the state of Michigan 
shore of Lake Michigan. 

The first goal of the study was to test the idea that 
wind speed increases with height over Lake Michigan. 
This idea is consistent with the wind profile power law 
(Elliott et al. 1986, Peterson and Hennessey 1978).   

   
𝑉

𝑉0
= (

𝑍

𝑍0
)

𝑎

    (1) 



Citation: Standridge, C., Zeitler, D., Clark, A., Spoelma, T., Nordman, E., Boezaart, T.A., Edmonson, J.,  Howe, G., Meadows, G., Cotel, A. and Marsik, F. (2017) 
Lake Michigan Wind Assessment Analysis, 2012 and 2013. Int. Journal of Renewable Energy Development, 6(1), 19-27, doi : 10.14710/ijred.6.1.19-27 

P a g e  | 20 

 

© IJRED – ISSN: 2252-4940, February 15th 2017, All rights reserved 

This relationship states that the estimation of the change 
of wind speed with height is obtained using a power law 
relationship with which the wind speed (V) at hub height 
(Z) is estimated from the wind speed (V0) measured at 
some reference height (Z0).  The exponent, α, varies with 
height, time of day, season, nature of the terrain, wind 
speeds, and temperature.  More importantly, the 
structure of the equation assumes that wind speed 
increases with height, implying that the taller the turbine 
the more wind speed and thus power will be obtained. 

The second goal of the study was to determine if 
wind speed was significantly greater at the middle of 
Lake Michigan near the border of the states of Michigan 
and Wisconsin than near the shoreline near Muskegon, 
Michigan.  The additional distance from the shore to the 
middle of the lake increases challenges in installation 
and maintenance of a commercial wind farm, 
particularly in the harsh winter environment on Lake 
Michigan.   The cost of meeting these challenges can be 
offset by greater wind speed leading to greater energy 
generation. Data collection was accomplished using a 
laser wind sensor (LWS) or LiDAR gage mounted on a 
190 square foot floating platform.   

Validation of the LWS unit was a prerequisite to this 
study.  Validation was accomplished by comparison of 
wind speed measurements made by the LWS unit 
mounted on the floating platform near the state of 
Michigan shoreline to those made by cup anemometers 
mounted on meteorological  masts on the shore but near 
the location of the LWS unit. The validation study is 
discussed in Standridge et al. (2015), where an extensive 
review of the literature is also presented.  The literature 
review will not be repeated here.  

Typical wind speed studies both summarize wind 
data and extend the results to estimate wind speed at 
potential wind turbine hub heights above the data 
collection height using the wind profile power law.  
Often, a probability distribution is fit to the wind speed 
data using mathematical techniques. This distribution is 
used along with the power curve specific to a particular 
wind turbine in computing the potential power 
generated by that turbine.  Alternatively, Law (2007) 
suggests the use of a proprietary heuristic which has 
been implemented in the ExpertFit software to fit data to 
a statistical distribution.   

Nedaei (2012) analysed data collected at the Abadan 
Airport in Iran at 10 m, 40 m, and 80 m.  Equation 1 was 
used to extrapolate results to wind turbine hub height as 
high as 105 m. Similarly, Ajayi et al. (2013) as well as 
Babayani et al. (2016 a, b) analysed data collected at 10 
m and used equation 1 to project wind speeds to wind 
turbine heights between 50 m and 80 m. Additional 
studies are reported by Oyedepo et al. (2012), Olaofe and 
Folly (2012), Jamdade and Jamdade (2012), Bariorgas et 
al. (2012), Veigas and Iglesias (2012), and Lu et al. 
(2002). Roy (2012) discusses estimating the  
parameter of the power law under a variety of 
conditions.  

A weakness with each of these studies is a lack of 
validation of the projected wind speed at higher altitudes 
than the observed data, such as through observing wind 
speed at these altitudes.  This study addresses this 
weakness by making observations at 6 heights ranging 
from 75 m to 175 m.  Existing statistical methods are 
applied for comparing wind speeds between heights and 
locations.  Furthermore, all of the studies referenced 
above were land-based and used cup anemometers 
mounted on meteorological  masts.  This study makes 
use of data collected over water using an LWS unit. 

Data collection in 2012 and 2013 as well as analysis 
methods for summarizing and comparing results are 
described.  The relationship between height and wind 
speed is analysed and discussed.  A comparison of wind 
speeds between the two locations is made.  Conclusions 
concerning the performance of the LWS unit are 
discussed as well. 

2. Data Collection  
To collect the data need to conduct the wind 

assessment study, an LWS unit was mounted on a 190 
square foot floating platform and deployed in Lake 
Michigan.  There are two independent variables of 
interest: height above the water surface and location in 
the lake.  Dependent variables are wind speed as well as 
wind direction.  The LWS has six range gates which were 
centered at 75 m, 90 m, 105 m, 125 m, 150 m, and 175 m 
as well as a cup anemometer mounted 3 m above the 
platform deck.  Thus, data concerning wind speed and 
direction can be collected at each of these heights. Wind 
speed and direction were observed in 2012 near the mid-
lake plateau close to the Michigan-Wisconsin state 
border approximately 56 km from the eastern shoreline 
and in 2013 approximately 10 km from the eastern 
shoreline near Muskegon, Michigan as described in Table 
1.     

In each year, data was collected at only one 
location.  Thus, any differences found between the 
average wind speeds at the two locations may be due to 
the differing characteristics of the two locations or due 
to different average winds in 2012 versus 2013.  Thus, 
location and year are confounded. Note also that data 
were gathered from approximately the first of May 
through mid-December of each year.  The buoy was 
removed during the time period that harsh winter 
conditions could damage the instruments mounted on 
the buoy, late December through April. 

 
Table 1   
Observation Locations. 

Year Location 
Description 

Co-ordinates Dates 

2012 Mid-Lake 
Plateau 

43.20N, 87.07W May 8 -    Dec 17 

2013 Near Muskegon 
Michigan 

43.16N, 86.30W April 28 - Dec 20 

Source: Authors’ Measurement. 
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3. Methods 

An LWS unit measures wind speed and direction 
every second.  Thus, there are 600 observations every 
ten minutes. The average wind speed for each ten-
minute interval is computed from these 600 
observations.  The LWS units reports whether each 
observation is valid or invalid.  As described in 
Standridge et al. (2015), a ten minute average is 
considered valid if at least 300 of the 600 observations 
are reported as valid by the device.      

By a central limit theorem (Law 2007), the ten 
minute averages are normally distributed with the mean 
and standard deviation estimated from the ten minute 
averages.  Further, the number of ten minute averages is 
large, greater than 32000.  Thus the empirical 
distribution (histogram) should be sufficiently dense, 
with no gaps, to support computing the potential power 
using the power curve of a selected wind turbine.  
Statistical analyses were performed using equations 2-7.  
A discussion of each of these equations and their use is 
found in Devore (2012). The coefficient of variation (Cv) 
is a standardized statistic that is useful in comparing the 
variation between multiple quantities.   It is computed as 
shown in equation 2: 

 

𝐶𝑣 =
𝑠

𝑥
     (2) 

 
where s is the standard deviation and 𝑥 is the average. 

Comparison of wind speeds from multiple heights 
and two locations is central to this study.  In general 
terms, there are two possibilities when comparing two 
samples, depending on whether each observation in one 
sample has a natural partner in the other.  For instance 
when comparing wind speed observations at two heights 
at the same location and over the same period of time, 
each sample at one height has a natural partner in the 
sample at the other height as both observations were 
taken at the same time.  In this case, the paired-t method 
is used.  Alternatively when comparing wind speed 
observations from two different locations each taken in 
a different year, there are no natural partners.  Thus, the 
two sample t-test must be used. 

 When using the two sample t-test, the 1- 
confidence interval for the difference in the two sample 
means with equal but unknown variances is computed 
using equation 3. 

 

(𝑥1̅̅̅ − 𝑥2̅̅ ̅) ± 𝑡1−
𝑎

2
,𝑑𝑓 ∗ 𝑠𝑝√

1

𝑛1
+

1

𝑛2
   (3) 

 
where  𝑥1 ̅̅ ̅̅  and 𝑥2 ̅̅ ̅̅  are the two sample means, 𝑡1−

𝑎

2
,𝑑𝑓  is a 

percentage point from the Student’s t distribution with 
df degrees of freedom, sp is the pooled standard deviation 
of the two samples, n1 is the number of observations in 
the first sample, and n2 is the number of observations in 
the second sample.  Using the pooled standard deviation 

assumes homogeneity of variance, a commonly used 
assumption that is known from experience to be robust. 

The degrees of freedom df is computed using 
equation 4. 

 
𝑑𝑓 =  𝑛1 + 𝑛2 − 2    (4) 

 
The pooled variance is computed using equation 5. 
 

𝑠𝑝
2 =

(𝑛1−1)∗𝑠1
2+(𝑛2−1)∗𝑠2

2

𝑛1+𝑛2−2
    (5) 

 
Each ten minute average computed from 

observations at one height has a natural partner in the 
ten minute average computed from observations made 
at another height for the same ten minute time interval, 
t.  Thus, the paired-t method applies.  The fundamental 
equation of the paired-t method generates a time series 
of differences as show in Equation 6.  A difference is valid 
if both of the ten minutes averages are valid.   

 
differencet = Height1t – Height2t   (6) 
 
The application of equation 6 results in a time series of 
wind speed differences between the two heights.  The 
confidence interval for the mean difference is computed 
using equation 7. 

 

𝑥𝑑𝑖𝑓𝑓̅̅ ̅̅ ̅̅ ̅ ± 𝑡1−
𝑎

2
,𝑛−1 ∗

𝑠

√𝑛
    (7) 

 
where  𝑥𝑑𝑖𝑓𝑓 ̅̅ ̅̅ ̅̅ ̅ is the sample mean difference, 𝑡1−

𝑎

2
,𝑛−1 is a 

percentage point from the Student’s t distribution with 
n-1 degrees of freedom, s is the sample standard 
deviation, and n is the number of observations.   

A confidence interval can be thought of as a set of 
plausible values for a true but unknown mean. 
Interpretation of confidence intervals of the average 
differences generated by the paired-t method and the 
two sample t-test requires consideration of the precision 
of the wind gage. Both the LWS and cup anemometers 
used in this study have the same precision: 0.1 m/s.  If 
such a confidence interval does contain -0.1 or 0.1, a 
conclusion of an operationally significant difference in 
average wind speeds between two heights or locations is 
not supported by the data. In other words, since the 
range of operationally insignificant values is [-0.1, 0.1] 
and if a confidence interval overlaps with this range, 
strong statements cannot be made about the average 
difference being significant that is greater in magnitude 
than 0.1.  

The comparison of wind speeds between the two 
different locations is desirable.  However, wind speed is 
confounded with the year in which the observations 
were made.  To address this confounding, generally 
available wind speed data from surface level buoys near 
the two LWS locations was examined.  Buoy location 
information is given in Table 2.  Station ID 45007 
corresponds to the mid-lake plateau site used for the 
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LWS unit in 2012.  Station ID 45161 corresponds to the 
near Muskegon site for the LWS unit used in 2013.  The 
surface level buoys collect data as follows: 

 45007 –1 average per hour from April 1 
through November 30 for both years 

 45161 – 1 average per hour for both years 
but from July 6 to October 25 in 2012 and 
from April 18 to November 30 in 2013 

 

 
 
 
Table 2 
Location of Surface Level Buoys 

Station 

ID 

Owner Location Site Elevation above 

Sea Level (m) 

Anemometer Height 

above Site Elevation (m) 

45007 National Data Buoy Center 42.674 N 

87.026 W 

176.4 4 

45161 Great Lakes Environmental 

Research Laboratory 

43.178 N 

86.361 W 

176.0 2 

Source: http://www.ndbc.noaa.gov 

 

4. Results and Discussion 
Wind speed and direction data are summarized.   The 

confounding factor of year with location is addressed.  
Comparison of wind speeds from the two different 
locations are presented.  The differences in wind speed 
with height is discussed. 

  
4.1 Effect of Years 

The first two questions to address are the following: 

 

 Is the wind speed in 2013 at the mid-lake 
plateau slower or faster than in 2013? 

 Is the wind speed in 2013 near Muskegon 
slower or faster than in 2012? 

Table 3 shows wind speed summary statistics for 
each surface level buoy for 2012 and Table 4 shows the 
same information for 2013.  Table 5 gives an analysis of 
the difference in the average wind speed for the two 
years.   The statistics presented in these three tables can 
be used to answer the two questions. 
 

Table 3   
Horizontal Wind Speed (meters per second) Statistics by Surface Level Buoy for 2012 

 

 

Statistic 

Station 45007 –  

Mid Lake  

1 hour averages 

4/1 - 11/30 

Station 45161 –  

Off Muskegon 

1 hour averages 

7/6 – 10/25 

Possible Obs. 5856 2688 

Total Obs. 5828 2409 

% Total Obs. 99.52 89.62 

Average 5.8 5.1 

Std. Dev. 3.1 2.6 

Coefficient of Variation 0.53 0.51 

Minimum 0 0 

Quartile 1 3.7 3.0 

Median 5.5 4.8 

Quartile 3 7.7 6.9 

Maximum 19.4 13.0 

99% CI– Lower Bound 5.7 5.0 

99% CI -- Upper Bound 5.9 5.2 

Source:  Authors’ Analysis 
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Table 4 
Horizontal Wind Speed (meters per second) Statistics by Surface Level Buoy for 2013 

 
 
 
Statistic 

Station 45007 –  
Mid Lake 

1 hour averages 
4/1 - 11/30 

Station 45161 –  
Off Muskegon 

1 hour averages 
4/18 – 11/30 

Possible Obs. 5856 5448 

Total Obs. 5817 4478 

% Total Obs. 99.33 82.20 

Average 5.5 4.8 

Std. Dev. 3.1 2.7 

Coefficient of Variation 0.56 0.56 

Minimum 0 0 

Quartile 1 3.1 2.9 

Median 5.1 4.4 

Quartile 3 7.4 6.4 

Maximum 17.5 14.3 

99% CI– Lower Bound 5.4 4.7 

99% CI -- Upper Bound 5.6 4.9 

Source:  Authors’ Analysis 
 

 
 
Table 5 
Horizontal Wind Speed (meters per second) Comparison of 2012 and 2013 

 
 
Statistic 

Station 45007 – 
Mid Lake 
1 hour averages 

Station 45161 – 
Off Muskegon 
1 hour averages 

Average Difference (2012-2013) 0.38 0.25 

Pooled Std. Dev. 3.1 2.6 

99% CI– Lower Bound 0.23 0.08 

99% CI -- Upper Bound 0.52 0.42 

Source:  Authors’ Analysis 

As shown in Table 5, the average difference in wind 
speeds is positive indicating that average wind speed at 
each location was slower in 2013 than in 2012.  Since the 
confidence interval for the average wind speed 
difference at the mid-Lake does not overlap the range [-
0.1, 0.1], the average difference is statistically significant 
( = 0.01).  However, the confidence interval for the 
average wind speed difference near Muskegon does 
overlap this range.  Thus, the average difference is not 
statistically significant 
 
4.2 Effect of Location 

The next question to address is as follows:  
 For each observation height, is there a difference 

in wind speed between locations?  
 
Table 6 shows wind speed summary statistics for 

each LWS range gate for 2012 at the mid-lake plateau 
and Table 7 shows the same information for 2013 near 
Muskegon.  Table 8 gives an analysis of the difference in 
the average wind speed for the two locations. The 

averages and standard deviations are computed using 
data from May 8 through December 17 of each year. 
These are the dates for which data was collected in both 
years.  Positive differences indicate a higher average 
wind speed at the mid-lake plateau. 

Note that the results show a slower average wind 
speed in 2013 near Muskegon than in 2012 at the mid-
lake plateau (= 0.01) for all heights.   The largest 
differences are at 75 m and 90 m.  Differences tend to be 
smaller as height increases. 

 
4.3 Effect of Height 

A final question to address is as follows.  
 For each observation location, is there a 

difference in wind speed between heights?  
This question can be addressed through asking 
a more specific question. 

 For each pair of heights, is the wind speed 
greater at the higher range gate than at the 
lower range gate?  
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Table 6   
Horizontal Wind Speed (meters per second) Statistics by LWS Range Gate – Mid-Lake 

Statistic Cup 75m 90m 105m 125m 150m 175m 

Good Obs. 32216 30076 30951 30882 29265 21101 12226 

% of Total (32256) 99.9 93.2 96.0 95.7 90.7 65.4 37.9 

Average 6.2 8.7 8.9 9.0 8.9 9.2 9.5 

Std. Dev. 3.1 4.7 4.8 4.8 4.9 5.2 5.0 

Coeff. of Variation 0.50 0.54 0.54 0.53 0.55 0.57 0.53 

Minimum 0.0 0.2 0.2 0.2 0.2 0.2 0.3 

Quartile 1 4.0 5.1 5.3 5.4 5.1 5.2 5.7 

Median 5.9 8.0 8.3 8.4 8.2 8.4 8.8 

Quartile 3 8.2 11.6 11.9 12.0 11.9 12.4 12.5 

Maximum 19.3 28.3 28.7 29.2 29.8 30.2 31.5 

99% CI– Lower 
Bound 

6.2 8.6 8.8 8.9 8.8 9.1 9.4 

99% CI -- 
Upper Bound 6.2 8.8 9.0 9.1 9.0 9.3 9.6 

Source:  Authors’ Analysis 

 
 
Table 7 
Horizontal Wind Speed (meters per second) Statistics by LWS Range Gate – near Muskegon 

Statistic Cup 75m 90m 105m 125m 150m 175m 

Good Obs. 33899 25806 29532 32394 32731 30482 23050 

% of Total (34128) 99.3 75.6 86.5 94.9 95.9 89.3 67.5 

Average 5.9 8.0 8.2 8.5 8.7 8.8 9.2 

Std. Dev. 3.2 4.3 4.3 4.4 4.4 4.4 4.3 

Coeff. of Variation 0.54 0.54 0.52 0.52 0.51 0.50 0.47 

Minimum 0 0.2 0.2 0.1 0.2 0.2 0.3 

Quartile 1 3.5 4.9 5.1 5.3 5.4 5.6 6.1 

Median 5.4 7.3 7.6 7.9 8.2 8.3 8.7 

Quartile 3 7.8 10.4 10.7 11.1 11.3 11.4 11.7 

Maximum 19.6 80.9 49.7 57.0 53.6 56.4 33.3 

99% CI– Lower 
Bound 

5.9 7.9 8.1 8.4 8.6 8.7 9.1 

99% CI -- 
Upper Bound 

5.9 8.1 8.3 8.6 8.8 8.9 9.3 

Source:  Authors’ Analysis 
  

 
Table 8   
Comparison of Locations – Mid-Lake and Near Muskegon 

Statistic Cup 75m 90m 105m 125m 150m 175m 

Average Difference 
(2012-2013) 

0.27 0.72 0.71 0.53 0.23 0.36 0.20 

Pooled Std. Dev. 0.31 4.6 4.5 4.6 4.6 4.7 4.5 

99% CI– Lower 
Bound 

0.21 0.62 0.62 0.44 0.13 0.25 0.07 

99% CI -- 
Upper Bound 

0.34 0.82 0.81 0.63 0.33 0.47 0.33 

Source:  Authors’ Analysis 

The effect of height can be assessed using the same 
data for which the statistics shown in Tables 6 and 7 
were computed.  The effect of height is examined for each 

location independently.  The paired-t method is used.  
The difference in wind speeds for adjacent range gates 
pairs is studied.  Each difference is computed as higher 
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range gate value – lower range gate value.  As was 
discussed in the methods section, only valid differences, 
those where each of the two 10 minute averages was 
comprised of at least 300 observations, were included. 

Table 9 shows results for the mid-lake plateau in 
2012 and table 10 shows results for 2013 near 
Muskegon.   
 

 
 
Table 9   
Wind Speed Average Difference by Pairs of Adjacent LWS Range Gates –Mid-Lake 

 
Statistic 

90m-  
75m 

105m-
90m 

125m- 
105m 

150m-
125m 

175m – 
150m 

Good Obs. 30050 30848 29251 21074 12199 

% of Total (32256) 93.2 95.6 90.7 65.3 37.8 

Average 0.26 0.076 -0.13 -0.43 -0.92 

99% CI– Lower 
Bound 

0.25 0.07 -0.14 -0.44 -0.95 

99% CI -- 
Upper Bound 

0.27 0.08 -0.12 -0.41 -0.88 

Source:  Authors’ Analysis 

 
Table 10   
Wind Speed Average Difference by Pairs of Adjacent Range Gates – Near Muskegon 

 
Statistic 

90m-  
75m 

105m-
90m 

125m- 
105m 

150m-
125m 

175m – 
150m 

Good Obs. 25641 29404 32184 30428 23035 

% of Total (34128) 75.1 86.2 94.3 89.2 67.5 

Average 0.50 0.37 0.19 0.066 -0.012 

99% CI– Lower 
Bound 

0.49 0.36 0.19 0.060 -0.030 

99% CI -- 
Upper Bound 

0.51 0.37 0.20 0.070 0.0 

Source:  Authors’ Analysis 

 

 
Figure 1.  Average Wind Speed and Percent Time by Direction at 125 m – Mid-Lake 

 
 

Note that the average wind speed stops increasing 
with height between 105 m and 125 m at the mid-lake 
plateau in 2012 as well as between 125 m and 150 m 
near Muskegon in 2013.  The difference in average wind 

speeds between 125 m and 150 m near Muskegon is less 
than 0.1 m/s, the precision of the gage and thus is not 
significant. 
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4.4 Wind Direction 
Wind rose graphs show the wind speed by direction 

as well as the percent of time the wind was blowing in 
each direction.  The percent of time the wind was coming 
from a particular direction is shown by the inner and 
outer circles.  The inner circle represents the wind 
coming from a particular direction 3% or 4% of the time 
and the outer circle 6% or 8% of the time as labeled on 
the graph. Note that for each range gate height, the 

dominate wind direction is south-southwest (SSW). On 
the buoy deck, the dominate wind direction is south mid-
lake and SSW near Muskegon. 

The wind rose graphs are similar for all range gates.  
To illustrate, the wind rose graphs for 125 m are 
presented in Figures 1 (mid-lake) and 2 (near 
Muskegon). 
 

 

 
Figure 2.  Average Wind Speed and Percent Time by Direction at 125 m – Mid-Lake  

5. Conclusion 
The data and statistical analysis results are best 

interpreted in light of what impact they can have on 
future wind farm development. First the difference 
between average wind speeds at the two locations is 
assessed.  This requires dealing with the confounding of 
the year of data collection with location.   The analysis 
results shown in Table 5 concerning the surface level 
buoys which collected data in both 2012 and 2013 are 
used.  Based on this analysis, it can be concluded that 
there is no significant difference between the average 
wind speed in 2012 and 2013 at the water surface near 
Muskegon.  The confidence interval for the difference in 
average wind speed shown in Table 5 includes values 
less than the precision of the gage ( = 0.01).   

Thus, we infer that since there is no significant 
difference in average wind speed near the surface that 
there is no significant different at any height at which the 
LWS unit collected data between the two years.  Thus, the 
data collected by the LWS unit in 2012 at the mid-lake 
plateau can be directly compared to the data collected in 
2013 near Muskegon and conclusions drawn as to the 
difference in wind speed between the two locations.   

The analysis results in Table 8 support this 
comparison.  These results show that the average wind 
speed is greater at the mid-lake plateau in 2012 than 
near Muskegon in 2013.  The average differences 
generally decrease with height and range from 2% to 9% 
of the average wind speed near Muskegon.  Thus it can 

be concluded that more energy could be harvested by a 
wind farm located at mid-lake than at Muskegon.  The 
increase in energy harvested would need to be balanced 
against the increased cost of installing and maintaining 
such a wind farm further from the shore line. 

Next, the difference in average wind speeds by the 
six heights at which the LWS unit collected data is 
examined.  The analysis results for the mid-lake plateau 
are shown in Table 9. At the mid-lake plateau, average 
wind speed starts to decrease between 105 m and 125 
m.  The difference in average wind speed between 90 m 
and 105 m is less than the precision of the gage and not 
statistically significant.  That is, there is no evidence that 
wind speed increases between these two heights.  Thus, 
it can be concluded that the average wind speed at the 
mid-lake plateau reaches its maximum value between 90 
m and 105 m. 

The analysis results for the location near Muskegon 
are shown in Table 10. The average wind speed starts to 
decrease between 150 m and 175 m.  Furthermore, the 
difference in average wind speed is less than the 
precision of the gage for 125 m versus 150 m and 150 m 
versus 175 m.  Thus, the average wind speed appears to 
reach its maximum value between 125 m and 150 m.  

These results are inconsistent with idea that higher 
wind turbines will result in more energy being 
harvested.  In addition, the results are not consistent 
with the wind profile power law given in equation 1. The 
results indicate the importance of directly measuring 
wind speed at a proposed hub height when planning a 
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wind farm as opposed to the current reported practice in 
the studies cited above of measuring wind speed at a 
lower height and using the wind profile power law to 
estimate wind speed at hub height.  More study is needed 
in this regard.  It is also of interest to examine data 
concerning the prevailing wind direction.  Figures 1 and 
2 show this direction to be SSW both at the mid-lake 
plateau and near Muskegon.  Thus it can be concluded 
that the orientation of the wind farm regardless of its 
location should be SSW. 

Finally, the performance of the LWS is accessed. At 
the mid-lake plateau, Table 6, the percent of good 
observations decreases consistently with height and 
drops noticably drops at 150 m and 175 m versus lower 
heights.  Average wind speed is relatively constant 
between 75 m and 125 m as well as increasing between 
125 m and 175 m.  Near Muskegon, Table 7, the same 
general pattern is seen in the percent of good 
observations though the reduction is much less at higher 
heights.  The percent noticably drops at 175 m.  The 
average wind speed consistently increases with height.   

These observations can be explained as follows.  The 
LWS unit relies on detecting particle movement in the 
airflow.  There is less mixing of the air layers in the mid-
lake versus near shore resulting in less movement of 
particulate matter.  Furthermore, there is likely a lack of 
such particles at the mid-lake plateau versus near shore 
which is more pronounced as height increases.  Thus, it 
can be concluded that higher average wind speeds at 150 
m and 175 m versus lower heights particularly at the 
mid-lake location are consistent with the LWS unit 
observing only faster wind speeds due to the lack of 
particle movement at lower wind speeds.   
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