
Internat. J. of Sci. and Eng., Vol. 4(1)2013:24-31, January 2013, Durio Etgar et al. ISSN: 2086-5023

24

3D Room Visualization on Android Based Mobile
Device (with Philips™’ Surround Sound Music

Player)
Durio Etgar1, Wahyul Amien Syafei,2, Jack Zijlmans3, Zhaorui Yuan4

1Electrical EngineeringDiponegoro University

Jl. Prof Sudharto, Tembalang, Semarang, Indonesia.
2Fontys University of Applied Sciences

Rachelsmolen 1, 5612 MA Eindhoven, The Netherlands.
3Philips Research

High Tech Campus 36, 5656 AE Eindhoven, The Netherlands.

 1darno90@gmail.com;
 2wasyafei@yahoo.com;

 3j.zijlmans@fontys.nl;

 4zhaorui.yuan@philips.com@gmail.com
ail.com#3Budisty@gmailm

ABSTRACT - This project’s specifically purposed as a demo
application, so anyone can get the experience of a surround
audio room without having to physically involved to it, with a
main idea of generating a 3D surround sound room scenery
coupled with surround sound in a handier package, namely, a
“Virtual Listen Room”. Virtual Listen Room set a foundation of
an innovative visualization that later will be developed and
released as one of way of portable advertisement. This
application was built inside of Android environment. Android
device had been chosen as the implementation target, since it
leaves massive development spaces and mostly contains essential
components needed on this project, including graphic processor
unit (GPU). Graphic manipulation can be done using an
embedded programming interface called OpenGL ES, which is
planted in all Android devices generally. Further, Android has a
Accelerometer Sensor that is needed to be coupled with scene to
produce a dynamic movement of the camera. Surround sound
effect can be reached with a decoder from Phillips called MPEG
Surround Sound Decoder. To sum the whole project, we got an
application with sensor-dynamic 3D room visualization coupled
with Philips’ Surround Sound Music Player. We can manipulate
several room’s properties; Subwoofer location, Room light, and
how many speakers inside it, the application itself works well
despite facing several performance problems before, later to be
solved.
[Keywords : Android,Visualization,Open GL; ES; 3D; Surround
Sensor]

I. INTRODUCTION
Have you ever watch action or war-based movie on the

Cinema? Rhetorically should be yes. You can feel bullets
sling inside your head, the explosion bang around and
chopper sound above you. It can be accomplished through
the SURROUND SOUND technology. The technique
enhances the perception of sound spatialization by
exploiting sound localization; a listener's ability to identify
the location or origin of a detected sound in direction and
distance. Typically this is achieved by using multiple

discrete audio channels routed to an array
of loudspeakers[1] Talking about simplification, the
surround sound let you hear mixed sound from different
sources and direction to make you as if you are in
the middle of the scene. This kind of sound setup has been
used widely, if I can’t say it’s almost everywhere. That’s
why surround sound was chosen as the music player’s
decoder.

The main idea of this project is generating a 3D
surround sound room scenery coupled with surround
sound in a handier package, namely, a “Virtual Listen
Room”. It’s specifically purposed as a demo application,
so anyone can get the experience of a surround audio room
without having to physically involved to it. Virtual Listen
Room set a foundation of an innovative visualization that
later will be developed and released as one of way of
portable advertisement. This application, even the idea,
had never been invented before.

 The skill scope is around mid-level programming to
mid-level designing room arrangement. Android device
had been chosen as the implementation target, since it
leaves massive development spaces and mostly contains
essential components needed on this project, including
graphic processor unit (GPU). Graphic manipulation can
be done using an embedded programming interface called
OpenGL ES, which is planted in all Android devices
generally. If is it too hard to swallow you can grab any 3D
game as an example, which is basically rendered using
OpenGL ES. Android is using Linux environment and
Java as a programming language.

The problem is all kind of android devices only have
maximum 2 speakers recognized. Yes, and to deal with it,
Philips Research - Information and Cognition - Applied
Sensor Technologies division has their own Virtual

Internat. J. of Sci. and Eng., Vol. 4(1)2013:24-29, January 2013, Durio Etgar et al. ISSN: 2086-5023

25
IJSE Journal

surround sound decoder called “MPEG Decoder TM “
which has been developed for months. Virtual surround is
an audio system which attempts to create the perception
that there are many more sources of sound than are
actually present. In order to achieve the goal it is necessary
to devise some means of tricking the human auditory
system into thinking that a sound is coming from
somewhere that it is not[1] Later this application is
coupled with the 3D scene, and while listening to the
playback music we can tilt our scene camera view and

even simulate sound changing based on head movement
on the further development, thanks to Android
Accelerometer Sensor.

Android graphic and sound processing are barely
touched by the developers, so this app could be interesting
for anyone. Also with the fact that this project was a pure
invention. There’s no one has done this before on a mobile
device. To sum the whole project result, we got an
application with sensor-dynamic 3D room visualization
coupled with Philips’ Surround Sound Music

Player. We can manipulate several room’s properties;
Subwoofer location, Room light, and how many speakers
inside it.

II. BASIC THEORY

2.1Android [1]
Android is a Linux-based operating system for mobile

devices such as smartphones and tablet computers. It is
developed by the Open Handset Alliance, led
by Google.Android has a large community of developers
writing applications that extend the functionality of the
devices. Developers write primarily in a customized
version of Java. In June 2012, there were more than
600,000 apps available for Android, and the estimated
number of applications downloaded from Google Play was
20 billion.

Android became the world’s leading smartphone
platform at the end of 2010. Analysts point to the
advantage to Android of being a multi-channel, multi-
carrier OS. Beside that, Android Operating System can be
easily planted into various kind of device. We can prove it
in Figure 1 below

.

Fig 1. Android Phones

From left to right: Verizon, HTC, Samsung, and

Google’s Galaxy Nexus. We can pull a conclusion that
Android can be widely implemented, with many consider
it as an immense advantage.

2.2 Surround Sound [1]

 Surround sound is a technique for enriching the sound
reproduction quality of an audio source with additional
audio channels from speakers that surround the listener.
The technique enhances the perception of sound
spatialization by exploiting sound localization; a listener's
ability to identify the location or origin of a detected sound
in direction and distance. Typically this is achieved by
using multiple discrete audio channels routed to an array
of loudspeakers. Talking about simplification, the

surround sound let you hear mixed sound from different
sources and direction to make you as if you are in
the middle of the scene. This simulation based on 5.1
Surround room arrangement. This picture below (Figure 2)
is a raw representation of 5.1 surround sound setup with 6
sound resources coming from different angles.

 Fig 2. Surround Sound Simulation
2.3Open GL ES [1]

 OpenGL for Embedded Systems (OpenGL ES) is a
subset of the OpenGL graphics application programming
interface (API) designed for embedded systems such
as mobile phones, PDAs, and video game consoles.

· OpenGL ES for Android: version 1.0, 1.1 and 2.0
· Possible to create 2D and 3D object
· Reduced function from OpenGL because of

limited hardware

 OpenGL ES’ 3D capability is often used for games and
visualizations. For instance a racing game in Figure 3
maximizes OpenGL ES 3D engine.

Fig 3. OpenGL ES’ 3D Example

 On the other side we also able to create 2D graphic
with OpenGL ES, commonly for building games or user
interfaces. Figure 4 represent a simple 2D triangle object.

Internat. J. of Sci. and Eng., Vol. 4(1)2013:24-29, January 2013, Durio Etgar et al. ISSN: 2086-5023

25
IJSE Journal

Fig 4. OpenGL ES’ 2D Example

2.3.1 Min3D [2]

Min3D is a lightweight 3d library/framework for
Android using Java with OpenGL ES targeting
compatibility with Android v1.5/OpenGL ES 1.0 and
higher. It tracks closely with the OpenGL ES API, which
makes it ideal for gaining an understanding of the OpenGL
ES API while providing the convenience of an object-
oriented class library. It's very easy to render various of
primitive objects like box,sphere,pyramid etc.

Min3D is able to import 3 different filetypes:
· Wavefront OBJ
· 3DS
· MD2

2.4 Accelerometer [3]

Accelerometer is a device that measures weight per
unit of (test) mass. Android applies this accelerometer as
a sensor which is detecting how you tilt your phone. This
sensor is used in almost all of Android devices nowadays.

Programmatically we can take the advantages of

Sensor.TYPE_ACCELEROMETER Class on Android to
make use of the Sensor’s values. Here are the physic
explanations on how can we get accelerometer value:

All values are in SI units (

�௦మ)
values[0]: Acceleration minus Gx on the x-axis
values[1]: Acceleration minus Gy on the y-axis
values[2]: Acceleration minus Gz on the z-axis

A sensor of this type measures the acceleration applied

to the device. Conceptually, it does so by measuring forces
applied to the sensor itself using the relation:
 Ʀd࢜ = − () ࢙࢙6Ǵ࢙ࡲ

Advis the value of acceleration applied to the device

inside vacuum room, while Fs is theforces applied to the
sensor itself. mass is thedevice’s mass.

In particular, the force of gravity is always influencing

the measured acceleration, as expressed in the following
formula:

 Ʀdࢋ = ሺሻ ࢜Ʀd ࢍ−

Adeis the value of acceleration applied to the device

with influence from earth gravity, while g is the constant
force of gravity (9.81

�௦మ)
For this reason, when the device is sitting on a table

(and obviously not accelerating), the accelerometer reads a
magnitude of g = 9.81

�௦మ
Similarly, when the device is in free-fall and therefore

dangerously accelerating towards to ground at 9.81
�௦మ, its

accelerometer reads a magnitude of 0
�௦మ.

In order to measure the real acceleration of the device,
the contribution of the force of gravity must be eliminated.
This can be achieved by applying a high-pass filter.
Conversely, a low-pass filter can be used to isolate the
force of gravity.
 Examples:

· When the device lies flat on a table and is pushed
on its left side toward the right, the x acceleration
value is positive.

· When the device lies flat on a table, the acceleration
value is +9.81, which correspond to the acceleration
of the device (0

�௦మ) minus the force of gravity (-9.81 �௦మ).
· When the device lies flat on a table and is pushed

toward the sky with an acceleration of A
�௦మ, the

acceleration value is equal to A+9.81 which
correspond to the acceleration of the device (+A

�௦మ)
minus the force of gravity (-9.81

�௦మ).

2.5 Proper Audio Room Setup [4]

Recommended room setting for 5.1 surround room system:

1. The center speaker needs to be placed just above
or below the center of the TV screen. Just try not
to place it too far away from the screen or the
sound may appear to be removed from the picture.
This will sound unnatural and spoil the impact of
the soundtrack. However, you can use any type of
speaker as your center (such as a normal
bookshelf speaker).

Fig 5. Recommended Front Speaker Placement

2. Subwoofer has a very specific job, to reproduce

the really low bass in a soundtrack. Therefore,
subwoofer placement in a room is much less
critical than with other speakers. Wherever you
have a spare bit of space in your room then you
can pretty much stick it anywhere.

Internat. J. of Sci. and Eng., Vol. 4(1)2013:24-29, January 2013, Durio Etgar et al. ISSN: 2086-5023

26
IJSE Journal

Fig 6. Subwoofer Speaker Placement

III. BUILDING APPLICATION

This application was built using Eclipse IDE, a Java

compiler that directly recommended by Google itself for
every Android Developer. To stretch OpenGL ES capacity
into the edge, 3D engine for Android called Min3D is used.

3.1 Min3D Setup[5]

1. Download and extract Min3D library file inside
your project folder.

2. Open your project on Eclipse
3. Refresh your workspace. You will find a folder

named min3d
4. Right click on the folder, choose Build path >

Use as source folder.
Now you can call any method from min3d library

3.2 Build a Skybox[6]

 First we have to declare a Skybox with (float size, int
quality) parameter. Afterwards we can add textures on
each side of the Skybox in to get real room experience.
Method scale() determines the proportion of each axis.
Then we can attach any texture on every side of the room
with 1:1 width and length proportion. Figure 7 below is a
complete skybox with wall and floor textures so we could
get a “room” impression.

Fig7. Skybox

3.3 Build the Subwoofer

 Primitive objects (Box, Hollow Cylinder, Rectangle,
Sphere, Torus) also can be rendered using this library.
Simply instantiate any primitive object we want and assign
several parameter on it. For example, in this case 6 3D
cubes are needed for later being rendered as a Subwoofer.
We have to also attach texture into a plain 3D object to
bring a real impression.

 Fig8. Speaker Texture

 Figure 8 above is a wood speaker texture which is later
will be used as subwoofer. The scale of width and length
must be 1:1 to make it completely matchs the 3D box
object.
\
3.4Add Premade Object[7]

There is a feature in Min3D which is too decent not to be
implemented; we can bring our own 3D object into the
screen. It is possible for almost all 3D models
with .OBJ, .MD2 and .3DS extension.

 You can find a lot of well-made 3D object at
3divia.com . It’s better to go with .3DS object since it’s
easier to be rendered. For instance, We found this premade
audio set (Figure 9) with 3 speakers, later will be given
roles as center, front left, and front right speakers.

Fig9. 3D Object Example

3.5 Standing Rear Speakers

 Standing speaker can be created based on basic block
shape, which is also can be reached by manipulating the
scale of cube. Hence, We decided to turn 2 cubes into
blocks. The texture also need to be adapted so It’s got
edited using Photoshop.

3.6 Camera Exploitation

Min3D also provides ease of camera management. With
sensor integration we can tilt the whole scene camera
along with the device’s movement. First thing to do is we
need to override built-in onSensorChanged() method, then
pass the event value into the camera object.
Notice that only y and z axis are used, because the scene
was set on landscape by default to gain wider scenery.

3.7 Room Setup

This room setup was made according to Proper Audio
Room Setup. On the room’s front side there are an LCD
screen, 2 pictures a furnishes, and an audio set as center,
front left, and front right speakers with subwoofer as we
can see in Figure 10.

Internat. J. of Sci. and Eng., Vol. 4(1)2013:24-29, January 2013, Durio Etgar et al. ISSN: 2086-5023

27
IJSE Journal

Fig10. Front speakers and Subwoofer Arrangement

 To finish the whole visualization, as being represented
in Figure 11, 2 standing speakers were added and act as
Rear left and Rear right sound resources.

Fig11. Rear speakers Arrangement

3.8. Philips’ Music Player with MPEG Surround Sound

Decoder

 This is a kind of media player app which simulates
surround effect on particular media file (.mp4 and .wav). It
has several functions as listed: simple file list explorer,
filtering .wav and .mp4 files. MPEG Surround application
has 2 usable button; Song repeat (on the top right corner)
and MPEG switcher (on bottom side). In order to produce
unique and original sound output, the application uses
certain decoder formed by native sound libraries in C/C++.
Below (Figure 12) is the Philip’s Music Player interface.

Fig12. Philips’ MPEG Surround Decoder

IV. TESTING, ANALYSIS, AND PROBLEM SOLVING

4.1 Problem Assessment

There’s some non-functional issues spotted after
Implementation Phase:

1. Compatibility problem. Application will be
crashed on startup if we install it on another
version of Android. As mentioned before, an
application that relies on JNI(Java Native

Interface) sometimes loses the platform
portability Java offers.

2. Performance problem. Soundtrack is sometimes
unstable, seems affected by the high load
resource of 3D scene and Accelerometer.

 The first problem seems unsolved. We’ve tried to
force-install the application to another several Android
versions, but it made the situation going worse instead of
fix the problem. The application become hard to debug,
sometimes the IDE finds unidentified errors without any
explanations.

 To get a deeper insight on the second problem, two
ways of analysis were done; Profiling and Memory
Analysis. Profiling covers the memory consumption of
application itself, when memory analysis has a wider
scope because it’s also affected by the Android
environment.

4.2 Profiling Activity

 This analysis were taken using DDMS Traceview on
Eclipse. We managed to make 5 different profiles based on
the existence of additional objects, object textures, MPEG
Surround Features, and also wakelock function. All of this
profile using the same Game Sensor Delay.

4.2.1 Profiling Summary

Profiling using DDMS Traceview is fairly good to
track how many resource needed by particular method.
However, the result is sometimes biased even in the same
occasion. The sound works flawlessly at the moment but
somehow next time the application start we got different
performance. We think amount of RAM is also affecting
the stability of an application. Despite all of the biased
result, it is fair to use DDMS Traceview to get a raw
representation of CPU usage.

4.3 Memory Analysis

This analysis were taken using Memory Analyzer Tools on
Eclipse. We managed to make 4 different analysis based
on the existence of additional objects, object textures,
texture quality and MPEG Surround Features. Game
Sensor Accelerometer Delay has been used for each
condition.

4.3.1 Memory AnalysisSummary

1. Result for every parameter nearly the same, unless

there are two which have components bigger than 1
percent of the total heap.

2. Two parameters which have problems with memory
waste contains parsed .obj 3D object (Home Theater
set). Problems that exist mostly about referencing.

3. After reducing the resolution of textures,
android.content.res.Resources memory allocation also
slightly decreased.

4. System Classes from Android API are dominating the
percentage of heap.

5. If parsed 3D object is added into the scene,
recognized User Class with the higher consumption is
min3D Object3Dcontainer, followed by StringBlock,

Internat. J. of Sci. and Eng., Vol. 4(1)2013:24-29, January 2013, Durio Etgar et al. ISSN: 2086-5023

28
IJSE Journal

android.widget.listView, Audio Control Play
SoundTask, and then Sky Box.

6. Without 3D object added into the scene, recognized
User Class with the higher consumption is
StringBlock, android.widget.listView, AudioControl
PlaySoundTask, and then SkyBox.

7. Unfortunately, sound’s performance is still unstable
despite of manipulations on the visualization, but the
delay seems slightly disappeared with reduced
textures’ resolutions and without additional object.

8. Since it is a memory analyzing, another activity
outside that affect the application will also be
displayed. With so many System Classes consume
huge amount of memories, it echoes Froyo’s bad
memory management issues

4.4 Problem Solving

Existing problem mostly caused by memory leak, badly
affected the application performance. From memory
analysis we also get the amount of memory which
allocated into the application. Since it is only 1.9 MB, it
shouldn’t be a problem because inside the test device there
is 512 MB amount of RAM. Indeed it is shared with the
graphic processor unit for about 128 MB but still with 384
MB remains the application should work flawlessly.
Based on both previous analysis activities we prepared 2
possible solutions for each result:

1. On the profiling analysis, it’s discovered that
OpenGL classes always be the biggest CPU
consumer. There are two options to minimize CPU
consumption: reduce the amount of 3D object
loaded and reduce the quality of the texture. First
option definitely out of consideration because the
objects itself are a part of requirements. Second
option would make sense, because reducing texture
quality wouldn’t be much notable.

2. Android has many “memory management”
applications out there, which would be useful to
free some RAM so it will give more space to this
heavy-loaded application.

4.4.1 Profiling Follow Up: Reducing Texture Quality

 It would be nice to have high definition textures on
this 3D visualization, but then developer have to think
twice if it’s sacrificing the whole performance. Some
object texture’s quality can be reduced a bit to raise the
sound quality. Home theatre set texture is attached into the
object, so It can’t be manipulated. Rests are possible.
Paintapplication was used to resize the texture into 50%
of actual size, whilst still maintaining the aspect ratio.

Fig13. Texture Quality Comparison

 The 3D scene after quality reduction definitely
becomes worse than before. We can examine Figure 13
and then Figure 14 where the frame hanging on the wall
becomes pixelated. Also the wall color becomes paler.

Fig14. Detailed Texture Quality Comparison

It’s not a big deal because at least the sound quality
improved significantly. Playback delay was getting shorter
and the crack noises were slightly gone. Application start-
up time also got faster, from about 5 seconds to less than 3
seconds.

4.4.2 Memory Analyzing Follow Up : Memory Booster

 Android has a bunch of task killer applications on
their market. Mainly, task killer is used to free some
memory spaces by killing background applications, so it
will create a space for another applications coming.
Simple application like clock or messaging of course
won’t be bothered by amount of RAM remaining, but 3D
scene + Native Decoder + Accelerometer Sensor of course
could causing a havoc.
Randomly developer found (and tried) Memory Booster
Lite application just to figure out whether it is helpful or
not. This application has 2 main functions; Monitoring
how the Memory goes and also killing certain selected
apps in order to release some free memory.

Fig 15. Memory Booster Lite

 Figure 15 shows us every single tab in Memory Booster
Lite application. Memory monitor gives you detailed
calculation of free memory alongside with used memory.
Task Killer is on the second tab, gives you a list of running
apps. This list is sorted based on amount of memory
allocated for relevant application. As we can see Google
Maps absorb almost 10 MB of memory, and as long we
don’t use it in our application we can kill it. It gives
notable improvement on the sound quality, sweeps almost
all delays and cracks on the playback. Boost Log tab
displays what activities that we’ve been done since the
first time we installed this application

Internat. J. of Sci. and Eng., Vol. 4(1)2013:24-29, January 2013, Durio Etgar et al. ISSN: 2086-5023

29
IJSE Journal

V. CLOSING AND CONCLUSION

It’s possible to fullfil the main idea of this project;
create a mini 3D surround room inside Android
environment. Android has a graphic machine called
OpenGL ES, and the observation had brought to a simple
yet useful library which could help a lot in building 3D
scene without draw it line-per-line. Sensor movement also
can be realized thanks to Android accelerometer. Scene
camera can be moved around depend on how you tilt the
phone. Within the accelerometer gravitation concept it’s
also possible to zoom in and out the room. A 5.1 surround
sound room setup was also imitated from internet to get a
real impression of Audio room, even with a cinematic
sound playback.
Surround Sound “MPEG Decoder TM “ is a reliable
Android surround sound simulation application provided
by Philips. Although it’s using low-level native
programming language decoder, It can be imported and it
is well coupled with the visualization. But here’s the
problems rise. Native library diminished compatibility
feature that Java has, so the application will be defected or
even corrupted when it tried to be run on another operating
system. The compatibility problem is followed by
performance issue where some noises and cracks are
distracting sound playback. Heavy loaded 3D graphic +
native decoder + accelerometer combination seem enough
to produce major performance issue.

Unfortunately, compatibility problem seems unlikely
to be solved, as it is sourced from the environment. From
this case we can learn something that if we want to
develop application with native library we have to decide
what operation system exactly will be used at the very first
time. Otherwise all performance problems completely

spotted after some testing and analysis. 3D scene indeed
consumes most of the phone capabilities and resources.
Hence, possible solution could be decreasing the quality of
the scene to boost performance and thankfully it works
like a charm. Finally playback sound and 3D scene are
coped well without any faults, so then can be concluded
that this application has met all the requirements apart
from compatibility problem. To finish this application,
further development phase will try to implement different
sound effects for different head positions.

Generally, it can be concluded that this application
works as purposed. User can get the “portable” idea,
especially after it’s been ported to Android mobile device.
Some room manipulation settings were added as an extra
features like Subwoofer location, Room light, and how
many speakers inside the scene. We got it was an
entertaining experience after working with Android, and
we kindly recommend this currently-hyped mobile
development to all of software engineering out there.

References

[1] (2012) Wikipedia. [Online]Available:http://wikipedia.org/
[2] (2012) min3D Library. [Online] Available:

http://code.google.com/p/min3d/
[3] (2012) Android Developer. [Online] Available:

http://developer.android.com/index.html
[4] (2012) The Home Cinema Guide. [Online] Available: http://www.the-

home-cinema-guide.com
[5] (2012) min3D Setup. [Online] Available:

.http://code.google.com/p/min3d/setup/
[6] (2012) Rozengain Creative Technology Blog. [Online] Available:

http://www.rozengain.com/blog/
[7] MatD (2012) Load a 3D OBJ Model with min3D for Android.

[Online] Available: http://www.mat-d.com/site/tutorial-load-a-3d-
obj-model-with-min3d-for-android/

