# COMBINATION OF SOYBEAN MEAL AND *Hibiscus tiliaceus* LEAF IN THE GOAT DIET: EFFECT ON SOME PARAMETERS OF PROTEIN METABOLISM

F. Akhsan, L. K. Nuswantara and J. Achmadi

Faculty of Animal and Agricultural Sciences, Diponegoro University, Tembalang Campus, Semarang 50275 - Indonesia Corresponding E-mail: fitriana.akhsan@yahoo.com

Received April 12, 2015; Accepted May 30, 2015

## ABSTRAK

Enam belas ekor kambing Peranakan Etawa digunakan untuk mengkaji pengaruh saponin daun waru yang dikombinasikan dengan suplementasi protein bungkil kedelai terhadap beberapa parameter dalam metabolisme protein. Kambing memiliki rerata bobot badan sekitar 16 kg dengan rerata umur 7 bulan. Pakan perlakuan terdiri dari:  $T_0$  = Pakan komplit (Saponin 0,90%, PK 8%, TDN 62%),  $T_1 = T_0 + 3\%$  protein bungkil kedelai,  $T_2 = T_0 + 6\%$  protein bungkil kedelai,  $T_3 = T_0 + 9\%$  protein bungkil kedelai,  $T_2 = T_0 + 6\%$  protein bungkil kedelai,  $T_3 = T_0 + 9\%$  protein bungkil kedelaa. Penelitian dilakukan berdasarkan rancangan acak lengkap. Parameter yang diamati dalam penelitian ini yaitu konsumsi bahan kering (BK) dan protein kasar (PK), kecernaan bahan kering dan protein kasar, konsentrasi amonia rumen, konsentrasi VFA total, urea darah, retensi nitrogen, kecernaan bahan organik dalam rumen (KBOR), allantoin urin, estimasi sintesis nitrogen mikroba. Konsumsi bahan kering, KBOR, konsentrasi allantoin urin dan estimasi sintesis nitrogen mikroba tidak dipengaruhi oleh perlakuan secara nyata. Konsumsi PK, kecernaan BK dan PK, konsentrasi NH<sub>3</sub> dan VFA total cairan rumen, urea darah dan retensi nitrogen meningkat (P<0,05) seiring dengan peningkatan level bungkil kedelai. Keseimbangan level energi harus dipertimbangkan pada suplementasi protein pakan kambing yang mengandung Hibiscus tiliaceus.

Kata Kunci : suplementasi protein, Hibiscus tiliaceus, pemanfaatan protein, kambing

## ABSTRACT

Sixteen Ettawah cross bred goats were used to study the effect of waru leaf (*Hibiscus tiliaceus*) sapponin combined with soybean meal protein supplementation on some parameters of protein metabolism. Goats had body weight average of 16 kg and aged at 7 months. The experimental diets were:  $T0 = total mixed ration (0.9\% saponin of hibiscus leaf, 8\% CP, 62\% TDN), T_1 = T_0 + 3\% soybean meal protein, T_2 = T_0 + 6\% soybean meal protein, and T_3 = T_0 + 9\% soybean meal protein. The treatments were allocated in a completely randomized design. The parameters observed in this study were dry matter (DM) and crude protein (CP) intakes, DM and CP digestibilities, ruminal amonia and VFAs concentrations, blood urea level, nitrogen retention, digestible organic matter in rumen (DOMR), urinary allantoin, and estimated microbial nitrogen (N) synthesis. DM intake, DOMR, urinary allantoin and estimated microbial nitrogen (N) synthesis. DM intake, DOMR, urinary allantoin in ruminal amonia and VFAs concentrations, blood urea level not affected significantly (P>0.05) by treatments. CP intake, DM and CP digestibilities, ruminal amonia and VFAs concentrations, blood urea level and nitrogen retention increased (P<0.05) with increasing levels of soybean meal protein. Balancing energy level should be considered for the dietary protein supplementation in$ *Hibiscus tiliaceus*leaf contained diet of goat.

Keywords: protein supplementation, Hibiscus tiliaceus, protein utilization, goat

## **INTRODUCTION**

Ruminants partly rely on rumen microbial protein for productive purposes. Singh *et al.* (2007) reported that microbial protein is a major protein supply contributing to the growth in calf. Dietary protein is also needed especially to ensure growth performance in young ruminant besides supply of microbial protein (Preston and Leng. 1987). Soybean meal is well known as protein source for ruminant.

Some tropical fodder trees have capability to reduce or eliminate rumen ciliates (Monforte-Briceno *et al.*, 2005). Istiqomah *et al.* (2011) reported the mechanism of *Hibiscus tiliaceus* leaf as a potent defaunating herb. *Hibiscus tiliaceus* are also commonly used as a forage source for goat. However, there is a little information concerning the defaunation effect of *Hibiscus tiliaceus* leaf in young goat.

Defaunation is one of some attempts to improve ruminal fermentability which in turn increasing productive performance of ruminants. In defaunated lambs, depressed protozoa population decreases ruminal ammonia concentration. This is due to lowering degradation of feed and bacterial proteins by protozoa (Jouany, 1996; Kiran and Mutsvangwa, 2010). Eugene et al. (2004) summarized, dietary nitrogen level affected ruminal ammonia concentration in the defaunated ruminant. It is plausible that there is an interactive effect between defaunation and dietary protein on protein metabolism in ruminant. This research was aimed to clarify the effect of Hibiscus tiliaceus leaf sapponin combined with soybean meal protein on some parameters of protein metabolism in young goat.

### **MATERIALS AND METHODS**

#### **Experimental Animal and Diet**

This experiment used sixteen Ettawah grade bred male goats with average body weight of 16 kg and aged at 7 months old. Animals were housed individually in metabolic cages. The experimental diets were: T0 = total mixed ration(0.90% of *Hibiscus tiliaceus* leaf sapponin; 8.69% of CP; 62.11% of TDN), T1 = T0 + 3% soybean meal protein; T2 = T0 + 6% soybean meal protein; T3 = T0 + 9% soybean meal protein (Table 1). Drinking water was available experimental throughout the period. The treatments were allotted into a completely randomized design.

#### **Experimental Methods**

After five weeks of adjustments period to experimental diet and enviroment, feces and urine from goats were collected for 10 days. Feces and urine samples were collected to determine nutrient intake and digestibility, protein retention, urinary allantoin. One week after urine and feces sampling, rumen fluid was taken from each goat using the aspirated stomach tube. The collection of rumen fluids were conducted after one night fasting (before feeding) and 3 hours after feeding. Rumen fluid was collected to determine ruminal NH<sub>3</sub> and VFA concentrations. One week after that blood sampling from jugular vein was also conducted in each goat using spoit for determination of blood urea concentrations.

Dry and organic matter and protein content in diet, feces and urine were estimated using the method of AOAC (1990). The NH<sub>3</sub> concentration of rumen fluid were analyzed by mikrodifusi conway method (Conway, 1962). The VFAs concentration was assayed by chromatography gas method based on Jouany (1982). The Blood urea concentration measurement was according to Barthelot method (Chaney and Marbach, 1962). The digestible organic matter on rumen (DOMR) was calculated using a formula of Liang et al. (1994). Urinary allantoin content was analyzed according to colorimetric method (Young and Conway, 1942). The microbial nitrogen synthesis was estimated on the basis of urinary allantoin according to Chen and Gomes (1992).

#### **Data Analysis**

Data parameters were tested using analysis of covariance and followed by Duncan's multiple range test.

#### RESULTS

Daily dietary dry matter consumption was not significantly affected by the treatment of protein supplementation but the daily dietary crude protein consumption was increased (P<0.05) as increasing the level of protein consumption (Table 2). The treatment of protein supplementation increased (P<0.05) dietary dry matter and crude protein digestibilities. The highest dietary dry matter and crude protein digestibilities were achieved when the crude protein concentration in diet at a level of 14%.

Table 2 shows that ruminal concentrations of ammonia (NH<sub>3</sub>) and volatile fatty acids (VFAs)

| Ingredients and Composition             | Crude Protein Level of Experimental Diets, % |       |       |       |  |
|-----------------------------------------|----------------------------------------------|-------|-------|-------|--|
|                                         | 8.69                                         | 11.28 | 14.01 | 17.00 |  |
| Ingredients, % DM                       |                                              |       |       |       |  |
| Hibiscus tiliaceus leaf                 | 3.65                                         | 3.65  | 3.65  | 3.65  |  |
| Setaria sphacelata                      | 18.35                                        | 18.35 | 18.35 | 18.35 |  |
| Rice bran                               | 23.50                                        | 19.50 | 19.50 | 21.00 |  |
| Ground corn                             | 23.00                                        | 21.00 | 16.50 | 10.00 |  |
| Copral meal                             | 6.00                                         | 6.00  | 6.00  | 8.00  |  |
| Ground peanut shell                     | 16.50                                        | 16.50 | 16.00 | 14.00 |  |
| Molasses                                | 8.00                                         | 7.00  | 5.00  | 3.00  |  |
| Mineral vitamin mixtures                | 1.00                                         | 1.00  | 1.00  | 1.00  |  |
| Soybean meal                            | 0.00                                         | 7.00  | 14.00 | 21.00 |  |
| Nutrients composition, %                |                                              |       |       |       |  |
| Crude protein                           | 8.69                                         | 11.28 | 14.01 | 17.00 |  |
| Extract ether                           | 3.84                                         | 4.09  | 4.19  | 4.66  |  |
| Crude fiber                             | 22.63                                        | 25.82 | 27.84 | 29.22 |  |
| Nitrogen free extract                   | 52.62                                        | 47.78 | 43.85 | 36.03 |  |
| Ash                                     | 12.22                                        | 11.02 | 10.11 | 13.08 |  |
| Sapponin                                | 0.90                                         | 0.90  | 0.90  | 0.90  |  |
| <sup>1</sup> Total digestible nutrients | 62.11                                        | 62.76 | 62.72 | 62.78 |  |

Table 1. Ingredients and Nutrient Compositions of the Experimental Diets

<sup>1</sup> Values were calculated based on Hartadi et al. (2005).

before and after feeding were increased (P<0.05) by the treatment of protein supplementation. The highest ruminal NH<sub>3</sub> and VFAs concentrations before and after feeding were achived when the crude protein concentration in diet at a level of 14%. Blood urea concentrations before and after feeding were incerased as increasing the level of protein supplementation. The blood urea concentrations before and after feeding were still increased until the protein supplementation at a level 9% above control. The daily amounts of excreted nitrogen via urine and amounts of retained nitrogen were increased (P<0.05) as increasing the level of crude protein consumption.

The treatment of protein supplementation did not effect on daily amounts of ruminally digested organic matter (Table 2). The level of daily urinary allantoin and amounts of microbial nitrogen synthesis were unaffected significantly by the treatment of protein supplementation.

# DISCUSSION

# **Nutrient Intake and Digestibility**

studv present discussed The some parameters of protein metabolism in Ettawah cross bred goat fed on Hibiscus tiliaceus leaf combined with different levels of soybean meal. While amount of dry matter intakes were similar among treatment groups, amount of crude protein intakes were increased according to the portions of soybean meal in diets (Table 2). This fact indicated that goats consumed same sapponin level of Hibiscus tiliaceus leaf with different level of protein intake from soybean meal. Istigomah et al. (2011) reported that sapponin of Hibiscus

### Table 2. Experimental Results<sup>1</sup>

| Parameters                                      | Crude Protein Level of Experimental Diets, % |                          |                       |                       |  |  |
|-------------------------------------------------|----------------------------------------------|--------------------------|-----------------------|-----------------------|--|--|
|                                                 | 8.69                                         | 11.28                    | 14.01                 | 17.00                 |  |  |
| Daily nutrient intake, g·kgBW <sup>0</sup>      | 0.75                                         |                          |                       |                       |  |  |
| Dry matter                                      | $44.41 \pm 11.71$                            | $47.96 \pm 4.31$         | $41.57 \pm 6.16$      | $47.56 \pm 5.56$      |  |  |
| Crude protein                                   | $3.86 \pm 1.02^{\circ}$                      | $5.41\pm\ 0.49^b$        | $5.83\pm\ 0.86^b$     | $8.09\pm\ 0.95^a$     |  |  |
| Nutrient digestibility, %                       |                                              |                          |                       |                       |  |  |
| Dry matter                                      | $47.24 \pm 5.11^{b}$                         | $41.69 \pm 2.38^{\circ}$ | $55.43 \pm 2.36^{a}$  | $46.17 \pm 2.84^{bc}$ |  |  |
| Crude protein                                   | $50.06 \pm 5.33^{b}$                         | $54.66 \pm 9.57^{b}$     | $70.85 \pm 3.04^{a}$  | $68.54 \pm 4.43^{a}$  |  |  |
| Ruminal concentration, mM                       |                                              |                          |                       |                       |  |  |
| NH <sub>3</sub> , before feeding                | $9.31 \pm 3.23^{\circ}$                      | $15.65 \pm 2.95^{b}$     | $21.15 \pm 4.47^{ab}$ | $23.27 \pm 5.15^{a}$  |  |  |
| NH <sub>3</sub> , after feeding                 | $8.88 \pm 1.61^b$                            | $15.23 \pm 4.98^{ab}$    | $18.19 \pm 1.61^{a}$  | $20.72 \pm 6.26^{a}$  |  |  |
| VFAs, before feeding                            | $59.17 \pm 3.06^{b}$                         | $73.06 \pm 3.66^{a}$     | $67.68 \pm 6.73^{a}$  | $66.91 \pm 2.87^{a}$  |  |  |
| VFAs, after feeding                             | $67.41 \pm 4.06^{b}$                         | $73.18 \pm 5.01^{ab}$    | $78.13 \pm 5.33^{a}$  | $71.51 \pm 8.44^{ab}$ |  |  |
| Daily estimated of DOMR, g                      | $205.29\pm44.56$                             | $211.17 \pm 20.51$       | 242.62±54.55          | 228.50 ±21.52         |  |  |
| Blood urea, mM                                  |                                              |                          |                       |                       |  |  |
| Before feeding                                  | $31.25 \pm 9.53^{\circ}$                     | $40.50 \pm 5.44^{bc}$    | $55.25\pm\!10.46^b$   | $74.75\pm\!\!18.37^a$ |  |  |
| After feeding                                   | $32.75 \pm 9.32^{\circ}$                     | $44.00 \pm 4.16^{bc}$    | $56.50 \pm 7.85^{ab}$ | $71.75 \pm 15.39^{a}$ |  |  |
| Daily urinary nitrogen, g                       | $0.09\pm0.03^{\text{c}}$                     | $0.24\pm\ 0.10^{bc}$     | $0.40\pm \ 0.09^{b}$  | $0.69\pm\ 0.14^a$     |  |  |
| Daily retained nitrogen, g                      | $5.17 \pm 1.28^{\text{d}}$                   | $8.11 \pm 1.21^{\circ}$  | $11.23 \pm 2.67^{b}$  | $15.20 \pm 1.60^{a}$  |  |  |
| Urinary allantoin, mM                           | $1.86 \pm 1.29$                              | $3.04\pm\ 2.06$          | $3.93 \pm 2.24$       | $5.72 \pm 2.28$       |  |  |
| Daily estimated microbial nitrogen synthesis, g | $1.87 \pm 0.06$                              | $2.76 \pm 1.41$          | $2.85 \pm 2.20$       | 4.63 ± 2.19           |  |  |

<sup>1</sup>Values are means from 4 goats (±SD), <sup>a,b,c,d</sup> P<0.05; DOMR: digestible organic matter in rumen

*tiliaceus* leaf as a potent defaunating agent.

The dry matter intake of goat was in a range level of other result experiments, although animal breed, age, physiological status and diet type may reflect on feed intake. The daily dry matter intake of nonpregnant Granadina goat was in a range of 45–51 g per kg BW<sup>0.75</sup> (Cantalapiedra-Hijar *et al.*, 2009). Kearl (1982) recommended that daily feed dry matter intake in young goat should be 3–4% of body weight.

The daily crude protein intake of goats in this study were designed to be increased according to levels of protein supplementation in dietary experiment, although nutrient requirement of Ettawah breed goats has not been established yet. Mathius *et al.* (2002) reported that average of daily crude protein intake in young Ettawah cros bred goat was 4.40 g per kg BW<sup>0.75</sup>. The daily crude protein intake of Bligon goats were in a range from 6.82 to 11.03 g per kg BW<sup>0.75</sup> (Tahuk *et al.*, 2008).

The digestibility of dietary crude protein and dry matter were increased in similar manner according with increasing level of protein supplementation (Table 2). The increasing protein supplementation may increase the ratio of dietary protein to energy which in turn increases crude protein digestibility in goat (Mathius *et al.*, 2002). In the present study, experimental diets were designed to be isoenergy with different levels of crude protein. Furthermore, depressed rumen protozoa population in defaunated ruminant may give more chance for proteolitic bacteria to degrade dietary protein (Wina *et al.*, 2006; Mao *et al.*, 2010; Istiqomah *et al.*, 2011).

# **Ruminal Feed Fermentability**

Ruminal NH<sub>3</sub> and VFAs concentrations are reflected mainly by the degradabilities of dietary protein and carbohydrate, respectively, in rumen (Preston and Leng, 1987). Before and after feeding concentrations of ruminal NH<sub>3</sub> were significantly increased as increasing the protein supplementation, but before feeding ruminal NH<sub>3</sub> concentrations slightly higher than those of after feeding for all treatment groups (Table 2). Jouany (1996) and Kiran and Mutsvangwa (2010) established that the depressed ruminal NH3 concentration in defaunated animals is caused by lowering degradation of dietary and bacterial proteins in rumen. Probably, this effect may be profounded during period of post feeding. The supplementation of dietary nitrogen ameliorates the depressed ruminal NH<sub>3</sub> concentration in defaunated ruminant (Eugene et al., 2004).

The protein supplementation increased before and after feeding ruminal VFAs concentrations signifigantly, and after feeding concentrations of VFAs in rumen slightly higher than those of before feeding (Table 2). A protein supplementation using dried whole whey in a diet combined with defaunation increases after feeding VFAs concentration in steers (Grummer et al., 1983). Perston and Leng (1987) stated that the elevated after feeding ruminal VFAs concentration is a result of dietary carbohydrate degradation by rumen bacteria intensely.

# **Dietary Protein Utilization**

The aim of this experiment was mainly to clarify how sapponin of *Hibiscus tiliaceus* leaf combined with protein of soybean meal would increase the supplies of dietary and microbial proteins thereby improving the growth of young goat. Dietary protein intake, protein digestibility, urinary nitrogen, and nitrogen retention were increased in same manner as increasing dietary protein supplementation. However, urinary allantoin and estimated microbial nitrogen synthesis, as indicatives of microbial protein supply, were unaffected significantly by the protein supplementation (Table 2). The protein supplementation did not effect on amount of rumen digestible organic matter significantly, but before and after feeding blood urea concentrations were increased by the protein supplementation (Table 2). This phenomenon presumably contributed to the unaffected microbial protein supply. Degradation of feed organic matter in rumen generates VFAs which in turn providing carbon skeleton for bacterial amino acids synthesis (Preston and Leng, 1987). The bacterial amino acids synthesis mainly uses nitrogen and carbon skeleton from ruminal NH<sub>3</sub> and VFAs, respectively.

Cantalapiedra-Hijar et al. (2009) reported that balancing high dietary energy and protein increases ruminal amount of digestible organic matter and VFAs concentration in goat, accordingly. While the after feeding ruminal VFAs concentrations in Granadina goat fed on different quality diets ranged from 68 to 93 mmol/L (Cantalapiedra-Hijar et al., 2009), the after feeding ruminal VFAs concentrations in this experiment ranged from 67 to 78 mM. The unmatched between ruminal VFAs and NH3 productions for bacterial amino acids synthesis caused surplus in NH<sub>3</sub> which in turn increasing blood urea level. Eventually, excretion of urinary nitrogen were increased by the treatment of dietary protein supplementation (Table 2).

# CONCLUSION

The increasing protein of soybean meal level in *Hibiscus tiliaceus* leaf contained diets increased protein digestibility, ruminal NH<sub>3</sub> and VFAs concentrations, and nitrogen retention in young Ettawah cross bred goat. Accordingly, blood urea level and urinary nitrogen were also increased by the dietary protein supplementation. However, the dietary protein supplementation did not effect on estimated rumen digestible organic matter and microbial nitrogen synthesis. Balancing energy level should be considered for the dietary protein supplementation in *Hibiscus tiliaceus* leaf contained diet of goat.

# ACKNOWLEDGMENT

A sincere thanks was expressed to the Head and Staffs of "Pusat Pelatihan Pertanian Pedesaan Swadaya Ramah Lingkungan-Kabupaten Barru Sulawesi Selatan", for facilitating authors to conduct the experiment. Some of data in this publication were partly presented in National Seminar of "Teknologi dan Agribisnis Peternakan" in Jenderal Soedirman University, Purwokerto on May 30, 2015.

## REFERENCES

- A.O.A.C. 1990. Official Method of Analysis. 13<sup>th</sup> Ed. Association of Official Analysis Chemist, Washington, DC.
- Cantalapiedra-Hijar, G., D.R. Yanez-Ruiz, A.I. Martin-Garcia, and E. Molina-Alcaide. 2009. Effects of forage-concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats. J. Anim. Sci. 87:662-631.
- Chaney A. L. and E.P. Marbach. 1962. Modified reagent for determination of urea amonia. Chemical Chemistry 8:130-132
- Chen, X. B. and M. J. Gomes. 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives - an overview of the technical details. International Feed Resources Unit, Rowett Research Institute, Aberdeen, UK.
- Conway, E. J. 1962. Microdiffusion Analysis and Volumentric Error. 5<sup>th</sup> Edition. Crosby Lookwood and Son, London.
- Eugene, M., H. Archimede, and D. Sauvant. 2004. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest. Prod. Sci. 85:81-97
- Grummer, R.R., C.R. Staples, and C.L. Davies. 1983. Effect of defaunation on ruminal volatile fatty acids and pH of steers fed a diet high dried whole whey. J. Dairy Sci. 66:1738-1741
- Hartadi, H., S. Reksohadiprodjo and A.D. Tillman. 2005. Table Komposisi Pakan untuk Indonesia. Cetakan kelima. Gadjah Mada University Press. Yogyakarta.
- Istiqomah, L., H. 2011. Waru leaf as sapponin source on in vitro ruminal fermentation characteristic. J. Indonesian Trop. Anim. Agric. 36: 43-49.
- Jouany, J. P. 1982. Volatile fatty acid and alcohol determination in digestive contents, silages juices, bacterial culture and aerobic fermentor contents. Sci. des Aliments. 2:131-144
- Jouany, J. P. 1996. Effect of rumen protozoa on nitrogen utilization in ruminants. J. Nutr.

126: 1335S-1346S.

- Kearl, L.C. 1982. Nutrient Requirement of Ruminants in Developing Countries. International Feedstuff Institute. Utah Agricultural Experiment Station. Utah State University, Logan.
- Kiran, D. and T. Mutsvangwa. 2010. Effects of partial defaunation on urea-nitrogen recycling, nitrogen metabolism, and microbial nitrogen supply in growing lambs fed low or high dietary crude protein concentrations. J. Anim. Sci. 88: 1034-1047
- Liang JB, M. Matsumoto and B.A. Young. 1994. Purine derivate excretion and ruminal microbial yield in Malaysian cattle and buffalo. Anim. Feed Sci. Technol. 47:189-199
- Mao, H.L., J.K. Wang, Y.Y. Zhou, and J.X. Liu. 2010. Effect of addition of tea sapponins and soybean oil on methane production, fermentation and microbial population in the rumen of lambs. Livest. Sci. 129: 56-62.
- Mathius, I.W., I.B. Gaga and K. Utama. 2002. Kebutuhan kambing PE jantan muda akan energi dan protein kasar: konsumsi, kecernaan, ketersediaan dan pemanfaatan nutrien. J. Ilmu Ternak dan Veteriner. 7(2): 99-109.
- Monforte-Briceno, G. E., C.A. Sandoval-Castro, L. Ramirez-Aviles, and C.M.C. Leal. 2005. Defaunating capacity of tropical fodder trees: Effects of polyethylene glycol and its relationship to in vitro gas production. Anim. Feed Sci. Technol. 123–124:313-327.
- Preston, T.R. and R.A. Leng. 1987. Matching Ruminant Production System with Available Resources in The Tropics and Subtropics. Prenambul Books, Armidale.
- Singh, M., K. Sharma, N. Dutta, P. Singh, A. K. Verma and U. R. Mehra. 2007. Estimation of rumen microbial protein supply using urinary purine derivatives excretion in crossbred calves fed at different levels of feed intake. Asian-Aust. J. Anim. Sci. 20(10):1567-1574.
- Tahuk, P.K., E. Baliarti and H. Hartadi. 2008.
  Keseimbangan nitrogen dan kandungan urea darah kambing Bligon pada penggemukan dengan level protein pakan berbeda. J. Pengembangan Peternakan Tropis. 33(4): 290-298
- Wina, E., S. Muetzel, and K. Becker. 2006. Effects of daily and interval feeding of Sapindus rarak on protozoa, rumen fermentation parameter and digestibilityin

sheep. Asian-Aust. J. Anim. Sci. 19(11): 1580-1587

Young, E. G. and C. F. Conway. 1942. On the

estimation of allantoin by the Rimini-Schryver reaction. J. Biol. Chem. 142:839-853