Copyright (c) 2017 REAKTOR
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Article Info
Submitted: 19-05-2017
Published: 13-06-2017
Section: Research Article


The growth of Serratia marcescens depends on its metabolism, which is influenced by environmental factors, such as pH and temperature. The metabolic activity of Serratia marcescens may influence the corrosion of carbon steel by forming a biofilm on the metal surface. This research is focused on determining the effect of pH on carbon steel corrosion caused by Serratia marcescens. The medium used as immersion solution was a mixture of synthetic seawater and Luria-Bertani medium with a volume ratio of 4:1. The carbon steel coupons with a size of 1 cm x 1 cm were immersed in the solution with initial pH of 5, 7, and 9. The analyses of biofilm were conducted by total plate count (TPC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Biofilm was detected evenly on the metal surface and decreased with an increase in incubation pH. The biofilm consists of some functional groups, such as alcohol, alkane, amine, nitro, sulphate, carboxylic acid, and polysulfide. The analyses of the corrosion were conducted by gravimetric and X-ray diffraction (XRD). The pHs of 5 and 9 were found to give an increase in the corrosion rate. The average corrosion rate at pH variations of 5, 7, and 9 were 2.5309 g/; 2.2844 g/; and 2.9756 g/, respectively. Nevertheless, the corrosion products were not detected by XRD analysis.


Keywords: biocorrosion; carbon steel; pH; seawater; Serratia marcescens





PENGARUH pH AWAL LARUTAN PADA PEMBENTUKAN BIOFILM DAN KOROSI BAJA KARBON OLEH Serratia marcescens. Laju pertumbuhan Serratia marcescens bergantung pada aktivitas metabolise mikroba, yang akan sangat dipengaruhi oleh faktor lingkungan, seperti pH dan temperatur. Aktivitas metabolisme Serratia marcescens dapat memengaruhi korosi pada baja karbon dengan membentuk lapisan biofilm pada permukaan logam. Penelitian ini bertujuan untuk menentukan efek pH pada korosi baja karbon yang disebabkan oleh Serratia marcescens. Media yang digunakan sebagai larutan perendam adalah campuran air laut sintetis dan media Luria-Bertani dengan perbandingan volume sebesar 4:1. Kupon baja karbon dengan ukuran 1 cm x 1 cm direndam dalam larutan dengan pH awal 5, 7, dan 9. Analisis lapisan biofilm dilakukan dengan total plate count (TPC), scanning electron microscopy (SEM) dan Fourier transform infrared spectroscopy (FTIR). Lapisan biofilm tumbuh secara merata pada permukaan logam dan berkurang seiring dengan peningkatan pH inkubasi. Lapisan biofilm mengandung berbagai gugus fungsional, seperti alkohol, alkana, amin, nitro, sulfat, asam karboksilat, dan polisulfida. Analisa korosi dilakukan dengan gravimetri dan X-ray diffraction (XRD). Penggunaan pH 5 dan 9 memberikan peningkatan terhadap laju korosi. Laju korosi rata-rata pada pH 5, 7, dan 9 ditentukan sebesar 2,5309 g/; 2,2844 g/; and 2,9756 g/ Namun, produk korosi tidak terdeksi oleh analisis XRD.


Kata kunci: biokorosi; baja karbon; pH; air laut; Serratia marcescens


biocorrosion; carbon steel; seawater; Serratia marcescens; pH

  1. Ardiyan Harimawan 
    Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl. Ganesha 10 Bandung, Telp./Fax. (022) 2500989/(022) 2501438 , Indonesia
  2. Hary Devianto 
    Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl. Ganesha 10 Bandung, Telp./Fax. (022) 2500989/(022) 2501438
  3. Ignatius Chandra Kurniawan 
    Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl. Ganesha 10 Bandung, Telp./Fax. (022) 2500989/(022) 2501438
  4. Josephine Christine Utomo 
    Department of Chemical Engineering, Faculty of Industrial Technology, Institut Teknologi Bandung Jl. Ganesha 10 Bandung, Telp./Fax. (022) 2500989/(022) 2501438

American Standard Testing and Material, ASTM G1-81: Standard Practice for Preparing, Cleaning, and Evaluation Corrosion Test Specimens, (ASTM, 1999).

American Standard Testing and Material, ASTM G31-72: Standard Practice for Laboratory Incubation Corrosion Testing of Metals, (ASTM, 2004).

Brennenstuhl, A.M.; Doherty, P.E., (1990), The Economic Impact of Microbiologically Influenced Corrosion at Ontario Hydro's Nuclear Plants, Microbiologically Influenced Corrosion and Biodeterioration, University of Tennessee, United States of America.

Fang, Herbert H.P.; Xu, Li-Chong; Chan, Kwong-Yu, (2002), Effects of Toxic Metals and Chemicals on Biofilm and Biocorrosion, Journal of Water Research, 36, pp. 4709-4716.

Flemming, H.C., (1996), Biofouling and Microbiologically Influenced Corrosion (MIC) an Economical and Technical Overview, Microbial Deterioration of Materials, Springer, London .

Hejazi, A; Falkiner, F. R., (1997), Review Article: Serratia marcescens, Journal Medical Microbiology, 46, pp. 903-912.

Ismail, Mardinah; Noor, Norhazilan Md.; Yahaya, Nordin; Abdullah, Arman; Rasol, Rosilawati Md.; Rashid, Ahmad Safuan A., (2014), Effect of pH and Temperature on Corrosion of Steel Subject to Sulphate-reducing Bacteria", Journal of Environmental Science and Technology, 7.

J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, and H. M. Lappin-Scott, (1995) Microbial Biofilms Annual Review Microbiology, 49, pp. 711-745.

Jack, R.; D. Ringelberg; White, D., (1992), Differential Corrosion Rates of Carbon Steel by Combinations of Bacillus sp., Desulfovibrio gigas Established by Phospholipid Analysis of Electrode Biofilm, Corrosion Science, 27, pp. 174-181.

Javaherdashti, Reza, (2008), Microbiologically Influenced Corrosion, Springer, London.

Little, Brenda J.; Lee, Jason S., (2007) Microbiologically Influenced Corrosion, John Wiley & Sons, New Jersey.

Muthukumar, N.; Maruthamuthu, S.; Palaniswamy, N., (2006), Water-soluble Inhibitor on Microbiologically Influenced Corrosion in Diesel Pipeline, Journal of Colloids and Surfaces, 53, pp. 260-270.

Pillay, Charlene; Lin, Johnson, (2013), The Impact of Additional Nitrates in Mild Steel Corrosion in a Seawater/Sediment System”, Journal of Corrosion Science, 80.

Roberge, Pierre R, (2008), Handbook of Corrosion Engineering, McGraw-Hill, New York.

Xiaoxia, Sheng, (2007), Biofilm Formation and Its Induced Biocorrosion of Metals in Seawater, PhD Thesis, National University of Singapore, Singapore.

Xu, Dake; Gu, Tingyue, (2014), Carbon Source Starvation Triggered More Aggressive Corrosion Against Carbon Steel by The Desulfovibrio vulgaris Biofilm, Journal of International Biodeterioration and Biodegradation, 91, pp. 209-217.

Yuan, Shaojun; Liang, Bin; Zhao, Yu; Pehkonen, S.O., (2013), Surface Chemistry and Corrosion Behaviour of 304 Stainless Steel in Simulated Seawater Containing Inorganic Sulphide and Sulphate-reducing Bacteria, Journal of Corrosion Science, 74.