Modification the Oxalic Co-precipitation Method on a Novel Catalyst Cu/Zn/Al2O3/Cr2O3 for Autothermal Reforming Reaction of Methanol

Cheng- Hsin Kuo -  Department of Chemical Engineering and Material Science, Yuan-Ze University, 135 Yuan Tung Road, Chung Li, Taoyuan, 32003,, Taiwan
Donny Lesmana -  Department of Chemical Engineering, Faculty of Engineering, Universitas Lampung, 1 Soemantri Brojonegoro, Rajabasa, Bandar Lampung, 35145,, Indonesia
*Ho Shing Wu -  Department of Chemical Engineering and Material Science, Yuan-Ze University, 135 Yuan Tung Road, Chung Li, Taoyuan, 32003,, Taiwan
Received: 8 May 2013; Published: 1 Dec 2013.
Open Access
Citation Format:
Cover Image
Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 610 668
Abstract
This study addresses the catalytic performance of Cu/ZnO/Al2O3/Cr2O3 in low-temperature of autothermal reforming (ATR) reaction. Various operating conditions were used to decide the optimum reaction conditions: type of promoter (ZrO2, CeO2, and Cr2O3), precipitation temperature, precipitation pH, operation temperature, molar ratio of O2/CH3OH (O/C), and weight hourly space velocity (WHSV). The catalysts were prepared using the oxalic coprecipitation method. Characterization of the catalyst was conducted using a porosity analyzer, XRD, and SEM. The methanol conversion and volumetric percentage of hydrogen using the best catalyst (Cu/ZnO/Al2O3/Cr2O3) exceeded 93% and 43%, respectively. A catalyst prepared by precipitation at -5 oC and at pH of 1 converted methanol to 40% H2 and less than 3000 ppm CO at reaction temperature of 200 oC. The size and dispersion of copper and the degradation rate and turnover frequency of the catalyst was also calculated. Deactivation of the Cu catalyst at a reaction temperature of 200 oC occurred after 30 h. © 2013 BCREC UNDIP. All rights reserved

Received: 8th May 2013; Revised: 10th August 2013; Accepted: 18th August 2013

[How to Cite: Cheng, H.K., Lesmana, D., Wu, H.S. (2013). Modification the Oxalic Co-precipitation Method on a Novel Catalyst Cu/Zn/Al2O3/Cr2O3 for Autothermal Reforming Reaction of Methanol. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2): 110-124. (doi:10.9767/bcrec.8.2.4844.110-124)]

[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4844.110-124]

Keywords
Hydrogen production; Reaction kinetics; Steam reforming; Turnover frequency

Article Metrics:

  1. Suparoek, H.; and P. Toochinda. (2002). Effect of Preparation of Cu/Zn Over Al2O3 Catalyst for Hydrogen Production From Methanol Reforming. Syranaree Journal Science Technology 16 : 103-112.
  2. Abdullah, M.; Khairurrijal.; F.A. Noor.; A.R. Marully.; M. Sanny. (2010). Design of Steam Reforming Reactor for Converting Methanol Into Hydrogen Using an Ultrasonic Nebulizer as Liquid Feeder and Polymer Liquid Processed CuO/ZnO/Al2O3 Particles as Catalyst. Journal of Sustainable Energy and Environment 1 : 11-15.
  3. Chin, Y.H.; R. Dagle.; J. Hu.; A.C. Dohnalkova.; Y. Wang. (2002). Steam Reforming of Methanol over Highly Active Pd/ZnO Catalyst. Catalysis Today 77 : 79–88.
  4. Kruger. P. (2001). Electric Power Requirement for Large-Scale Production of Hydrogen Fuel for The World Vehicle Fleet. International Journal of Hydrogen Energy 26 : 1137-1147.
  5. Geissler, K.; E. Newson.; F. Vogel.; T.B. Truong.; P. Hottinger.; A. Wokaun. (2001). Autothermal Methanol Reforming for Hydrogen Production In Fuel Cell Applications. Physical Chemistry Chemical Physics 3 : 289-293.
  6. Lindstrom, B.; L.J. Pettersson. (2001). Hydrogen Generation by Steam Reforming of Methanol Over Copper-Based Catalysts for Fuel Cell Applications. International Journal of Hydrogen Energy 26 : 923–933.
  7. Wu, H.S.; Lesmana, D. (2012). Short Review: Cu Catalyst for Autothermal Reforming Methanol for Hydrogen Production. Bulletin of Chemical Reaction Engineering and Catalysis 7(1) : 27-42.
  8. Ma, L.; C. Jiang.; A.A. Adesina.; D.L. Trimm.; M.S. Wainwright. (1996). Simulation Studies of Autothermal Reactor System for H2 Production from Methanol Steam Reforming. Chemical Engineering Journal 62 : 103-111.
  9. Mascaro´s, M.S.; R.M. Navarro.; L.G. Sainero.; U. Costantino.; M. Nocchetti.; J.L.G. Fierro. (2001). Oxidative Methanol Reforming Reactions on CuZnAl Catalysts Derived from Hydrotalcite-like Precursors. Journal of Catalysis. 198 (2001) 338-347.
  10. Navarro, R.M.; M.A. Pena.; J.L.G. Fierro. (2002). Production of Hydrogen by Partial Oxidation of Methanol over a Cu/ZnO/Al2O3 Catalyst: Influence of the Initial State of the Catalyst on the Start-Up Behaviour of the Reformer. Journal of Catalysis 201 : 112-118.
  11. Reitz, T.L.; S. Ahmed.; M. Krumpelt.; R. Kumar.; H.H. Kung. (2000). Methanol Reforming Over CuO/ZnO Under Oxidizing Conditions. Studies in Surface Science and Catalysis 130 : 3645-3650.
  12. Reitz, T.L.; P.L. Lee.; K.F. Czaplewski.; J.C. Lang.; K.E. Popp.; H.H. Kung. (2001). Time-Resolved XANES Investigation of CuO/ZnO in the Oxidative Methanol Reforming Reaction. Journal of Catalysis 199 : 193-201.
  13. Wu, H.S.; S.C. Chung. (2007). Kinetics of Hydrogen Production of Methanol Reformation Using Cu/ZnO/Al2O3 Catalyst. Journal of Combinatorial Chemistry 9 : 990-997.
  14. Huang, T.J.; S.W. Wang. (1988). Kinetics of Partial Oxidation of Methanol Over a Copper—Zinc Catalyst. Applied Catalysis 40 : 43-55.
  15. Zhang, D.X.; H. Xu.; Y.Z. Liao.; H.S Li.; X.J. Yang. (2009). Synthesis and Characterisation of Nano-Composite Copper Oxalate Powders by a Surfactant-Free Stripping–Precipitation Process. Powder Technology 189 : 404-408.
  16. Kawamura, Y.; K. Yamamoto.; N. Ogura.; T. Katsumata.; A. Igarashi. (2005). Preparation of Cu/ZnO/Al2O3 Catalyst for A Micro Methanol Reformer. Journal of Power Sources 150 : 20-26.
  17. Guo, J.W.; Y.Q. Niu.; B.J. Zhang. (1998). Effect of Temperature and space velocity on catalytic performance in liquid phase dimethyl ether synthesis from syngas. Journal of Natural Gas Chemistry 7 : 259-265.
  18. Velu, S.; K. Suzuki.; M.P. Kapoor.; F. Ohashi.; T. Osaki. (2001). Selective Production of Hydrogen for Fuel Cells via Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts. Applied Catalysis A: General 213 : 47-63.
  19. Saa, S.; H. Silva.; L. Brandãoa.; J.M. Sousaa.; A. Mendesa. (2010). Catalysts for Methanol Steam Reforming - a Review. Applied.Catalysis B: Environment, 99 : 43-55.
  20. Wang, Z.; J. Xi.; W. Wang.; G. Lu. (2003). Selective Production of Hydrogen by Partial Oxidation of Methanol Over Cu/Cr Catalysts. Journal of Molecular Catalysis A: Chemical 191 : 123-134.
  21. Patel, S.; K.K. Pant. (2006). Activity and Stability Enhancement of Copper–Alumina Catalysts Using Cerium and Zinc Promoters for The Selective Production of Hydrogen via Steam Reforming of Methanol. Journal Power Sources 159 : 139-143.
  22. Matsumura, Y.; H. Ishibe. (2009). High Temperature Steam Reforming of Methanol Over Cu/ZnO/ZrO2 Catalysts. Appied Catalysis B 91 : 524–532.
  23. Matsukata, M.; S. Uemiya.; E. Kikuchi. (1988). Copper-Alumina Spinel Catalysts For Steam Reforming of Methanol. Chemical Letter : 761-764.
  24. Agarwal, V.; S. Patel.; K.K. Pant. (2005). H2 Production by Steam Reforming of Methanol Over Cu/ZnO/Al2O3 Catalyst: Transient Deactivation Kinetics Modeling. Applied Catalysis A: General 279 : 155-164.
  25. Jeong, H.; K.I. Kim.; T.H. Kim.; C.H. Ko.; H.C. Park.; I.K. Song. (2006). Hydrogen Production by Steam Reforming of Methanol in a Micro-Channel Reactor Coated with Cu/ZnO/ZrO2/Al2O3 Catalyst. Journal Power Sources 159 : 1296–1299.
  26. Wu, G. S.; D. S. Mao.; G. Z. Lu.; Y. Cao.; K. N. Fan. (2009). The Role of the Promoters in Cu Based Catalysts for Methanol Steam Reforming. Catalyst. Letter 130 : 177–184.
  27. Yaseneva, P.; S. Pavlova.; V. Sadykoy.; E. Moroz.; E. Burgina.; L. Dovlitova.; V. Rogov.; S. Badmaev.; S. Belochapkin.; J. Ross. (2008). Hydrogen Production by Steam Reforming of Methanol Over Cu–CeZrYOx-Based Catalysts. Catalyst Today 138 : 175–182.
  28. Cheng, W.H. (1995). Reaction and XRD Studies on Cu Based Methanol Decomposition Catalysts: Role of Constituents and Development of High-Activity Multicomponent Catalysts. Applied Catalysis A: General 130 : 13-30.
  29. Tsai, M.C.; J.H. Wang.; C.C. Shen.; C.T. Yeh. (2011). Promotion of a Copper–Zinc Catalyst with Rare Earth for The Steam Reforming of Methanol at Low Temperatures. Journal of Catalysis. 279 : 241-245.
  30. Liu, Y.; T. Hayakawa.; K. Suzuki.; S. Hamakawa.; T. Tsunoda.; T. Ishii.; M. Kumagai. (2002). Highly Active Copper/Ceria Catalysts for Steam Reforming of Methanol. Applied Catalysis A: General 223 : 137–145.
  31. Jones, S.D.; H.E.H. Weaver. (2009). Steam Reforming of Methanol Over CeO2- and ZrO2-Promoted Cu-ZnO Catalysts Supported on Nanoparticle Al2O3. Applied Catalysis B: Environment 90 : 195-204.