BibTex Citation Data :
@article{BCREC828, author = {Vijay Sodhi and Renu Gupta}, title = {Pressure Drop Hysteresis of Hydrodynamic States in Packed Tower for Foaming Systems}, journal = {Bulletin of Chemical Reaction Engineering & Catalysis}, volume = {6}, number = {2}, year = {2011}, keywords = {Trickle Bed Reactor; Foaming; Hydrodynamics; Pressure Drop}, abstract = { An experimental investigation was carried out to determine the effects of gas and liquid flow velocities and surface tension on the two-phase phase pressure drop a in a downflow trickle bed reactor. Water and non- Newtonian foaming solutions were employed as liquid phase. More than 240 experimental points for the trickle flow (GCF) and foaming pulsing flow (PF/FPF) regime were obtained for present study. Hydrodynamic characteristics involving two-phase pressure drop significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, two-phase pressure drop increases with higher liquid and gas flow velocities in trickle flow and foaming/pulsing flow regimes. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, two-phase pressure drop increases very sharply during change in regime transition at significantly low liquid and gas velocities. Copyright © 2011 BCREC UNDIP. All rights reserved. ( Received: 14th March 2011, Revised: 29th June 2011; Accepted: 4th July 2011 ) [How to Cite : V. Sodhi, and R. Gupta. (2011). Pressure Drop Hysteresis of Hydrodynamic States in Packed Tower for Foaming Systems. Bulletin of Chemical Reaction Engineering & Catalysis , 6(2): 115-122. doi:10.9767/bcrec.6.2.828.115-122 ] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.828.115-122 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/828 ] | View in }, issn = {1978-2993}, pages = {115--122} doi = {10.9767/bcrec.6.2.828.115-122}, url = {https://ejournal.undip.ac.id/index.php/bcrec/article/view/828} }
Refworks Citation Data :
An experimental investigation was carried out to determine the effects of gas and liquid flow velocities and surface tension on the two-phase phase pressure drop a in a downflow trickle bed reactor. Water and non- Newtonian foaming solutions were employed as liquid phase. More than 240 experimental points for the trickle flow (GCF) and foaming pulsing flow (PF/FPF) regime were obtained for present study. Hydrodynamic characteristics involving two-phase pressure drop significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, two-phase pressure drop increases with higher liquid and gas flow velocities in trickle flow and foaming/pulsing flow regimes. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, two-phase pressure drop increases very sharply during change in regime transition at significantly low liquid and gas velocities. Copyright © 2011 BCREC UNDIP. All rights reserved.
(Received: 14th March 2011, Revised: 29th June 2011; Accepted: 4th July 2011)
[How to Cite: V. Sodhi, and R. Gupta. (2011). Pressure Drop Hysteresis of Hydrodynamic States in Packed Tower for Foaming Systems. Bulletin of Chemical Reaction Engineering & Catalysis, 6(2): 115-122. doi:10.9767/bcrec.6.2.828.115-122]
[How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.828.115-122 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/828 ]
| View in
Article Metrics:
Last update:
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University as publisher of the journal.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases and its transmission by any form or media, such as: electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc. , will be allowed only with a written permission from Bulletin of Chemical Reaction Engineering and Catalysis journal and Department of Chemical Engineering Diponegoro University.
Bulletin of Chemical Reaction Engineering & Catalysis journal and Department of Chemical Engineering Diponegoro University, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Bulletin of Chemical Reaction Engineering & Catalysis (BCREC) are sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Agreement Form can be downloaded here: [Copyright Transfer Form BCREC 2016] The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax : Assoc. Prof. Dr. I. Istadi (Editor-in-Chief) Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis Department of Chemical Engineering, Diponegoro University Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275 Telp.: +62-24-7460058, Fax.: +62-24-76480675 E-mail: bcrec@live.undip.ac.id