Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

*Rodiansono Rodiansono -  Department of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36, Banjarbaru,, Indonesia
Maria Dewi Astuti -  Department of Chemistry, Lambung Mangkurat University, Jl. A. Yani Km 36, Banjarbaru,, Indonesia
Abdul Ghofur -  Department of Environmental Engineering, Lambung Mangkurat University, Jl. A. Yani Km 35.6 Banjarbaru, Indonesia
Kiky C. Sembiring -  Research Centre for Chemistry, Indonesian Institute of Sciences, Puspiptek Serpong, Tangerang, Indonesia
Received: 26 Feb 2015; Published: 12 Jul 2015.
Open Access
Citation Format:
Cover Image
Article Info
Section: Original Research Articles
Language: EN
Full Text:
Statistics: 1113 1175
Abstract

A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn) alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5) that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved.

Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015

 

How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015). Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2): 192-200. (doi:10.9767/bcrec.10.2.8284.192-200)

Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200

 

Keywords
intermetallic nickel tin; Ni3Sn; Ni3Sn2; Ni3Sn4; levulinic acid; g-valerolactone; hydrogenation

Article Metrics:

  1. Bozell, J. J., Moens, L., Elliott, D.C., Wang, Y., Neuenschwander, G. G., Fitzpatrick, S.W., Bilski, R. J., Jarnefeld, J. L. (2000). Production of Levulinic Acid and Use as a Platform Chemical for Derived Products. Resour. Conserv. Recycl. 28: 227-239.
  2. Manzer, L.E. (2004). Catalytic Synthesis of a-Methylene-g-Valerolactone: A Biomass-Derived Acrylic Monomer. Appl. Catal. A: General. 272: 249-256.
  3. Starodubtseva, E.V., Turova, O.V., Vinogradov, M.G., Gorshkova, L.S., Ferapontov, V.A., Struchkova, M.I. (2008). A Convenient Route to Chiral g-Lactones via Asymmetric Hydrogenation of g-Ketoesters using the RuCl3–BINAP–HCl Catalytic System. Tetrahedron. 64: 11713-11717.
  4. Lange, J.P., Price, R., Ayoub, P.M., Louis, J., Petrus, L., Clarke, L., Gosselink, H. (2010). Valeric Biofuels: A platform of Cellulosic Transportation Fuels. Angew. Chem. Int. Ed. 49: 4479-4483.
  5. Huber, G.W., Iborra, S., Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 106: 4044-4048.
  6. Bond, J.Q., Alonso, D.M., Wang, D., West, R. M., Dumesic. J. A. (2010). Integrated Catalytic Conversion of g-Valerolactone to Liquid Alkenes for Transportation Fuels. Science. 327:1110-1114.
  7. Serrano-Ruiz, J.C., Wang, D., Dumesic, J.A. (2010). Catalytic Upgrading of Levulinic Acid to 5-Nonanone. Green Chem. 12:574-577.
  8. Christian, R.W., Brown, H.D., Hixon, R.M. (1947). Derivatives of g-Valerolactone, 1,4-Pentanediol and 1,4-Di-(p-cyanoethoxy)-Pentane. J. Am. Chem. Soc. 69: 1961-1963.
  9. Schutte, H.A., Thomas, R.W. (1930). Normal Valerolactone. III. Its Preparation by the Catalytic Reduction of Levulinic Acid with Hydrogen in The Presence of Platinum Oxide. J. Am.Chem. Soc. 52: 3010-3012.
  10. Bourne, R.A., Stevens, J.G., Ke, J., Poliakoff, M. (2007). Maximising Opportunities in Supercritical Chemistry: The Continuous Conversion of Levulinic Acid to g-Valerolactone in CO2. Chem. Commun. 4632-4634.
  11. Yan, Z.P., Lin, L., Liu, S. (2009). Synthesis of g-Valerolactone by Hydrogenation of Biomass-derived Levulinic Acid over Ru/C Catalyst. Energy Fuels. 23: 3853-3858.
  12. Upare, P.P., Lee, J.M., Hwang, D.W., Halligudi, S.B., Hwang, Y.K., Chang, J.S. (2011). Selective Hydrogenation of Levulinic Acid to g-Valerolactone over Carbon-Supported Noble Metal Catalysts. J. Ind. Eng. Chem. 17: 287-292.
  13. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). Highly Efficient and Selective Hydrogenation of Unsaturated Carbonyl Compounds using Ni–Sn Alloy Catalysts. Catal. Sci. Technol. 2: 2139-2145
  14. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2012). A Novel Preparation Method of Ni­Sn Alloy Catalysts Supported on Aluminium Hydroxide: Application to Chemoselective Hydrogenation of Unsaturated Carbonyl Compounds. Chem. Lett. 41(8): 769-771
  15. Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2014). Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol. Bull. Chem. React. Eng & Catal. 9(1): 53-59. (DOI: 10.9767/bcrec.9.1.5529.53-59)
  16. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M. (2004). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Kluwer Academic Publishers, Netherlands.
  17. Bartholomew, C.H., Pannel, R.B., Butler J.L. (1980). Support and Crystallite Size Effects in CO Hydrogenation on Nickel. J. Catal. 65: 335-347.
  18. Bartholomew, C.H., Pannel, R.B. (1980). The Stoichiometry of Hydrogen and Carbon Monoxide Chemisorption on Alumina- and Silica-Supported Nickel. J. Catal. 65:390-401.
  19. Onda, A., Komatsu, T., Yashima, T. (2003). Preparation and Catalytic Properties of Single-Phase Ni–Sn Intermetallic Compound Particles by CVD of Sn(CH3)4 onto Ni/Silica. J. Catal. 221: 378-385.
  20. Chepik, L.F., Troshina, E.P., Mashchenko, T.S., Romanov, D. P., Maksimov, A. I., Lutskaya, O. F. (2001). Crystallization of SnO2 Produced by Sol3 Gel Technique from Salts of Tin in Different Oxidation States. Russ. Appl. Chem.74: 1617-1620.
  21. Takenaka, S., Takahashi, R., Sato, S., Sodesawa, T., Matsumoto, F., Yoshida, S. (2003). Pore Size Control of Mesoporous SnO2 Prepared by using Stearic Acid. Micro. Meso. Mater. 59: 123-131.
  22. Onda, T. Komatsu, T. Yashima. (2000). Characterization and Catalytic Properties of Ni-Sn Intermetallic Compounds in Acetylene Hydrogenation. Phys. Chem. Chem. Phys. 2: 2999-3005.
  23. Petro, J., Bóta, A., László, K., Beyer, H., Kálmán, E., Dódony, I. (2000). A new Alumina-Supported, not pyrophoric Raney-type Ni-Catalyst. Appl. Catal. A: General. 190: 73-86.