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Abstract - Data mining is nontrivial extraction of implicit, 
previously unknown and potential useful information from the 
data. For a database with number of records and for a set of 
classes such that each record belongs to one of the given classes, 
the problem of classification is to decide the class to which the 
given record belongs. The classification problem is also to 
generate a model for each class from given data set. We are going 
to make use of supervised classification in which we have training 
dataset of record, and for each record the class to which it 
belongs is known. There are many approaches to supervised 
classification. Decision tree is attractive in data mining 
environment as they represent rules. Rules can readily expressed 
in natural languages and they can be even mapped o database 
access languages. Now a days classification based on decision 
trees is one of the important problems in data mining   which has 
applications in many areas.  Now a days database system have 
become highly distributed, and we are using many paradigms. we 
consider the problem of inducing decision trees in a large 
distributed network of highly distributed databases. The 
classification based on decision tree can be done on the existence 
of distributed databases in healthcare and in bioinformatics, 
human computer interaction and by the view that these databases 
are soon to contain large amounts of data, characterized by its 
high dimensionality. Current decision tree algorithms would 
require high communication bandwidth, memory, and they are 
less efficient and scalability reduces when executed on such large 
volume of data. So there are some approaches being developed to 
improve the scalability and even approaches to analyse the data 
distributed over a network. 
 
[keywords: Data mining, Decision tree, decision tree induction, 
distributed data, classification] 

 
1. Introduction 
 
Decision tree is one of   the      most upcoming area of research 
as   data goes on increasing we to select best attribute to classify 
the data[1].There are many data mining techniques that are 
available in order to    draw the relationships between objects[2]. 
Decision tree is on of the widely used practical method [3].In 
this paper we present the overview of decision trees, decision 

tree induction algorithm, distributed data base, how the decision 
tree can be applied on distributed data. 
 
2. Data Mining 
 
Data mining is mining knowledge from large amount of data or 
knowledge discovery from data (KDD). 
data mining task can be divided into two categories descriptive 
and predictive.. 
 
Descriptive data mining task characterize the general properties 
of data in data base. 
Predictive data mining task performs inferences on current data 
in order to make predictions. 
Data mining functionalities: 
1. Data characterization: It summarizes the data of class under 
study. 
2. Data discrimination: It is comparison of general features of 
target class with one or set of comparative classes 
3. Association analysis: It is discovery of association rules 
showing attribute value condition that occur frequently together 
in a given set of data. 
4. Classification: It is a process of finding a model. That 
describes and distinguishes data classes for the purpose of 
using the model to predict the class object whose class label is 
unknown. the derived model is based on training data . 
The derived model can be represented in various forms 
1. IF-THEN rules 
2. Decision tree 
3. Neural networks 
 
1. IF-THEN rules: 
      Based on the condition of Association rules the attribute 
will be selected. 
2. Decision tree: 
 It is a flow chart like tree structure, where each node denotes a 
test on a attribute value, each branch represents an outcome of 
the test and tree leaves represent classes or class distributions. 
3. Neural networks: It is a collection of neurons like processing 
units with weighted connection between units.  
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Classification predicts categorical labels (discrete, unordered). 
Prediction models continuous data. 
4. Clustering analysis: It analyses data objects without 
consulting a known class label. 
5. Outlier analysis: The data base may contain data objects hat 
do not comply with general behaviour of data. These data 
objects are called as outlier. Most data mining methods discard 
outlier as noise or exception. The analysis of outlier data is 
outlier analysis. 
6. Evolution analysis: This describes and models regularities 
and trends for object whose behavior changes over time[4]. 
 
3. Decision trees 
 
A decision tree is a predictive model that, as its name implies, 
can be viewed as a tree.  Specifically each branch of the tree is a 
classification question and the leaves of the tree are partitions of 
the dataset with their classification.  

A decision tree is a data structure with the following properties 

1. Each leaf is labeled with name of class 

2.  The root and each inter node are labeled with the name of 
attribute. 

3. Every internal node has a set of two children are labeled with 
set of values of that nodes attribute such that union of all these 
constitute the set of all possible values for that attribute [5]. 

 
3.1 Decision tree induction 

During 1970’s and 1980’s J.Ross Quinlan, a researcher in 
machine language developed a decision tree algorithm Known 
as ID3 (Iterative dichotomize). 

Quinlan later presented C4.5.In 1984 a group of statistician’s 
published a book on CART which describes the generation of 
binary tree 
All the three algorithms adopt greedy approach in which 
decision tree are constructed in top down recursive divide and 
conquer manner [6]. 
 
The basic decision tree algorithm steps 
Algorithm Generate_decsiontree (D, attribute list, attribute 
selection method) 
1. Create a Node N; 
2. if tuples in D are all of same class, C then 
3. Return N as a leaf node labelled with the class C; 
4. if attribute list is empty then 
5 return N as a leaf node labelled with the majority class in D; 
6 apply attribute selection methods to find best splitting criteria 
7 label node N with splitting criteria; 
8 if splitting attribute is discrete and multiway split allowed then 
9 attribute list<- attribute list-splitting attribute; 
10 for each outcome of j of splitting criteria 
11 let Dj be the set of data tuples in D satisfying outcome j; 
12 if Dj is empty then  
13 attach a leaf labelled with the majority class in D to node N; 

14 else attach the node returned by Generate_decsiontree (D, 
attributelist) to node N; 
End for 
15 return N 
 
3.2 Attribute selection measures 
 
ID3 uses Information gain as its attribute selection measure. 

 
Let D, the data partition.supose the class label attribute has M 
distinct values defining m distinct clases,Ci (for i=1...m) 
Let Ci,D denote set of tuples in class Ci in D 
Let |D| and | Ci,D| denote the number of tuples in D and Ci,D 
respectively. 
 the information needed to classify a tuple in D is given by 
    
Info (D)=-Σ m i=1pilog 2 (pi) 
                        

The attribute with highest gain is chosen as the splitting attribute 
for node N. 

pi is the probability that an arbitrary tuple in D belongs to class 
Ci and is estimated by  

|  Ci,D |/| D | 

 now we need to partition  the tuples in D on some attribute A 
having v distinct values,{a1,a2,….av}.If A is discrete value then 
attribute A can be used o split D into V partitions{D1,D2…Dv} 
where Dj contains those tuples in D that has the outcome aj of A. 
Even though the will be impure in order to arrive an exact 
classification the needed information is got by 
          v  

InfoA(D)=Σj=1| Dj  |/|  D | * info(Dj) 
 Information gain is defined as difference between original 
information requirement and the new requirement 
 
   Gain (A)=info(D)-infoA(D) 
 By using information gain on some tuple results in large 
partitions since the partition is pure info(D)=0 since information 
gained would be max so it is not apt for classification 
 
C4,5 make use of gain ratio,it applies a normalization to 
information gain by using split information 
 
 splitinfoA(D)=-  Σ j=

v
1| Dj  |/|  D |*log2 (| Dj  |/|  D|) 

 
Gain ratio=Gain (A)/Split info (A) 
Splitinfo may also reach 0, which is unstable 
 
CART makes use of Gin index as splitting criteria. 
 
Gini (D)=1-Σ mi=1p i

2 

 

When considering a binary split we compute the weighed sum 
of impurity of each resulting partition 
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for example if a binary split on a partition D into D1, D2 then 
Gininindex is given by 
Gini A(D)=|D1|/|D| Gini(D1)|D2/|D| Gini(D2) 
 
We need to select a measure that tends to produce shallower 
tree. 
 
3.3 Tree Pruning 
 
Many of the branches will reflect anomalies in the training data 
due to noise or outliers.  They are typically used to remove less 
reliable branches. Pruned tree is small and less complex and 
thus easier to comprehend. There are two common approaches: 
1 pre pruning  2 postprunind. Prepruning: a tree is pruned by 
halting its construction early. Post pruning: It removes subtrees 
from fully grown tree. 
 
3.4 Scalability and decision tree induction: 
 
The existing decision tree algorithms such as ID3, C4.5, and 
CART are well established to handle relatively small data. 
here is a restriction that the training tuples should be within 
memory. Since there are large training tuples available, the 
decision tree construction becomes inefficient. 
SLIQ and SPRINT are algorithms for induction of decision tree 
on large data sets. 
Both make use of a different data structure. 
SLIQ employs disk resident attribute list and memory resident 
class list. 
class list remains in memory, but when class list increases and 
do not fit in the memory then performance of SLIQ decreases. 
SPRINT makes use of different data structure that holds class 
and attribute information. 
SPRINT removes all memory restriction yet requires hash trees. 
They may become expensive as training set size grows. 
To enhance the scalability a method called Rain Forest was 
proposed it can be applied on any decision tree. It makes use of 
AVC-set (Attribute –value, class label) for each attribute at each 
node. 
BOAT (Bootstrapped Optimistic Approach for Tree 
construction) It does not make use of any data structure but 
makes use of statistical technique o to create several smaller 
samples of training data which will fit in memory. 
 
3.5 Applications of decision trees 

Decision trees are data mining technology that has been around 
in a form very similar to the technology of today for almost 
twenty years now and early versions of the algorithms date back 
in the 1960s.  Often times these techniques were originally 
developed for statisticians to automate the process of 
determining which fields in their database were actually useful 
or correlated with the particular problem that they were trying to 
understand.  Partially because of this history, decision tree 
algorithms tend to automate the entire process of hypothesis 
generation and then validation much more completely and in a 
much more integrated way than any other data mining 

techniques.  They are also particularly adept at handling raw 
data with little or no pre-processing.  Perhaps also because they 
were originally developed to mimic the way an analyst 
interactively performs data mining they provide a simple to 
understand predictive model based on rules (such as “90% of the 
time credit card customers of less than 3 months who max out 
their credit limit are going to default on their credit card loan.”). 

Because decision trees score so highly on so many of the critical 
features of data mining they can be used in a wide variety of 
business problems for both exploration and for prediction.  They 
have been used for problems ranging from credit card attrition 
prediction to time series prediction of the exchange rate of 
different international currencies.  There are also some problems 
where decision trees will not do as well.  Some very simple 
problems where the prediction is just a simple multiple of the 
predictor can be solved much more quickly and easily by linear 
regression.  Usually the models to be built and the interactions 
to be detected are much more complex in real world problems 
and this is where decision trees excel [7]. 

4. Distributed Database 
 

A distributed database is a database in which storage devices 
are not all attached to a common cpu. It may be stored in 
multiple computer located in the same physical location, or may 
be dispersed over a network of interconnected computers. 

Collections of data (e.g. in a database) can be distributed across 
multiple physical locations. A distributed database can reside on 
network servers on the internet, on corporate internet or  on 
other company networks. The replication and distribution of 
databases improves database performance at end users 
worksites.  

To ensure that the distributive databases are up to date and 
current, there are two processes: replication and duplication. 
Replication involves using specialized software that looks for 
changes in the distributive database. Once the changes have 
been identified, the replication process makes all the databases 
look the same. The replication process can be very complex and 
time consuming depending on the size and number of the 
distributive databases. This process can also require a lot of time 
and computer resources. Duplication on the other hand is not as 
complicated. It basically identifies one database as a master and 
then duplicates that database. The duplication process is 
normally done at a set time after hours. This is to ensure that 
each distributed location has the same data. In the duplication 
process, changes to the master database only are allowed. This is 
to ensure that local data will not be overwritten. Both of the 
processes can keep the data current in all distributive locations. 

Besides distributed database replication and fragmentation, there 
are many other distributed database design technologies. For 
example, local autonomy, synchronous and asynchronous 
distributed database technologies. These technologies’ depend 
on the needs of the business and the sensitivity/confidentiality of 
the data to be stored in the database, and hence the price the 
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business is willing to spend on ensuring data security and 
consistency[8] . 

Distributed computing plays an important role in the Data 
Mining process for several reasons. First, Data Mining often 
requires huge amounts of resources in storage space and 
computation time. To make systems scalable, it is important to 
develop mechanisms that distribute the work load among several 
sites in a flexible way. Second, data is often inherently 
distributed into several databases, making a centralized 
processing of this data very inefficient and prone to security 
risks. Distributed Data Mining explores techniques of how to 
apply Data Mining in a non-centralized way[9]. 

One interesting aspect of large databases is that they are 
often distributed over many locations. The main reason for this 
is that they are produced by a variety of independent 
institutions. While these institutions often allow a second party 
to browse their databases, they will rarely allow this party to 
copy them. There could be a number of reasons for this: the 
need to retain the privacy of personal data recorded in the 
database, through questions regarding its ownership, or even 
because the sheer size of the data makes copying non 
permissively costly in CPU, disk I/O or network bandwidth 
[10]. 

We require distributed algorithms for data mining over a 
distributed network as the data is distributed on various 
locations.A distributed decision tree induction algorithm is one 
that executes on several computers, each with its own database 
partition. The outcome of the distributed algorithm is a decision 
tree which is the same as, or at least comparable with, a tree 
that would be induced were the different partitions collected to 
a central place and processed using a sequential decision tree 
induction algorithm. 
DHDT (Distributed hierarchical decision tree) focuses on 
reducing the volume of data sent from each level to the next 
while preserving perfect accuracy. 
The common approach to reduce the communication overhead 
would be to sample the distributed data set and transfer these 
decision trees to the central sites this approach is called as Meta 
learning. This suffers from scalability               limitations. So a 
different Meta learning algorithm was suggested this algorithm 
turns each decision tree to set of rules and then merge the rules 
into single superset of rules. As numbers of sites increase the  
accuracy of Meta learning classifiers drop. 

Then much attention was given to parallel algorithm 
There are three parallel algorithms  
1. Synchronous tree construction  
2. Partitioned tree algorithm 
3. Hybrid approach 
These algorithms cannot be used in large scale distributed 
system because data movement is often impractical in 
distributed network 
The parallel version of SPRINT algorithm enhances the 
performance by vertical partitioning scheme where every 
computing node is responsible for a distinct subset of data 
attribute. In order to split the attribute list the hash table must 

be available on all computing nodes which make the algorithm 
highly unscalable[11]. 
 
4.1 Bounds on Gain Function: 
 
By these bounds we can avoid collecting the cross table of 
many of the attributes whose gain as indicated by the bounds 
cannot be large enough to change the result. 
 
4.2 Notations: 
 
Let P be the population of size n 
And let {P1, P2} be the partition of P into two sub population 
of size n1,n2. 
Let the cross table of the P1, P2, P are as follows 
 → 
 P1(values, class)    =           a11   a12 
                                                                    
                                             a21   a22 
 
 
 
 
P2(values, class)         =        b11    b12 
                                
 
                                               b21    b22 
 
 
 
P(values, class)              a11+b11      a12+b12 
 
                     = 
                                       a21+b21        a22+b22   
 
 
Here aij, bij denote the number of learning examples with value 
i, j 
 
4.3 Gini index function: 
 
Given giniindex (P1), giniindex (P2), n1, n2 
Then upperbound on giniindex (P) is given by 
 
upperbound=n1*giniindex(P1)+n2*giniindex(P2)/n1+n2 
 
P1, P2, n1, n2 are given then cardinality decision split P1 in to 
two subsets P1left  P2right with sizes  n1left   and n2right then lower 
bound is given by 

Lowerbound=  
             Gain index(P1)/[1+n2/n1][1+max{n/n1left,n2/n1right}] 
 
 
The upper bound on information gain is given by 
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 n1*infogain(P1)+n2*infogain(P2)/n1+n2 
 
The lower bound on information gain is given by 
                  
            1                                    1 
                                           + 
     1+(n2/min(n1,n1))          1+n2/n1    
 
 
*infogain(P1) 
 
 
let P be the population of size n and {P1,P2,P3…PK} a 
partition of P into k sub populations of size n1,n2,n3….nk .let 
G() be the gain function then upper bound on G(P) is given by 
   
                 Σk i=1   n iG(Pi) 
G(P)   ≤      
                   Σk i=1  ni 

               
let P be the population of size n,and {P1,P2} a partition of p 
into two subpopulation of size n1,n2 and the candidate split 
divides P1 into two subset P1left ,P1right with size n1left ,n1right let 
G() denote the gain function the lower bound is given by  
 
                                            G(P1) 
G(P)  ≥                     
                       [1+n2/n2][1+n2/min(n1lt,n1ri )] 

 
 
5. Distributed HierarchicalDecision tree. 
 
The distributed hierarchical decision tree (DHDT) algorithm 
runs on a group of computers, connected through a wide-area 
network such as the Internet. Each computer has its own local 
database. The goal of DHDT is to derive exactly the same 
decision tree learned by a sequential decision tree learner on the 
collection of all data in the network. We assume a 
homogeneous database schema for all databases, which can be 
provided transparently, if required, by ordinary system services. 
The algorithm relies on a (possibly overlay) communication 
tree that spans all computers in the group. The communication 
tree can be maintained by a spanning tree algorithm or can 
utilize then actual hierarchy of the network. For reasons of 
locality, communication between nodes in the lower levels of 
the spanning tree is often cheaper than communication between 
nodes in the upper levels. Thus, a good algorithm will use more 
communication at the bottom than at the top of the tree. We 
further assume that during the growth phase of the decision 
tree, the databases and the communication tree remain static. 
 
For each data base, an entity called agent is allocated, which 
accesses the database through a standard interface such as SQL 
or HL7 and gathers simple statistics. The agent is in charge of 

computing the required statistics from local database and 
participating in distributed algorithm. 
The root agent is responsible for developing the decision tree 
and making the split decisions for the new decision tree leaves. 
First, the root agent decides whether a decision tree leaf has to 
be split according to one or more stopping conditions (e.g., if 
the dominance of the majority class has already reached a 
certain threshold) or according to the PUBLIC method ,which 
avoids splitting a leaf once it knows it may  which holds the 
number of examples that belong to 
each distinct class in the population, is sufficient for computing 
these functions, and thus it is aggregated by the agents over the 
communication tree to the root agent. 

 Recall that if a decision tree leaf has to be split, thus a 
split must be done by the attribute with the highest gain in the 
combined database of the entire network. All that is required to 
decide on the splitting attribute is an agreement as to which 
attribute has the maximal gain; the actual gain of each attribute 
does not need to be computed. To reach agreement, the agents 
participate in a distributed algorithm called DESAR 
(Distributed Efficient Splitting Attribute Resolver). For each 
new leaf that has to be developed, DHDT starts a new instance 
of DESAR to and the best splitting attribute [12] 
 
5.1 DHDT ALGORITHM: 
 Algorithm: the DHDT algorithm for root agent 
Initialization  
New leaves list=decision tree root 
Algorithm 

1. for each leafi  in new leaves list do 
2. remove leafi from new leaves list 
3. attributek =run DESAR for leafi 
4. if the gain form splitting leafi according to attributek 
        is above the pruning threshold 
5. split leafi  by attributek 
6. insert a new leaves to new leaves list 
7. end if 
8. end 

 
5.2 Distributed Efficient Splitting Attribute Resolver : 
 
         To no the best splitting attribute while minimizing 
communication complexity, DESAR aggregates only a subset 
of the attribute cross tables over the communication tree to the 
root agent. The algorithm starts when the agents receive a 
message that is broad-cast down the communication tree 
(initiated by the root and transmitted by each agent to all its 
children), asking for the development of a new leaf in the 
decision tree. Then, each agent waits for messages from its 
children. When messages are received from all children, the 
agent combines the received cross tables with its own lo-cal 
cross tables, picks the most promising attributes on the basis of 
its aggregated data, and sends the corresponding cross tables to 
its parent agent only the cross tables for these attributes. 
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Since different subtrees may choose to send information on 
different subsets of attributes to their root, the information 
eventually collected by the root does not always suffice to 
decide which attribute maximizes the gain function. Instead of  
assuming a single value we consider the lower bound and upper 
bound and compute attribute interval for each attribute. The 
interval between lower bound and upper bound for the gain of 
an attribute is called as attribute interval. 
The bounds are computed using the information received from 
all agent’s children. The bound computed by the root agent 
bound the gain function over all data in the network. 
Using the attribute interval, we can say that the given threshold 
defines a clear separation of interval if it separates the attribute 
interval into two nonempty disjoint sets of interval and neither 
of interval crosses the threshold. 
When bounds are computed the agent sets a border with a 
minimal number of attributes having their lower bound larger 
than border. The attribute whose interval lay above the border 
are called promising and their cross tables are sent to agents 
parent. If not the agent request more information for its 
children by naming the attribute for which more information is 
needed (naming method). 
 
DESAR ALGORIHM: 
Algorithm Definition 
D1. border=maximal lower bound of all attribute which were 
not sent to parent 
D2.border attribute= the attribute whose lower bound defines 
the border. 
D3.if agent is root then 
D4. extra condition=there is only a single attribute Ai  
       Where uperbound (Ai)>= border or 
Max (upperbound (Ai)) =border 
D5. else 
D6. extra condition=Gi

u<border for all children. 
 
Algorithm 
On initialization new leaf is born 

1. receive information from children 
2. while(not(border defines clear separation and extra 

condition)) do 
3. if(Gi

u >border) then 
4. request child to lower its border and send new 

information 
5. else if(border does not define a clear separation and 

cross table of border attribute has partial information) 
6. request information for border attribute from children 

who did not sent complete information 
7. else 
8. request information for all attributes that cross the 

border 
9. endif 
10. receive information from all children 
11. end while 
12. Return attribute Ai where lowerbound (Ai)>=border. 

  On request for more information from parent 
1. if(parent requires more information for attribute attri) 

then 
2. if(crosstable of attri was not sent to parent) then 
3. send parent the cross table of attri 
4. else 
5. request information for attri from children who sent 

partial information regarding attri 
6. else(the case where parent request that the border be 

lowered) 
7. update border and border attribute and start phase 1 
8. endif 

 
Computing the lower and upper bounds on gain of attribute 
  
Let agent1, agent2, agent3….. be the descendants of agent0 
Let childi denote the ith immediate child of agent0 
Let Pd be the population of agentd derived from its local 
database 
then the gain function over a network is defined as 
                                        
              P=Ud Pd 
for any given attribute let  
 
              Pu=Ud=k+1----qPd   be the combined population of 
descendant agents that did not send the attributes crosstable to 
agent0 
  
    Let  Pk=P/Pu where Pk be the combined population of 
descendants who sent the attribute crosstables and are also the 
descendants of childi  including the childi 
Let  Pi u. be the combined population of descendant agents who 
did not send the cross tables but are descendants of child 
G() denotes the gain function 
 
Upperbound 

 T he agent computes an upper bound Gu on G (Pu ) 
This is computed recursively by the child and sends to its 
parent the upper bound Gi u  
 
It is computed by the following rule 
1. if  the attribute cross table is not sent to its parent  Gi u is 

equal to attributes upper bound ,otherwise Gi u is equal to 
Gu  of the child itself 

2. for the leaf agent  Pu= thus Gu is set to 0 
 
Now by using the upperbound of giniindex function Gu  
 

Gu≥ G (Pu ) 
 
Where                          Σi|P iu| Gi u 
                 Gu =        
                                   Σi| P iu | 
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again applying the same recursively the agent computes the 
upper bounds as 
                  |Pk|G  
 
             (Pk)+|Pu|G     
            G (P) ≤     |P| 
|P| can be easily computed for aggregate class distribution 
vector and |Pk|, then |Pu| can be computed 
In order to further reduce the communication complexity and 
make it independent of number of candidate attribute a child 
agent sends the max  
Gi u of all attributes as single upper bounds denoted as Gi u 
  
Lower bound 
it is computed from lower bound of gini index function where 
P1= Pk  and P2= Pu 
 
Efficient request methods: 
There are two methods that may be used to efficiently request 
for more information  
1 naming method 
2. Independent method 

If Gi u of child is above the border the independent 
method is used. If clear separation does not exist and highest 
attribute has partial information the child uses naming method 
to request information for the highest attribute only, from all 
the children who sent partial information regarding the 
attribute. Reducing the message complexity. Since the request 
for more information is wasteful it is beneficial to send small 
number of additional attributes. 
This DESAR algorithm is being enhanced by further lowering 
the border by a small constant є . 
 
Cross Tables: 
Cross table (crosstab for short) is a two-way table consisting of 
rows and columns. It is typically used to determine whether 
there is a relation between row variables and column variables. 
Cross tables are often used in various names. For example, 
pivote tables and multidimensional tables are often used in 
Business intelligence (BI) and OLAP contexts. In essence, they 
are the same tables operating on the same principles. Normally 
they have a grand total, row totals, column totals, cell values, 
and sub-totals.  

Cross table of Agent A: 

Attribute1 Attribute 2 

 C1 C2  C1 c2 

V1 20 65 V1 50 22 

V2 48 27 V2 18 70 

Giniindex   .5928 Giniindex     .63 

 

 

   Cross table for agent B 
Attribute1 Attibute2 

 C1 C2  C1 c2 

V1 5 60 V1 40 20 

V2 45 20 V2 10 60 

Giniindex 

0.716 

Giniindex 

0.663 

 
  Agent C combined information: 

Attribute1 Attribute2 

 C1 C2  C1 c2 

V1 20 65 V1 0 0 

V2 48 27 V2 0 0 

Giniindex 

0.5928 

Giniindex 

0.5 

 
Agent C complete information 
Agent  A and Agent B are children of Agent C.After computing 
the gain of each attribute agent A sends  only the cross table of 
its best splitting attribute,ie attribute 1,similarly agent B also 
sends the cross table of attribute 1.agent c combines the two 
and choose attribute 1 as best splitting attribute but correct 
thing is we need to pick attribute 2 which has highest gain 
when combined.So to get addition data on an attribute we need 
DESAR algoritm to request additional information so that we 
select the best splitting attribute. 
 
6. Conclusion 
In this paper we presented the classification of large data that is 
distributed over a network.and algoritms on how to select the 
splitting attribute. We need to even have efficient and scalable 
algorithms to classify data over a distributed data base. 
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