Berkala Fisika ISSN: 1410 - 9662

PENGARUH ADITIF BaCO₃ PADA KRISTALINITAS DAN SUSEPTIBILITAS BARIUM FERIT DENGAN METODA METALURGI SERBUK **ISOTROPIK**

Priska R. Nugraha¹, Wahyu Widanarto^{1*}, Wahyu Tri Cahyanto¹ dan Handoko S. Kuncoro² ¹Jurusan Fisika, FakultasMatematika dan Ilmu Pengetahuan Alam, UNSOED, Purwokerto ²Sarana Riset Keramik Maju, Gelas dan Email – Balai Besar Keramik, Bandung *Korespondensi penulis: wahyu.widanarto@unsoed.ac.id

Abstract

Influences of concentration of BaCO₃ on crystallinities and susceptibilities of barium ferrites using isotropic powder metallurgy method of fabrication is studied based on the characterization of X-Ray Diffraction (XRD), crystallite size distributions and hysteresis curve of Vibrating Sample Magnetometer (VSM). In this study, Fe_2O_3 of Cilacap iron sands are doped with $BaCO_3$ with various concentrations of 15%, 30% and 45% at 1100 °C of sintering temperature. The results show that the addition of BaCO₃ affects the formation of the multi-phase barium ferrite crystals and widen the crystallite size distribution, as well as lowering the saturations and the magnetic remanences. The optimum composition for barium ferrite magnets is obtained for 15% of BaCO₃, with the highest mass susceptibility of 2.4×10 -6 M^3/Kg .

Keywords: Barium hexaferrites, isotropic powder metallurgy, crystal characterizations, permanent magnets

Abstrak

Pengaruh variasi konsentrasi aditif BaCO3 terhadap kristalinitas dan suseptibilitas barium ferit dengan metoda pembuatan metalurgi serbuk isotropik dikaji berdasarkan hasil karakterisasi X-Ray Diffraction (XRD), distribusi ukuran kristalit dan kurva histeresis dari Vibrating Sample Magnetometer (VSM). Dalam penelitian ini, bahan dasar ferit (Fe_2O_3) diperoleh dari hasil ektraksi pasir besi Cilacap dengan tambahan barium karbonat BaCO₃ dengan variasi konsentrasi 15%, 30% dan 45% pada suhu sintering 1100 °C. Hasil-hasil menunjukkan bahwa penambahan BaCO₃ berpengaruh pada pembentukan multi fasa kristal barium ferit dan memperlebar distribusi ukuran kristalit, serta menurunkan remanensi dan saturasi bahan tersebut. Komposisi terbaik magnet barium ferit diperoleh untuk konsentrasi BaCO₃ sebanyak 15%, dengan suseptibilitas massa tertinggi 2,4 × $10^{-6} M^3/Kg$.

Kata kunci: Barium heksaferit, metalurgi serbuk isotropik, karakterisasi kristal, magnet permanen

Pendahuluan

Pasir besi merupakan salah satu bahan magnetik alam yang berlimpah di Indonesia khususnya di pulau jawa yakni di sepanjang pantai selatan dan sebagian pantai utaranya. Salah satu daerah di selatan Pulau Jawa yang mempunyai wilayah pengembangan pasir besi yang cukup luas yaitu Kabupaten Cilacap.

Selama ini pasir besi hanya ditambang sebagai bahan mentah dan langsung dijual kepengguna luar tanpa olahan. Padahal pasir besi dapat dijadikan komoditas barang tambang yang mempunyai nilai tinggi^[1] . Pada penelitian ekonomi sebelumnya, Widanarto menemukan bahwa pasir Desa Widara payung Kecamatan Binangun Kabupaten Cilacap mengandung 70% Fe₃O₄^[2]. Untuk itu perlu dilakukan

penelitian guna menggali potensi pasir besi sebagai bahan baku magnet. Salah satu magnet permanen yang dapat dibuat adalah barium heksaferit, yaitu dengan cara mencampurkan oksida besi dengan barium karbonat BaCO₃. Berbagai aplikasi dari bahan magnet permanen ini antara lain dalam industri otomotif. komputer, pembangkit energi, kelistrikan dan elektronika^[3].

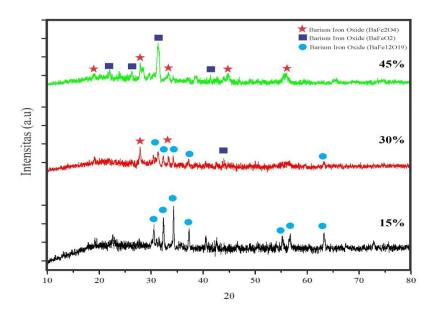
Berbeda dengan penelitian yang telah dilakukan sebelumnya oleh Kuncoro dkk.^[4] dan Fiandimas dkk.^[5], yaitu pembuatan barium heksaferit dari bahan PA dan limbah industri baja (mill Scale), pada penelitian kali ini akan digunakan hasil ekstraksi termal Fe₂O₃ yang berasal dari pasir besi yang mudah ditemukan dan jumlahnya sangat melimpah. Metode yang digunakan pada penelitian ini adalah metalurgi serbuk isotropik (solid state reaction), yaitu metode konvensional dalam material processing dengan biaya murah dan mudah dikontrol. Proses isotropik adalah pembuatan magnet ferit dimana pada proses pembentukannya dilakukan secara cetak kering (reaksi padatan) tanpa dilakukan orientasi partikel dalam medan magnet^[5]. Adapun tujuan dari penelitian ini adalah untuk mengetahui nilai magnetisasi remanen (B_r) dan gaya koersif (H_c) dari bahan magnet permanen Fe₂O₃ vang di doping dengan berbagai konsentrasi BaCO₃. Konsentrasi doping BaCO₃ dilakukan menggunakan weight persen dan suhu sintering pada suhu 1100 °C.

Metodologi Penelitian

Pembuatan barium heksaferit pada penelitian ini menggunakan komposisi bahan dengan perbandingan persentasi berat BaCO₃ 15%, 30% dan 45%. Langkah pertama yakni melakukan proses *milling*

menggunakan HEM (*High Energy Milling*) E3D dengan berat pasir besi 30 gram. Kemudian proses ekstraksi termal dengan *Annealing* pada suhu 800 °C ditahan selama 1 jam. Pencampuran Fe₂O₃ dan BaCO₃ berdasarkan perhitungan *weight percent* dan diberi perlakuan panas *presintering* pada suhu 850 °C selama 2 jam. Setelah itu digerus kembali dan dibuat pelet lalu disintering pada suhu 1100 °C. Uji karakterisasi menggunakan XRD (*X-Ray Diffraction*) dan VSM (*Vibrating Sample Magnetometer*).

Hasil dan Pembahasan

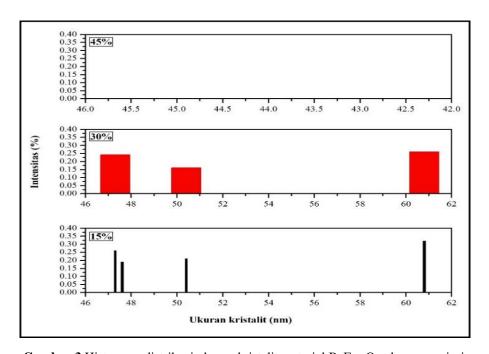

Bahan magnet yang dihasilkan ditunjukkan pada gambar berikut:

Gambar 1. Sampel barium heksaferit dengan variasi komposisi (konsentrasi)

Hasil Karakterisasi XRD

Karakterisasi XRD bertujuan untuk mengetahui komposisi 2θ , bidang hkl, fwhm dan struktur kristal yang terbentuk. Analisis struktur kristal barium heksaferit dilakukan untuk mengamati fasa-fasa yang terbentuk pada sampel setelah proses sintering pada suhu $1100~^{\circ}$ C. Sampel yang digunakan pada penelitian merupakan ekstraksi pasir besi Fe_2O_3 Desa Widara Payung, Kecamatan Binangun Kabupaten Cilacap yang diberikan aditif $BaCO_3$ dengan variasi konsentrasi yang berbeda.

Gambar 2. Pola karakterisasi XRD magnet barium heksaferit dengan variasi konsentrasi BaCO₃


Pola XRD dalam Gambar 2 menunjukkan hasil karakterisasi mineral untuk ketiga sampel yang diuji. Sampel A dengan konsentrasi aditif BaCO₃ sebanyak 15% dari jumlah massa sampel 5 gram yang ditambahkan PVA sebesar 0,12 gram atau 2-3% dari massa total sampel. Grafik hasil sampel A ditunjukan dengan warna hitam pada grafik. Dari grafik diatas dapat kita lihat, bahwa telah dihasilkan single phase atau fasa tunggal dari konsentrasi BaCO₃ sebanyak 15%. Hal ini menunjukan bahwa dengan konsentrasi yang rendah, semua Fe₂O₃ dapat bereaksi sempurna dengan dan menghasilkan BaCO₃ BaFe₁₂O₁₉. Fasa tunggal ini terbentuk pada proses sintering pada suhu 1100 °C selama 3 jam.

Untuk sampel B, dengan kandungan Fe₂O₃ dari pasir besi 3,2 gram, BaCO₃ sebanyak 1,8 gram dan PVA sebanyak 3% yang ditunjukan dengan warna merah pada grafik telah menghasilkan 2 fasa, yaitu fasa mayor BaFe₁₂O₁₉ dan fasa minor BaFe₂O₄. Dari grafik diatas

ditemukan fasa minor BaFe₂O₄ yang muncul karena disebabkan meningkatnya konsentrasi BaCO₃ menjadi 30%. Dari penelitian yang pernah dilakukan oleh dkk.^[6]. Lisjak pembentukan barium heksaferit dapat tercapai melalui mekanisme, yaitu secara langsung atau lebih dikenal dengan fase precursor, dan tidak langsung, secara melalui pembentukan BaFe₂O₄ terlebih dahulu intermediate. sebagai fase Pada mekanisme pertama, pembentukan barium heksaferit membutuhkan temperatur yang lebih karena konsentrasi dari BaCO₃ lebih sedkit dibandingkan dengan sampel B, sehingga pembentukan BaFe₁₂O₁₉ sudah dapat terbentuk dari mulai proses degradasi pada temperature 700 – 900 OC. Sedangkan pada konsentrasi BaCO₃ vang lebih tinggi, dibutuhkan suhu yang lebih tinggi atau holding time yang lebih lama karena proses pembentukan lagi, BaFe₁₂O₁₉ melalui fase intermediate, atau melalui pembentukan BaFe₂O₄ terlebih dahulu.

Kurva hijau grafik pada menunjukan pola XRD sampel C, dengan kandungan Fe₂O₃ dari pasir besi 2,4 gram, BaCO₃ sebanyak 2,6 gram dan PVA sebanyak 3% sama sekali tidak menghasilkan BaFe₁₂O₁₉. Pada grafik diatas hanya terlihat fasa BaFeO2 dan BaFe₂O₄. Dari grafik diatas ditemukan sama sekali fasa BaFe₁₂O₁₉. Hal ini disebabkan karena konsentrasi meningkat tajam menjadi 45% sehingga terjadi over addition dan bahan tidak dapat bereaksi sempurna, karena semakin banyak zat aditif yang ditambahkan maka akan terjadi penggumpalan yang dapat menghambat pertumbuhan kristal barium heksaferit.

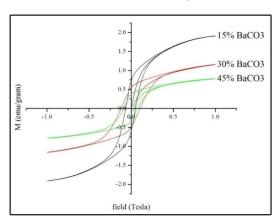
Fasa asing yang terbentuk setelah diidentifikasi lebih lanjut adalah BaFe₂O₄ (Barium diron tetraoxide). Adanya fasa minor seperti BaFe₂O₄ karena tidak terjadinya reaksi lebih lanjut antara kedua bahan baku. Jadi kondisi ini menunjukkan bahwa hanya terjadi perubahan mikrostruktur, seperti pertumbuhan butir (*grain growth*). Perbedaan lain yang tampak antara fasa BaFe₁₂O₁₉ sampel A dan B adalah nilai intensitasnya.

Gambar 3 Histogram distribusi ukuran kristalit material BaFe₁₂O₁₉ dengan variasi konsentrasi BaCO₃

Dari hasil karakterisasi XRD yang dilakukan, terlihat pengaruh penambahan konsentrasi BaCO₃ pada ketiga sampel. Pengaruh utama yang dapat terlihat tampak pada fasa yang terbentuk, dan yang kedua terlihat pada intensitas fasa. Hal ini dapat disebabkan karena

konsentrasi BaCO₃ pada sampel A lebih sedikit daripada sampel B, yang memudahkan semua bahan bereaksi sempurna pada sampel A, sedangkan sampel B pembentukan kristal BaFe₁₂O₁₉ kurang sempurna atau masih melalui fasa intermediate. Sedangkan pada sampel C

sama sekali tidak tampak puncak fasa $BaFe_{12}O_{19}$ yang ada hanyalah fasa asing $BaFe_2O_4$ dan $BaFeO_2$.


Kristalit adalah kristal tunggal dalam ukuran kecil. Kristalit ini dapat kita temukan pada sampel sampel yang berhasil membentuk BaFe₁₂O₁₉. Distribusi ukuran masing-masing kristalit didapat dari hasil perhitungan manual dan dibuat dengan menggunakan software Origin Pro 7.0. Berdasarkan Gambar 10, didapatkan bahwa pada sampel A dengan komposisi BaCO₃ 15%, ukuran kristalit terkecil BaFe₁₂O₁₉ adalah 47,3 nm sekitar 26% sedangkan ukuran terbesar kristalit material adalah 60,9 nm sebanyak 32%. Pada sampel B dengan komposisi BaCO₃ 30%, ukuran kristalit terkecil BaFe₁₂O₁₉ pada ukuran 46 – 48 nm dengan presentase sekitar 26% sedangkan ukuran kristalit paling besar 60.1 - 61.3 nm 25%. Sedangkan pada sampel C dengan komposisi BaCO₃ 45%, tidak terdapat fasa BaFe₁₂O₁₉ sehingga tidak ada distribusi ukuran kristalit BaFe₁₂O₁₉ pada sampel C.

Kristalit ini terbentuk dari proses pencampuran bahan yang dipengaruhi oleh komposisi masing-masing sampel. Semakin homogeny dan semakin pas komposisinya, menyebabkan semua bahan dapat bereaksi sempurna dan membentuk Kristal BaFe₁₂O₁₉. Dari Kristal yang terbentuk inilah dapat diketahuin histogram distribusi ukuran kristalit dari material BaFe₁₂O₁₉.

Hasil Karakterisasi VSM

Hasil karakterisasi VSM yang dilakukan, berupa kurva histerisis dengan berbagai parameter-parameter untuk mengetahui kekuatan magnet. Dari kurva histerisis kita dapat mengetahui nilai magnetisasi remanen (M_r) , medan koersivitas (H_c) dan magnetisasi saturasi (M_s) . Magnetisasi remanen merupakan

induksi magnet yang tertinggal dalam setelah medan magnet bahan dihilangkan. Medan koersivitas adalah medan vang diperlukan untuk menghilangkan magnetisasi remanen. Sedangkan magnetisasi saturasi adalah keadaan dimana spin-spin magnet dalam bahan sudah searah dengan medan magnet luar^[7]. Hasil karakterisasi sampel magnet menggunakan VSM diperoleh kurva histerisis hubungan antara magnetisasi (emu/gram) dan medan magnet (Tesla). Gambar 4 berikutnya merupakan pola karakterisasi **VSM** magnet barium heksaferit dengan variasi komposisi 15%, 30% dan 45%. Kurva ketiga sampel terlihat simetris, hal ini dikarenakan adanya perubahan M_s , M_r dan H_c pada ketiga sampel. Kurva sampel A ditandai dengan warna hitam pada grafik. Hasil karakterisasi sampel A dengan kandungan Fe₂O₃ murni 4,05 gram dan BaCO₃ sebanyak 0,95 gram menghasilkan momen magnet M_{maks} sebesar 1,91 emu/gram dan medan magnet H_{maks} sebesar 0,996 T. Sedangkan untuk nilai koersivitas H_c sebesar 0,052 T, magnetisasi remanen M_r sebesar 0,70 emu/gram dan magnetisasi Saturasi M_s sebesar 1,79 emu/gram.

Gambar 4. Pola karakterisasi VSM Magnet barium heksaferit dengan variasi konsentrasi BaCO₃

Kurva sampel A ditandai dengan warna hitam pada grafik. Hasil karakterisasi sampel A dengan kandungan Fe_2O_3 murni 4,05 gram dan $BaCO_3$ sebanyak 0,95 gram menghasilkan momen magnet $M_{\rm maks}$ sebesar 1,91emu/gram dan medan magnet $H_{\rm maks}$ sebesar 0,996T. Sedangkan untuk nilai koersivitas H_c sebesar 0,052 T, magnetisasi remanen M_r sebesar 0,70 emu/gram dan magnetisasi saturasi M_s sebesar 1,79 emu/gram.

Pada sampel B yang ditunjukan oleh warna merah pada grafik dengan kandungan Fe_2O_3 murni 3,02 gram dan Ba CO_3 sebanyak 1,80 gram menghasilkan momen magnet $M_{\rm maks}$ sebesar 1,16 emu/gram dan medan magnet $H_{\rm maks}$ sebesar 0,995 T. Sedangkan untuk nilai koersivitas H_c sebesar 0,085 T, magnetisasi remanen M_r sebesar 0,51 emu/gram dan magnetisasi saturasi M_s sebesar 1,15 emu/gram.

Warna hijau pada grafik menunjukan kurva karakterisasi sampel C, dengan kandungan Fe₂O₃ murni 2,40 gram BaCO₃ sebanyak dan 2,60 gram menghasilkan momen magnet $M_{\rm maks}$ sebesar 0,785 emu/gram dan medan magnet H_{maks} sebesar 0,992 T. Sedangkan untuk nilai koersivitas H_c sebesar 0,057 T, magnetisasi remanen M_r sebesar 0,32 emu/gram dan magnetisasi saturasi M_s sebesar 0,78 emu/gram.

Tabel 1. Data parameter magnetik dari magnet permanen BaO.6Fe $_2$ O $_3$

Parameter Magnetik	Sampel		
	A	В	С
M_s (emu/g)	1,71	1,15	0,78
M_r (emu/g)	0,70	0,51	0,32
H_c (Tesla)	0,052	0,085	0,057
$M_{\rm maks}$ (emu/gram)	1,91	1,16	0,785
$H_{\rm maks}$ (Tesla)	0,996	0,995	0,992

Dari **Tabel 1** dapat disimpulkan bahwa seiring bertambahnya konsentrasi BaCO₃ yang diberikan pada sampel, berpengaruh besarnya pada nilai magnetisasi dan medan koersivitas. Terlihat bahwa nilai magnetisasi yang paling tinggi ada pada sampel A sedangkan medan koersivitas paling tinggi terdapat pada sampel B. Bervariasinya nilai magnetisasi pada sampel yang diuji sifat kemagnetannya disebabkan oleh kemunculan fasa pengotor didalam sampel yang memiliki perbedaan sifat magnetik. Magnetisasi remanen menunjukan nilai magnetisasi yang tersisa ketika H=0. Berdasarkan persamaan $B = \mu_0$ (H+M), ketika H dibuat sama dengan nol, maka persamaan hanya mengandung nilai magnetisasi, yang artinya B_r adalah medan yang mengandung magnetisasi spontan dari material tersebut. Semakin besar nilai B_r maka semakin besar nilai magnetisasinya pada bahan tersebut. Medan koersivitas (H_c) adalah medan yang dibutuhkan untuk membuat B_r menjadi nol. Semakin kecil nilai H_c maka induksi magnetik dalam magnet mudah dihilangkan ketika magnet luar sama dengan nol, begitu juga sebaliknya jika H_c yang semakin besar, maka induksi magnetik akan sulit dihilangkan walaupun H dibuat sama dengan nol (sulit didemagnetisasi).

Besarnya nilai magnetisasi pada sampel A juga dibuktikan pada uji karakterisasi yang dilakukan dengan menggunakan XRD, pada uji XRD sampel A sudah membentuk struktur kristal BaFe₁₂O₁₉. Sedangkan pada sampel B, terdapat fasa mayor BaFe₁₂O₁₉ dan BaFe₂O₄ sebagai fasa mayor yang nilai Hc nya paling tinggi pada karakterisasi VSM ini. Semakin banyak pengotor medan koersivitas yang dibutuhkan untuk membuat H = 0 pun akan semakin besar. Ditinjau dari nilai suseptibilitasnya,

sampel A merupakan ferimagnetik sedangkan untuk sampel B dan C menunjukan sifat paramagnetik^[8].

Kesimpulan

Telah dipelajari analisis material barium heksaferit berbahan baku pasir besi Pantai Binangun. Pembuatan material ini menggunakan metode reaksi padatan dengan variasi konsentrasi $BaCO_3$ 15, 30, dan 45 %wt pada suhu sintering 1100 °C. Hasil-hasil menunjukkan bahwa fase tunggal (*single phase*) dari barium heksaferit terbentuk pada konsentrasi $BaCO_3$ 15% dengan ukuran kristalit terbesar 60,9 nm. Dari uji VSM diperoleh hasil bahwa magnetisasi remanen (M_r) dan medan koersivitas (H_c) menurun seiring dengan penambahan konsentrasi $BaCO_3$.

Daftar Pustaka

- [1] Widatiningsih, N., 2012, Pembuatan dan Karakterisasi Magnet Permanen Barium Heksaferit (BaO.6Fe₂O₃)
 Berbahan Dasar Pasir Besi Dengan Doping Silika (SiO₂), Skripsi, Universitas Jenderal Soedirman, Purwokerto.
- [2] Widanarto, W., Sahar, M. R., Ghoshal, S. K., Arifin, R., Rohani, M. S., Hamzah, K., 2012, Effect of natural Fe₃O₄ nanoparticles on structural and optical properties of Er³⁺ doped tellurite glass, *Journal of Magnetism and Magnetic Materials* **326** (2013), 123
- [3] Afza, E., 2011, Pembuatan Magnet Permanen Ba-Hexa Ferrite (BaO.6Fe2O3) Dengan Metode Koopresitasi Dan Karakterisasinya, Skripsi, Universitas Sumatera Utara, Medan.

- [4] Kuncoro, H.S., Astari, R.R., Dumilah, R.M., Kurniasih, S.C., dan Sudrajat, N., 2014, Pengaruh Komposisi Bahan, Tekanan Kompaksi, Suhu Sintering pada Struktur Mikro dan Sifat Magnetik Keramik Barium Ferit, Jurnal Keramik dan Gelas Indonesia, Vol 23 (1), hal 13-25.
- [5] Fiandimas, A., dan Azwar, M., 2003 ,Pembuatan Magnet Barium Heksaferit Berbahan Baku Mill Scale Dengan Teknik Metalurgi Serbuk, *Jurnal Sains Materi Indonesia*, Vol 5 (1), hal 40-50.
- [6] Lisjak, D., 2012, Chemical Substitution - An Alternative Strategy for Controlling the Particle Size of Barium Ferrite, Crystal Growth and Design, Vol 12 (11), hal 5174–5179.
- [7] Bertotti, G., 1998, Hysterysis in Magnetism for Physicists, Material Scientist and Engineers, Academic Press, California.
- [8] Purnomo, D., 2011, Identifikasi Kandungan Mineral Pasir Besi Daerah Pantai Logending Menggunakan XRD (X-ray Diffraction) Dan Karakteristik Sifat Kemagnetannya Dengan Menggunakan **VSM** (Vibrating Sample Magnetometer), Skripsi, Universitas Jenderal Soedirman, Purwokerto.

Pengaruh Aditif BaCO₃ ...

Priska R. Nugraha dkk