

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

ANALISIS EFISIENSI PENGELUARAN PEMERINTAH DAERAH SEKTOR KESEHATAN DI KABUPATEN/KOTA PROVINSI JAWA TENGAH TAHUN 2015-2017

Fauzan Azmi

Diponegoro University
Fauzan1997@gmail.com

Abstract

High amount on health spending in Central Java province has not been offset by the achievement of good health outcomes, mostly on the mortality rate. This study assess the relative efficiency, in terms of technical costs and technical health service system, and to know improvement target in order to achieve the efficiency in the 35 districts/cities of Central Java province in 2015-2017. This study uses Data Envelopment Analysis method, using health spending as input variables, facilities and health service as intermediate output variables, health outcomes as outcome variables, variable return to scale assumption and output orientation model. The results shows that the severity of inefficiency occurred at the cost technical efficiency, with only 2 districts/cities achieving perfect efficiency, while 4 districts/cities achieve perfect system technical efficiency. The districts/cities that sustain inefficiencies are need to improve through the calculation of improvement targets by optimizing the output.

Keywords: Efficiency, Healthy, Health Spending, Health Outcome, Data Envelopment Analysis.

JEL Classification: two-digit number classification of Journal of Economic Literature (JEL).

PENDAHULUAN

Pertumbuhan perekonomian suatu wilayah ditandai dengan peningkatan output perekonomian yang dihasilkan oleh agen ekonomi yang produktif. Pertumbuhan dan pembangunan ekonomi yang meningkat tidak hanya dipengaruhi oleh aspek kuantitas saja, melainkan yang lebih penting merupakan aspek kualitas. Sumber daya manusia yang berkualitas berperan penting dalam proses pembangunan ekonomi. Perekonomian, (dalam hal ini pemerintah) perlu memperhatikan aspek human capital mengingat bahwa manusia sebagai agen perekonomian, mampu mencapai kondisi yang produktif dalam tingkat kesehatan maupun pendidikan yang baik. Peningkatan kualitas sumber daya manusia akan ditentukan oleh status kesehatan, pendidikan, dan tingkat pendapatan perkapita (Mulyadi, 2003:2-3). Selain itu, Goldin (2014) dalam studinya menemukan bahwa perkembangan pada indikator kesehatan, bersamaan dengan pendidikan, dapat memacu produktivitas dan mendorong pertumbuhan perekonomian suatu negara.

Permasalahan kesehatan merupakan salah satu faktor yang berperan penting mewujudkan kondisi manusia sebagai agen ekonomi yang produktif. Fullman et al., (2017) meneliti mengenai pencapaian kondisi kesehatan yang berlandaskan

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

Sustainable Development Goals 2017, Indonesia ditempatkan pada peringkat 125 dari 188 negara. Peringkat pencapaian kesehatan ini jauh berada di bawah negaranegara tetangga seperti Singapura (1), Malaysia (52), Thailand (83), dan Filipina (118).

Dalam penelitiannya, Atmawikarta (2005) menyebutkan bahwa salah satu faktor yang mempengaruhi tinggi rendahnya pencapaian derajat kesehatan adalah seberapa besar tingkat pembiayaan untuk sektor kesehatan. Sejak diberlakukannya sistem desentralisasi pada tahun 2001, menurut Wirahadi (dalam Putri, 2015) sistem desentralisasi pada dasarnya bertujuan pada efisiensi sektor publik dalam produksi dan distribusi pelayanan, meningkatkan kualitas pembuatan keputusan dengan menggunakan informasi lokal, meningkatkan akuntabilitas, dan meningkatkan kemampuan respon terhadap kebutuhan dan kondisi lokal. Kurnia (2006) menyebutkan bahwa efisiensi dalam pengeluaran belanja pemerintah didefinisikan sebagai suatu kondisi ketika tidak mungkin lagi realokasi sumber daya yang dilakukan mampu meningkatkan kesejahteraan masyarakat. Dengan kata lain, efisiensi dalam belanja kesehatan terjadi ketika besarnya belanja kesehatan sejumlah tertentu dapat menghasilkan derajat kesehatan masyarakat yang optimal melalui pelayanan kesehatan yang juga optimal.

Pada tahun 2015-2016 (Tabel 1), Provinsi Jawa Tengah memiliki persentase pertumbuhan belanja urusan kesehatan sebesar 227%. Sementara pada tahun 2016-2017, Povinsi Jawa Tengah merupakan provinsi yang memiliki kenaikan belanja urusan kesehatan tertinggi diantara provinsi lainnya di Pulau Jawa.

Tabel 1 Anggaran Belanja Kesehatan menurut Provinsi di Indonesia Tahun 2015-2017 (dalam juta rupiah)

Provinsi	2015	2016	2017
Prov. DKI Jakarta	-	6,732,985	7,744,407
Prov. Jawa Barat	119,697	1,169,219	872,110
Prov. Jawa Tengah	209,150	684,292	2,401,341
Prov. D.I. Yogyakarta	49,292	201,299	169,423
Prov. Jawa Timur	359,408	3,344,147	3,664,956
Prov. Banten	123,840	300,096	386,279

Sumber: Direktorat Jendral Perimbangan Keuangan, Kemenkeu

Dalam menilai derajat kesehatan masyarakat, terdapat beberapa indikator yang tercermin dalam kondisi angka kematian (mortalitas), angka kesakitan dan status gizi. Derajat kesehatan masyarakat di digambarkan melalui Angka Kematian Bayi (AKB), Angka Kematian Ibu (AKI), angka morbiditas beberapa penyakit, dan status gizi (Profil Kesehatan Jawa Tengah 2015). Pada tahun 2015-2017, rata-rata Angka Kematian Bayi (AKB) Prov. Jawa Tengah tertinggi di atas provinsi lainnya di pulau jawa, dan menduduki urutan ke-8 rata-rata AKB tertinggi nasional Hal ini menandakan angka kematian bayi Prov. Jawa Tengah masih tinggi.

Rata-rata Angka Kematian Ibu tahun 2015-2017 Prov. Jawa Tengah masih memiliki nilai (AKI) yang tinggi dan menempati urutan kedua diantara provinsi lainnya di Pulau Jawa, Meski sudah di bawah rata-rata Indonesia, rata-rata nilai AKI

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

Prov. Jawa Tengah masih terbilang tinggi dan belum mampu menekan Angka Kematian Ibu setingkat dengan Prov. DKI Jakarta (45), dan Prov. DIY (77).

Sedangkan untuk Indikator Angka Harapan Hidup, Prov. Jawa Tengah memiliki pencapaian yang baik dengan menduduki urutan kedua skala nasional, dengan nilai AHH 74,02 (setelah Prov. DIY, dan setelahnya Prov. DKI Jakarta). Hal ini menandakan bahwa masyarakat Prov. Jawa Tengah mempunyai harapan usia yang panjang.

Angka Kematian (Mortalitas) khususnya AKB di Provinsi Jawa Tengah masih tinggi dan di atas rata-rata Indonesia. Namun AKI Provinsi Jawa Tengah berhasil mencapai di bawah rata-rata Indonesia, begitu juga AHH yang berhasil menempati urutan ke dua tertinggi. Namun, jika dilihat secara lingkup yang lebih kecil lagi, angka kematian di Prov. Jawa Tengah pada umumnya masih tercatat tinggi dibanding provinsi lainnya di Pulau Jawa. Tingginya pembiayaan sektor kesehatan di Provinsi Jawa Tengah belum diiringi pencpaian indikator derajat kesehatan yang optimal, terutama pada indikator angka kematiannya. Agar mampu memberikan dampak yang optimal, tiap daerah dituntut untuk melakukan belanja secara efisien (anggaran yang sudah ditetapkan di tiap daerah dapat menghasilkan *output* yang memaksimalkan potensi anggarannya), juga seperti yang tertera dalam undang-undang anggaran berbasis kinerja yang diharuskan meningkatkan kinerja keuangan daerah. Oleh karena itu perlu adanya pengukuran efisiensi sektor kesehatan guna menjadi kriteria penilaian keberhasilan pemerintah daerah.

Tujuan pada penelitian ini yakni mengukur tingkat efisiensi teknis relatif biaya belanja urusan kesehatan, dan efisiensi teknis relatif sistem pelayanan kesehatan kabupaten/kota di Provinsi Jawa Tengah tahun 2015-2017. Penelitian mengenai pengukuran efisiensi teknis relatif pernah dilakukan di dalam dan di luar negeri. Eitbar Jafarov dan Victora Gunnarsson (2008) menemukan tingkat inefisiensi vang signifikan di Kroasia disebabkan proses transformasi antara intermediate ouput dengan indikator kesehatan (inefisiensi sistem) yang ditunjukkan oleh tingginya pengeluaran untuk obat-obatan, lamanya pasien dirawat di runah sakit, dan rendahnya out-of-pocket spendings. Selain itu peneliti menemukan tingginya pengeluaran kesehatan di Kroasia karena tingginya permintaan akibat banyaknya lansia yang lebih membutuhkan pelayanan kesehatan dibanding usia muda, selain itu juga disebabkan oleh faktor rendahnya tingkat harga yang ditetapkan asuransi nasional. Sementara Marjin Verhoeven, Victoria Gunnarsson, dan Stephane Carcillo (2007) menemukan kondisi inefisiensi di negara G7 terjadi pada inefisiensi biaya, hal ini dikarenakan adanya tenaga keja yang berlebihan dalam sektor pendidikan maupun kesehatan yang menyebabkan tingginya pengeluaran untuk pembayaran tenaga kerja. Temuan lain seperti desentralisasi tenyata berkaitan dengan rendahnya efisiensi, begitu juga dengan out-of-pocket payments (pengeluaran pribadi tidak berpengaruh terhadap kenaikan efisiensi), hal ini dikarenakan adanya adverse selection (insentif bagi pemegang asuransi untuk mengkonsumsi kesehatan secara berlebih).

Aristyasani (2015) dalam penelitiannya menemukan efisiensi yang terjadi pada beberapa kabupaten/kota yang diteliti juga bervariasi dan masih terdapat banyak daerah yang belum efisien. Anggaran belanja daerah yang belum efisien ini dikarenakan dari Rp. 421,8 milyar total anggaran kesehatan provinsi Jawa Barat tidak seluruhnya dipergunakan untuk pengadaan fasilitas dan layanan kesehatan.

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

Hanya sebesar 50% untuk dipergunakan salah satunya dalam pengadaan fasilitas dan layanan kesehatan.

Penelitian ini juga memiliki tujuan lain yaitu menganalisis target perbaikan penggunaan belanja dan fasilitas pelayanan kesehatan kabupaten/kota agar mencapai konidisi efisen. Pada penelitian Haryadi (2011), mengenai analisis efisiensi teknis bidang pendidikan pada tingkat SD,SMP,SMP,SMA, dan SMK di kab/kota di 6 pulau di Indonesia, menemukan target perbaikan yang dilakukan dengan mengurangi alokasi pendidikan, meningkatkan angka rasio guru/murid, rasio kelas/murid, dan mengurangi angka putus sekolah sesuai pada masing-masing tingkatan pendidikan.

TINJAUAN PUSTAKA

Konsep Economic Efficiency dan Pengukurannya

Mardiasmo (2002:132-134) menyatakan pengukuran efisiensi dilakukan dengan menggunakan perbandingan antara *output* yang dihasilkan terhadap *input* yang digunakan, semakin besar *output* dibading *input*, maka semakin tinggi tingkat efisiensi. Suatu proses kegiatan dapat dikatakan efisien apabila suatu hasil sebuah proses dapat dicapai dengan penggunan sumber daya yang serendah-rendahnya. Karena efisiensi diukur dengan membandingkan keluaran dan masukan, maka perbaikan efisiensi dapat dilakukan dengan cara:

- a. Meningkatkan *output* pada tingkat *input* yang sama;
- b. Meningkatkan *output* dalam proporsi yang lebih besar daripada proporsi peningkatan *input*;
- c. Menurunkan input pada tingkatan output yang sama;
- d. Menurunkan *input* dalam proporsi yang lebih besar daripada proporsi penurunan *output*.

Pengukuran efisiensi sudah digunakan selama 40 tahun lebih (Coelli, 1996) dan pertama kali diawali oleh Farrell (1957). Ia mengemukakan bahwa efisiensi terdiri dari efisensi teknis dan efisiensi alokatif. Javarof dan Gunnarsson (2008) dalam penelitiannya mengukur efisiensi sektor publik menggunakan efisiensi teknis di mana nilai efisiensi diukur dengan menggunakan sejumlah *input* yang digunakan untuk menghasilkan sejumlah *output* tertentu. Dalam pengukurannya, efisiensi teknis sektor publik terbagi menjadi 3 jenis, yaitu efisiensi teknis biaya (*technical cost efficiency*), efisiensi teknis sistem (*technical system efficiency*), dan efisiensi keseluruhan (*overall efficiency*).

Efisensi teknis biaya adalah pengukuran tingkat penggunaan sarana ekonomi/ sejumlah *input*, untuk menghasilkan sejumlah *output*. Efisiensi teknis sistem sendiri merupakan pengukuran tingkat penggunaan sejumlah *input* berupa indikator *output intermediate* untuk menghasilkan sejumlah *outcomes*. Kondisi efisiensi akan tercapai ketika penggunaan sejumlah *input* akan output yang maksimum.

Pengukuran efisiensi dapat dibagi menjadi pengukuran berorientasi *input* dan *output* (Farrel 1957. Pengukuran berorientasi *input* merupakan kondisi di mana secara proporsional menurunkan penggunaan *input* dengan *output* yang dihasilkan adalah tetap, lalu pengukuran berorientasi *output* di mana dengan menggunakan *input* yang sama akan mendapatkan proporsi *output* yang lebih besar (Coelli et al.1998).

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

Pengukuran Efisiensi Relatif dengan Metode Data Envelopment Analysis (DEA)

Charnes et al (1978) mengemukakan metode berdasarkan teknis *linear programming* yang dinamakan *Data Envelopment Analysis* (DEA) untuk mengestimasi efisiensi teknis relatif dari suatu set *Decision Making Units* (DMUs). DEA mengevaluasi tingkat efisiensi suatu DMU dengan variabel *multiple output* dan *multiple input* melalui *linear programming*. DEA bekerja dengan cara mengidentifikasi unit-unit yang akan dievaluasi, *input* serta *output* unit tertentu. Kemudian dihitung nilai produktivitas dan mengidenifikasi unit mana yang tidak menggunakan *input* secara efisien atau tidak menghasilkan *output* secara efektif. Produktivitas yang diukur bersifat relatif, karena hanya membandingkan antar unit pengukuran dari 1 set data yang sama. Selain itu, unit-unit dalam perhitungan dari gabungan DMU dapat digunakan sebagai acuan untuk meningkatkan DMU yang inefisien. DEA juga mempertimbangkan menghitung perbaikan yang diperlukan dalam *input* yang tidak efisien agar menjadi efisien (Prajanti 2013:24).

Syarat dalam pengukuan DEA yaitu bobot tidak boleh negatif, dan bobot harus bersifat *universal*, dalam hal ini berarti setiap DMU dalam sampel harus dapat menggunakan seperangkat bobot yang sama untuk mengevaluasi rasionya (total weighted output/total weighted input) dan rasio tersebut tidak lebih dari 1 (total weighted output/total weighted input ≤ 1).

Pendekatan DEA membangun sebuah fungsi *linier piece-wise* dari pengamatan *input* dan *output* secara empirik, tanpa mengasumsikan adanya sebuah fungsi sebelumnya yang melihat hubungan antara *input* dan *output*, pengujian hipotesis tidak dimungkinkan dan metode ini tidak mengalami multikolinearitas dan heteroskedasitas (Lubis, 2014). Metode DEA memungkinkan adanya DMU dengan nilai efisiensi 1 (optimal) serta dapat melihat sumber inefisiensi dengan ukuran peningkatan potensial dari masing-masing *input* dan *output* (Endri 2011).

Dalam pengukuran DEA, terdapat asumsi constant return to scale (CRS) dan variabel return to scale (VRS). Model Constant Retrun to Scale (CRS) mengasumsikan bahwa rasio antara penambahan input dan output adalah sama (constant return to scale), artinya jika ada tambahan input sebesar x kali, maka output juga akan meningkat sebesar x kali. Sedangkan Model Variable Return to Scale (VRS) beranggapan bahwa suatu kinerja keuangan/ fasilitas dan layanan (DMU) tidak atau belum beroperasi pada skala yang optimal. Asumsi dari model ini adalah rasio antara penambahan input dan output tidak sama (variabel return to scale). Dengan kata lain, setiap penambahan input sebesar x kali tidak akan menyebabkan output meningkat sebesar x kali, artinya bisa lebih besar atau kecil dari x kali.

METODE PENELITIAN

Ruang lingkup penelitian ini adalah Kabupaten/Kota di Provinsi Jawa Tengah, dengan kurun waktu pada tahun 2015-2020. Data yang digunakan merupakan data sekunder berupa publikasi dari Direktorat Jendral Perimbangan Keuangan (Kementian Keuangan), Dinas Kesehatan Provinsi Jawa Tengah, dan Badan Pusat Satatistik (BPS) Provinsi Jawa Tengah tahun 2015-2017.

Penelitian ini menggunakan 3 variabel penelitian, yaitu variabel *input* berupa belanja pemerintah daerah urusan kesehatan, variabel *output intermediate* berupa

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

fasilitas dan layanan kesehatan yang terdiri dari; 1) Rasio jumlah puskesmas per 30.000 penduduk; 2) Rasio jumlah tenaga Medis per 30.000 penduduk; 3) Rasio jumlah tenaga bidan per 30.000 penduduk, dan yang terakhir adalah variabel *outcome* yaitu indikator derajat kesehatan seperti Angka Kematian Bayi per 1000 kelahiran hidup (AKB), Angka Kematian Ibu Maternal pe 100.000 kelahiran hidup (AKI), dan Angka Harapan Hidup (AHH). Penggunaan tiga jenis variabel dalam penelitian ini disebabkan dalam implikasinya terdapat hubungan tidak langsung antara variabel *input* dan variabel *output*, oleh karena itu variabel *intermediate output* digunakan untuk mengakomodir hal tersebut.

Variabel Input

Belanja pemerintah urusan kesehatan yang digunakan yaitu realisasi belanja pemerintah daerah kab/kota di Provinsi Jawa Tengah dalam urusan kesehatan yang dinyatakan dalam juta rupiah.

Variabel Output Itermediate

Rasio Jumlah Puskemsas per 30.000 penduduk

Jumlah Puskesmas per 30.000 digunakan dalam mengetahui keterjangkauan penduduk terhadap fasilitas dan layanan kesehatan berupa puskesmas di suatu wilayah (Dinas Kesehatan Provinsi Jawa Tengah, 2015). Variabel jumlah puskesmas yang digunakan meliputi jumlah puskesmas, puskesmas rawat inap, puskesmas pembantu, dan puskesmas keliling. Perhitungan ini diperoleh melalui formula sebagai berikut:

Jumlah Puskesmas di wilayah tertentu

dalam satu tahun

Jumlah penduduk di suatu wilayah
dalam kurrun waktu yang sama

Rasio Jumlah Tenaga Medis (Dokter) per 30.000 penduduk

Jumlah Tenaga Medis per 30.000 penduduk yang bertugas di rumah sakit pemerintah, puskesmas, puskesmas pembantu atau fasilitas kesehatan publik milik pemerintah lainnya di suatu wilayah tertentu (Dinas Kesehatan Provinsi Jawa Tengah 2015). Dalam Profil Kesehatan Jawa Tengah (2015), Tenaga Medis meliputi Dokter Spesialis, Dokter Umum, Dokter Gigi, dan Dokter Spesialis). Perhitungan indikator ini diperolah melalui formula sebagai berikut:

Jumlah tenaga medis di wilayah tertentu

dalam satu tahun

Jumlah penduduk di suatu wilayah
dalam kurrun waktu yang sama

Rasio Jumlah Tenaga Bidan (Dokter) per 30.000 penduduk

Jumlah Bidan per 30.000 penduduk merupakan jumlah bidan yang bertugas di rumah sakit pemerintah, puskesmas, puskesmas pembantu, atau fasilitas kesehatan publik milik pemerintah lainnya di suatu wilayah tertentu (Dinas Kesehatan Provinsi Jawa Tengah, 2015). Perhitungan indikator ini diperoleh melalui formula:

Jumlah bidan di wilayah tertentu

dalam satu tahun

Jumlah penduduk di suatu wilayah x 30.000

dalam kurrun waktu yang sama

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

Variabel Outcome

Angka Kematian Bayi per 1000 kelahiran hidup (AKB)

Angka Kematian Bayi (AKB) merupakan jumlah kematian bayi (0-11bulan) per 1000 kelahiran hidup dalam kurun waktu satu tahun (Dinas Kesehatan Provinsi Jawa Tengah, 2015).

Indikator angka mortalitas/ kematian memiliki karakteristik arah negatif, semakin rendah nilai mortalitas, maka semakin baik kondisi derajat kesehatan. Hal ini tidak sesuai dengan salah satu syarat perhitungan efisiensi dengan DEA yaitu bobot harus berkarakteristik positif, selain itu juga akan menimbulkan resiko bias dalam pembacaan hasil analisis karena dalam pendekatan non-parametrik, kinerja yang lebih tinggi secara langsung terkait dengan tingkat *input* yang lebih tinggi (*António* Afonso, Miguel St.Aubyn, 2005). Mengacu pada penelitian Arinto Haryadi (2011), Indikator AKB akan di proksi dengan 100 - AKB%, dengan skala maksimum AKB% adalah 100%. AKB* diperoleh melalui formula:

Angka Kematian Ibu Maternal per 100.000 kelahiran hidup (AKI)

Angka Kematian Ibu merupakan kematian perempuan pada masa kehamilan, persalinan, dan nifas atau kematian dalam kurun waktu 42 hari sejak terminasi kehamilan tanpa memandang lamanya kehamilan atau tempat persalinan, yakni disebabkan karena kehamilannya/penglolaannya, bukan karena sebab-sebab lain seperti kecelakaan, jatuh, dan lain-lain (Dinas Kesehatan Provinsi Jawa Tengah). Sama halnya dengan AKB, indikator AKI juga memiliki karakteristik arah yang negatif, sehingga Indikator AKI di proksi dengan 100 – AKI%, dengan skala maksimum AKI% adalah 100%. AKI* diperoleh melalui formula:

Angka Harapan Hidup saat Lahir

Angka Harapan Hidup saat lahir di definisikan sebagai rata-rata perkiraan banyak tahun yang dapat ditempuh oleh seseorang sejak lahir. Dalam perhitungannya, AHH saat lahir dihitung menggunakan paket program Mortpak berdasarkan rata-rata kelompok umur ibu 15-49 tahun, dan dengan memperhatikan tren hasil Sensus penduduk dan Survei Penduduk Antar Sensus. BPS menyebutkan bahwa AHH merupakan alat untuk mengevaluasi kinerja pemerintah dalam meningkatkan kesejahteraan penduduk pada umumnya, dan memningkatkan derajat kesehatan pada khususnya.

Metode yang digunakan dalam penelitian ini adalah metode pengukuran efisiensi teknis relatif non parametric dengan Data Envelopment Analysis dengan pendekatan variabel return to scale dan berorientasi pada output. Pemilihan penggunaan analisis DEA berdasarkan pertimbangan bahwa analisis DEA mampu mengukur efisiensi relatif suatu Decisions Making Unit (DMU) dalam kondisi multi-input dan multi-output. Yang dimaksud DMU disini merupakan unit yang dianalisa dalam DEA (dalam hal ini merupakan pemerintah daerah).

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

Dengan mengukur efisiensi relatif belanja pemerintah daerah urusan kesehatan, maka akan dapat mengetahui kabupaten/kota mana saja yang sudah mencapai kondisi efisien dan belum (inefisien).

Dengan menganalisis efisiensi teknis menggunakan metode DEA, penelitian ini akan menjelaskan hubungan penggunaan biaya kesehatan dalam mencapai *output* akhir meliputi variabel *input* dan variabel *output intermediate* yang akan menghasilkan efisiensi teknis biaya, lalu variabel *output intermediate* dan variabel *output* yang akan menghasilkan efisiensi teknis sistem. Dengan menganalisis efisiensi teknis (bukan ekonomis), artinya metode analisis DEA hanya memperhitungkan nilai absolut dari suatu variabel. Oleh karena itu dimungkinkan suatu pola perhitungan kombinasi berbagai variabel dengan satuan yang berbedabeda. pengukuran efisiensi pada dasarnya merupakan rasio antara *output* dan *input*:

$$Efficeincy = \frac{Jumlah\ Output\ Tertimbang}{Jumlah\ Input\ Tertimbang}$$

Lalu pengukuran efisiensi yang menyangkut *input* dan *output* dengan pengukuran efisiensi relatif yang dibobot sebagaimana berikut:

Efficiency dari unit
$$j = \frac{u1y1 + u2y2 + \cdots}{v1x1 + v2k + \cdots}$$

Namun demikian, pengukuran tersebut tetap memiliki keterbatasan yaitu sulitnya menentukan bobot yang seimbang untuk *input* dan *output*. Maka dari itu, analisis DEA berasumsi bahwa setiap DMU akan memilih bobot yang memaksimumkan rasio efisiensinya (*maximize total weighted output/ total weighted input*). Untuk mengkalkulasi efisiensi relatif dari belanja pemerintah kab/kota urusan kesehatan di Provinsi Jawa Tengah, digunakan model program linear sebagai berikut:

Memaksimumkan $z_k = \sum_{r=1}^{s} U_{rk} Y_{rk}$

Dengan batasan kendala:

$$\begin{split} & \sum_{r=1}^{s} U_{rk} \ Y_{rk} - \sum_{i=k}^{m} V_{ik} \ X_{ik} \leq 0 \ ; k = 1, 2, \dots, n, \dots \\ & \sum_{i=k}^{m} V_{ik} \ X_{ik} = 1 \\ & U_{rk} \geq 0 \ ; r = 1, 2, \dots, s, \dots \end{split}$$

 $V_{ik} \ge 0$; i = 1, 2, ..., m, ...

Dengan keterangan persamaan di atas dijelaskan sebagai berikut:

 z_k = Kabupaten/Kota yang diamati

K = Kabupaten/Kota yang dinilai dalam analisis yaitu 35 kabupaten/kota

 Y_{rk} = Jumlah *output* r yang dihasilkan oleh DMU k

 X_{ik} = Jumlah *input* I yang digunakan DMU k

s = Jumlah *output* yang dihasilkan (layanan, fasilitas kesehatan dan derajat kesehatan).

m = Jumlah *input* yang digunakan (belanja kesehatan kabupaten/kota)

 U_{rk} = Bobot tertimbang dari *output* r yang dihasilkan tiap DMU k

 V_{ik} = Bobot tertimbang dari *input* i yang dihasilkan tiap DMU k

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

Agar dapat memperoleh tingkatan efisieni teknis, maka perlu adanya pembagian klasifikasi tingkat efisiensi, yang dapat dilihat pada Tabel 3.1 berikut:

Tabel 2 Kriteria Ukuran Tingkat Efisiensi Teknis Belanja Kesehatan

Kriteria Efisiensi	Perhitungan
Sempurna/Optimum	X = 1
Tinggi	$X > (\bar{x} + 0.5 \text{ SD})$
Sedang	$(\bar{x} - 0.5 \text{ SD}) < X < (\bar{x} + 0.5 \text{ SD})$
Rendah	$X < (\bar{x} - 0.5 \text{ SD})$

Sumber: BPS, 2015

Target Perbaikan Input dan Output untuk Mencapai Kondisi Efisien

Dalam Coelli et al. (1998) menjelaskan bahwa analisis DEA mampu membuat skenario perbaikan *input* dan *output* yang diperoleh melalui perhitungan *slack* dan *radial movement*, bagi *input* dan *output* yang belum efisien melalui langkah-langkah indentifikasi *input* yang terlalu tinggi atau *output* yang terlalu rendah. Hasil analisis data dengan metode DEA akan memperlihatkan DMU yang memiliki *input/output* yang belum efisien dan selanjutnya akan ditentukan langkah perbaikan agar mampu mencapai tingkat efisiensi yang sempurna.

Perhitungan target perbaikan dalam penelitian ini akan dilakukan pada tahun 2017 menggunakan orientasi *output*, dalam hal ini perbaikan dilakukan dengan pengoptimalan *output* dan bukan dengan pengurangan *input*. Dalam efisiensi teknis biaya, pengoptimalan *output* dilakukan dengan menetapkan target perbaikan faslitas dan pelayanan yang seharusnya mampu diupayakan dengan belanja kesehatan yang tersedia. Lalu dalam efisiensi teknis sistem, pengoptimalan *output* dilakukan dengan menetapkan target perbaikan berupa derajat kesehatan masyarakat yang seharusnya dapat dicapai dengan fasilitas dan layanan kesehatan yang tersedia.

HASIL DAN PEMBAHASAN

Hasil Penelitian

Perhitungan nilai efisiensi dengan metode DEA pada penelitian ini menggunakan program Win4Deap2 versi 2.01. Hasil perhitungan efisiensi teknis akan menghasilkan nilai efisiensi teknis relatif antar DMU dalam satu set data di tahun yang sama.. Efisiensi relatif yang dihitung terdiri dari efisiensi teknis biaya, dan efisiensi teknis sistem dan menghasilkan skor 0-1.

Efiisiensi Teknis Biaya Belanja Kesehatan

Hasil pengukuran (tabel 3) menunjukkan pada tahun 2015 hanya 3 kab/kota yang mencapai efisiensi sempurna, dan 32 kab/kota mengalami inefisiensi. Sementara pada tahun 2016 menunjukkan peningkatan dengan 5 kab/kota yang mencapai efisiensi sempurna. Peningkatan dari tahun 2015 ditunjukkan oleh Kab. Temanggung, Kab. Tegal, dan Kota Surakarta. Lalu pada tahun 2017, menunjukkan bahwa hanya 4 kab/kota yang mencapai efisiensi sempurna, dengan Kab. Tegal dan Kab. Temanggung yang memiliki nilai efisiensi sempurna pada tahun 2016, turun menjadi efisiensi rendah, sementara Kota Semarang yang memiliki

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

peningkatan menjadi efisiensi sempurna. Hal ini menunjukkan bahwa secara efisiensi teknis biaya belum ada peningkatan yang signifikan yang dilakukan pemerintah daerah dalam kurun waktu periode penelitian.

Tabel 3 Hasil Perhitungan Efisiensi Teknis Biaya menurut Kabupaten/Kota di Provinsi Jawa Tengah Tahun 2015-2017

Kota/Kabupaten	2015	2016	2017	Rata- Rata
Kab.Cilacap	0.476	0.476	0.496	0.48
Kab.Banyumas	0.522	0.505	0.539	0.52
Kab.Purbalingga	0.519	0.531	0.55	0.53
Kab.Banjarnegara	0.821	0.824	0.827	0.82
Kab.Kebumen	0.666	0.629	0.68	0.66
Kab.Purworejo	0.805	0.847	0.815	0.82
Kab.Wonosobo	0.653	0.657	0.66	0.66
Kab.Magelang	1	0.493	0.493	0.66
Kab.Boyolali	0.641	0.691	0.642	0.66
Kab.Klaten	0.621	0.625	0.628	0.62
Kab.Sukoharjo	0.587	0.738	0.44	0.59
Kab.Wonogiri	0.759	0.771	0.768	0.77
Kab.Karanganyar	0.595	0.713	0.532	0.61
Kab.Sragen	0.691	0.767	0.609	0.69
Kab.Grobogan	0.527	0.654	0.525	0.57
Kab.Blora	0.646	0.686	0.674	0.67
Kab.Rembang	0.603	0.844	0.583	0.68
Kab.Pati	0.543	0.627	0.517	0.56
Kab.Kudus	0.537	0.74	0.591	0.62
Kab.Jepara	0.4	0.372	0.38	0.38
Kab.Semarang	0.512	0.511	0.51	0.51
Kab.Demak	0.55	0.548	0.593	0.56
Kab.Temanggung	0.688	1	0.71	0.80
Kab.Kendal	0.674	0.757	0.676	0.70
Kab.Batang	0.654	0.598	0.601	0.62
Kab.Pekalongan	0.683	0.744	0.78	0.74
Kab.Pemalang	0.386	0.469	0.43	0.43
Kab.Tegal	0.477	1	0.544	0.67
Kab.Brebes	0.497	0.59	0.55	0.55
Kota Magelang	1	1	1	1.00
Kota Surakarta	0.765	1	1	0.92
Kota Salatiga	0.805	0.688	0.807	0.77
Kota Semarang	0.482	0.472	1	0.65
Kota Pekalongan	1	1	1	1.00
Kota Tegal	0.706	0.719	0.769	0.73

Sumber: Win4Deap2 versi 2.01

Keterangan: Hijau: efisiensi sempurna, Hijau muda: efisiensi tinggi, Kuning:

efisiensi sedang, merah: efisiensi rendah.

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

Tabel 4 Rata-Rata Efisiensi Teknis Biaya Kabupaten/Kota Tahun 2015-2017 menurut Klasifikasi

sempurna	tinggi	sedang	rendah
Kota Magelang, Kota Pekalongan	Kab.Banjarnegara, Kab.Purworejo, Kab.Wonogiri, Kab. Temanggung, Kab.Pekalongan, Kota Surakarta, Kota Salatiga	Kab.Kebumen, Kab.Wonosobo, Kab.Magelang, Kab.Boyolali, Kab.Klaten, Kab.Karanganyar, Kab.Sragen, Kab.Blora, Kab.Rembang, Kab.Kudus, Kab.Kendal, Kab.Batang, Kab.Tegal, Kota Semarang, Kota Tegal	Kab.Cilacap, Kab.Banyumas, Kab.Purbalingga, Kab.Sukoharjo, Kab.Grobogan, Kab.Pati, Kab.Jepara, Kab.Semarang, Kab.Demak, Kab.Pemalang, Kab.Brebes

Hasil perhitungan rata-rata selama periode penelitian (Tabel 4), mennunjukkan pencapaian nilai efisiensi teknis biaya sempurna (= 1) hanya terdapat 2 kota, yaitu Kota Magelang, dan Kota Pekalongan. Hal ini menunjukkan daerah tersebut telah efisien dalam menggunakan belanja kesehatan pemerintah daerahnya secara konsisten selama periode penelitian. Sedangkan 33 kab/kota lainnya masih belum efisien secara sempurna dalam penggunaan belanja kesehatannya. Lebih lanjut, daerah kab/kota yang telah mencapai nilai efisiensi teknis biaya sempurna (= 1), dalam hal ini Kota Magelang, dan Kota Pekalongan mengindikasikan daerah tersebut telah memaksimalkan peran belanja kesehatannya. Sedangkan, daerah kab/kota yang belum mencapai nilai efisiensi teknis biaya sempurna (< 1), menandakan belum optimalnya peran belanja kesehatan daerah tersebut.

Efisiensi Teknis Sistem Belanja Kesehatan

Hasil pengukuran efisiensi sistem menunjukkan pada tahun 2015 (Tabel 5), sesuai perhitungan klasifikasi menunjukkan terdapat 14 kab/kota yang mencapai efisiensi sempurna dan 21 kab/kota yang memiliki nilai inefisiensi. Sementara pada tahun 2016 menunjukkan penurunan dengan 6 kab/kota yang mencapai efisiensi sempurna. Penurunan ditunjukkan oleh Kab.Cilacap, Kab.Magelang, Kab.Klaten, Kab.Wonogiri, Kab.Semarang, Kab.Demak, dan Kab.Pemalang. Lalu pada tahun 2017, menunjukkan peningkatan bahwa terdapat 14 kab/kota yang mencapai efisiensi sempurna, dengan Kab. Cilacap, Kab. Magelang, Kab. Klaten, Kab. Magelang, Kab. Demak, dan Kab. Pemalang yang meningkat menjadi efisiensi sempurna. Dengan hasil perhitungan efisiensi teknis sistem selama periode penelitian menunjukkan bahwa setiap daerah memiliki hasil efisiensi teknis sistem yang relatif tinggi (mendekati 1) jika dilihat tanpa menggunakan metode perhitungan klasifikasi.

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

Tabel 5 Hasil Perhitungan Efisiensi Teknis Sistem menurut Kabupaten/Kota di Povinsi Jawa Tengah tahun 2015-2017

Kota/Kabupaten	2015	2016	2017	Rata- Rata
Kab.Cilacap	1	0.997	1	0.999
Kab.Banyumas	0.994	0.995	0.996	0.995
Kab.Purbalingga	0.993	0.99	0.994	0.992
Kab.Banjarnegara	0.991	0.985	0.983	0.986
Kab.Kebumen	0.995	0.995	0.995	0.995
Kab.Purworejo	0.993	0.985	0.994	0.991
Kab.Wonosobo	0.993	0.986	0.996	0.992
Kab.Magelang	1	0.998	1	0.999
Kab.Boyolali	0.996	0.995	0.992	0.994
Kab.Klaten	1	0.996	1	0.999
Kab.Sukoharjo	1	1	1	1.000
Kab.Wonogiri	1	0.996	0.995	0.997
Kab.Karanganyar	1	1	1	1.000
Kab.Sragen	0.993	0.991	0.991	0.992
Kab.Grobogan	0.98	0.982	0.999	0.987
Kab.Blora	0.984	0.976	0.981	0.980
Kab.Rembang	0.993	0.975	0.988	0.985
Kab.Pati	0.999	0.99	0.997	0.995
Kab.Kudus	0.999	0.998	0.997	0.998
Kab.Jepara	1	1	1	1.000
Kab.Semarang	1	0.996	1	0.999
Kab.Demak	1	0.999	1	0.999
Kab.Temanggung	1	0.992	1	0.997
Kab.Kendal	0.989	0.993	1	0.994
Kab.Batang	0.988	0.983	0.997	0.989
Kab.Pekalongan	0.995	0.986	0.99	0.990
Kab.Pemalang	1	0.996	1	0.999
Kab.Tegal	0.992	0.99	1	0.994
Kab.Brebes	0.992	0.978	1	0.990
Kota Magelang	1	1	0.993	0.998
Kota Surakarta	1	1	1	1.000
Kota Salatiga	0.992	0.996	0.993	0.994
Kota Semarang	1	1	0.996	0.999
Kota Pekalongan	0.99	0.978	0.984	0.984
Kota Tegal	0.993	0.994	0.996	0.994

Sumber: Win4Deap2 versi 2.01

Keterangan: Hijau: efisiensi sempurna, Hijau muda: efisiensi tinggi, Kuning:

efisiensi sedang, merah: efisiensi rendah.

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

Tabel 6 Rata-Rata Efisiensi Teknis Sistem Kabupaten/Kota Tahun 2015-2017 menurut Klasifikasi

sempurna	tinggi	sedang	rendah	
•	Kab.Cilacap,			
	Kab.Magelang,	Kab.Banyumas,	Kab.Banjarnegara,	
	Kab.Klaten,	Kab.Purbalingga,	Kab.Purworejo,	
Vah Sukaharia	Kab.Wonogiri,	Kab.Kebumen,	Kab.Grobogan,	
Kab.Sukoharjo,	Kab.Kudus,	Kab.Wonosobo,	Kab.Blora,	
Kab.Karanganyar,	Kab.Semarang,	Kab.Boyolali,	Kab.Rembang,	
Kab.Jepara, Kota	Kab.Demak,	Kab.Sragen, Kab.Pati,	Kab.Batang,	
Surakarta	Kab.Temanggung,	Kab.Kendal,	Kab.Pekalongan,	
	Kab.Pemalang, Kota	Kab.Tegal, Kota	Kab.Brebes, Kota	
	Magelang, Kota	Salatiga, Kota Tegal	Pekalongan	
	Semaranhg		-	

Berdasarkan hasil perhitungan rata-rata selama periode penelitian (Tabel 6), menunjukkan pencapaian nilai efisiensi teknis sistem sempurna (= 1) terdapat di 4 kab/kota. Kondisi hasil efisiensi teknis sistem ini lebih baik daripada hasil efisiensi teknis biaya. Hal ini dibuktikan dengan keseluruhan hasil efisiensi teknis sistem tiap daerah selama periode penelitian memiliki nilai lebih dari 0,9, meski dalam perhitungan klasifikasi nilai tersebut masih tergolong sedang. Tingkat keparahan yang ditunjukkan efisiensi teknis biaya pada daerah inefisien dengan nilai masih jauh dari sempurna (= 1), sebaliknya dengan efisiensi teknis sistem yang nilainya hampir mendekati sempurna (= 1). Meski nilai pada efisiensi teknis sistem secara umum mendekati nilai sempurna, kab/kota yang belum mencapai nilai efisiensi sempurna tersebut masih inefisien. Perbaikan sistem kesehatan pada daerah yang belum efisien dapat dilakukan dengan peningkatan fasilitas dan layanan kesehatan seperti mengingkatkan jumlah puskesmas yang sudah ada, agar masyarakat akan lebih mudah menjangkau fasilitas tersebut. Selain itu distribusi jumlah tenaga medis dan tenaga bidan yang tersebar di berbagai kab/kota di Provinsi Jawa Tengah dengan koordinasi lintas sektor ke daerah yang masih kekurangan tenaga medis dan bidan.

Target Perbaikan Output untuk Mencapai Kondisi Efisien

Perbaikan untuk mencapai kondisi efisien dilakukan dengan pengoptimalan output dan bukan dengan pengurangan input dan perbaikan hanya dilakukan pada tahun 2017. Dalam efisiensi teknis biaya, pengoptimalan output dilakukan dengan menetapkan target perbaikan faslitas dan pelayanan yang seharusnya mampu diupayakan dengan belanja kesehatan yang tersedia. Lalu dalam efisiensi teknis sistem, pengoptimalan output dilakukan dengan menetapkan target perbaikan berupa derajat kesehatan masyarakat yang seharusnya dapat dicapai dengan fasilitas dan layanan kesehatan yang tersedia. Kota Surakarta pada tahun 2017 sudah mencapai efisiensi teknis biaya dan sistem secara sempurna, oleh karena itu di dalam perhitungan target perbaikan output untuk daerah tersebut tidak ditemukan adanya nilai target dan potential improvement yang harus diupayakan oleh pemerintah Kota Surakarta. Daerah yang telah efisien secara teknis biaya dan teknis sistem dapat dijadikan daerah tujuan kegiatan benchmarking pemerintah daerah kabupaten/kota

Jurnal Dinamika Ekonomi Pembangunan https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

yang belum efisien. Hasil perhitungan target perbaikan ditampilkan pada tabel 7 berikut:

Tabel 7 Target Perbaikan Output Efisiensi Teknis Biaya dan Sistem Kota/Kabunaten di Provinsi Jawa Tengah Tahun 2015-2017

	Kota/Kabuj	oaten c	li Pro	vinsi J	awa T	'engah Tahun 20)15-20	117	
				Potential					Potential
Kab/Kota	Variabel	Actual	Target	Improveme	Kab/Kota	Variabel	Actual	Target	Improvemen
	Efisiensi	Teknis Bia	iva	nt		Efisiensi	Teknis B	iava	I
	(+) Rasio Puskesmas	0.666	1.344	0.678	İ	(+) Rasio Puskesmas	0.881	1.296	0.415
	(+) Rasio Tenaga Medis	5.171	50.239	45.068		(+) Rasio Tenaga Medis	14.396	56.587	42.191
Kab.	(+) Rasio Tenaga Bidan	16.265	32.813	16.548	Kab.	(+) Rasio Tenaga Bidan	24.085	35.429	11.344
Cilacap	Efisiensi	Teknis Sits	em		Kebume n	Efisiensi Teknis Sitsem			
	(+) AKB	5.02	5.02	-0.001	11	(+) AKB	7.21	5.72	-1.491
	(+) AKI	70.22	70.23	0.006		(+) AKI	61.38	45.80	-15.585
	(+) AHH	73.24	73.24	0.000		(+) AHH	72.98	76.574	3.594
		Efisiensi Teknis Biaya			-		Teknis B		0.255
	(+) Rasio Puskesmas	0.703	1.303	0.600		(+) Rasio Puskesmas	1.134	1.391	0.257
Kab.	(+) Rasio Tenaga Medis (+) Rasio Tenaga Bidan	12.901	55.633	42.732	Kah	(+) Rasio Tenaga Medis	3.191	43.926	40.735
Banyum	· /	18.901 Teknis Sits	35.036	16.135	Purwor	(+) Rasio Tenaga Bidan	15.492 Teknis Si	30.212	14.720
as	(+) AKB	8.43	7.21	-1.221	ejo	(+) AKB	12.65	9.80	-2.849
	(+) AKI	54.16	41.28	-12.874		(+) AKI	149.51	130.67	-18.841
	(+) AHH	73.33		1.308		(+) AHH	74.26	74.684	0.424
		Teknis Bia		1.500		(†) AIII	Kab	74.004	0.727
	(+) Rasio Puskesmas	0.72	1.31	0.590	Ī	(+) Rasio Puskesmas	0.918	1.391	0.473
77. 1	(+) Rasio Tenaga Medis	7.627	54.726	47.099	77.1	(+) Rasio Tenaga Medis	5.317	43.926	38.609
Kab.	(+) Rasio Tenaga Bidan	19.052	34.662	15.610	Kab.	(+) Rasio Tenaga Bidan	12.509	30.212	17.703
Purbalin	Efisiensi	Teknis Sits	em	•	obo	Efisiensi	Teknis Si	tsem	
gga	(+) AKB	8.02	6.00	-2.029		(+) AKB	10.34	9.13	-1.210
	(+) AKI	76.76	55.55	-21.208		(+) AKI	79.54	66.85	-12.691
	(+) AHH	72.91	74.469	1.559		(+) AHH	71.3	72.432	1.132
		Teknis Bia			-		Teknis B		
	(+) Rasio Puskesmas	1.15	1.391	0.241		(+) Rasio Puskesmas	0.686	1.391	0.705
Kab.	(+) Rasio Tenaga Medis	5.586	43.926	38.340	l Kah	(+) Rasio Tenaga Medis	6.197	43.926	37.729
Banjarne	(+) Rasio Tenaga Bidan	17.844	30.212	12.368	Magela	(+) Rasio Tenaga Bidan	3.713	30.212	26.499
gara		leknis Sitsem		ng	Efisiensi Teknis Sitsem				
	(+) AKB (+) AKI	137.66	7.80 79.57	-58.093		(+) AKB (+) AKI	12.20 46.53	12.20 46.52	-0.013
	(+) AHH	73.79		1.296	-	(+) AHH	73.39	73.39	0.000
		Teknis Bia		1.290			Teknis Bi		0.000
	(+) Rasio Puskesmas	0.893	1.391	0.498	·	(+) Rasio Puskesmas	0.847	1.391	0.544
	(+) Rasio Tenaga Medis	11.051	43.926	32.875		(+) Rasio Tenaga Medis	13.964	43.926	29.962
Kab.	(+) Rasio Tenaga Bidan	18.808	30.212	11.404	Kab.	(+) Rasio Tenaga Bidan	16.642	30.212	13.570
Boyolali	Efisiensi	Teknis Sits	em	ı	Sragen	Efisiensi	Teknis Sit	sem	
	(+) AKB	8.46	5.91	-2.558	7 -	(+) AKB	8.21	5.44	-2.772
	(+) AKI	111.92	61.68	-50.237		(+) AKI	79.94	51.00	-28.936
	(+) AHH	75.72	76.321	0.601		(+) AHH	75.55	76.264	0.714
	Efisiensi	Teknis Bia	ya			Efisiensi	Teknis Bi	aya	
	(+) Rasio Puskesmas	0.874	1.391	0.517		(+) Rasio Puskesmas	0.659	1.254	0.595
	(+) Rasio Tenaga Medis	7.812	43.926	36.114	Kab	(+) Rasio Tenaga Medis	5.735	62.152	56.417
Kab.	(+) Rasio Tenaga Bidan	9.894	30.212	20.318	Kab. Grobog	(+) Rasio Tenaga Bidan	19.821	37.722	17.901
Klaten	Efisiensi	Teknis Sits	em		an	Efisiensi '	Teknis Sit	sem	
	(+) AKB	10.15	10.15	0.000	all	(+) AKB	13.49	5.81	-7.677
	(+) AKI	112.76	112.75	-0.010		(+) AKI	81.76	77.67	-4.091
	(+) AHH	-) AHH 76.62 76.62 0.000			(+) AHH	74.46	74.55	0.090	
		Teknis Bia		1			Teknis Bi		1
	(+) Rasio Puskesmas	0.41		0.825	-	(+) Rasio Puskesmas	0.908		0.439
Kab.	(+) Rasio Tenaga Medis	18.648	64.705	46.057		(+) Rasio Tenaga Medis	6.986	49.818	42.832
Sukoharj	(+) Rasio Tenaga Bidan	17.043	38.774	21.731	Kab.	(+) Rasio Tenaga Bidan	22.006	32.64	10.634
O	Efisiensi	Teknis Sits		ı	Blora		Teknis Sit		,
	(+) AKB	6.39	6.39	0.000		(+) AKB	14.07	7.59	-6.481
	(+) AKI	31.94	31.94	0.000		(+) AKI	125.66	59.65	
	(+) AHH	77.49	77.49	0.000		(+) AHH	73.99	75.461	1.471

Jurnal Dinamika Ekonomi Pembangunan https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

TZ 1 /TZ .				Potential	77 1 /77				Potential
Kab/Kot a	Variabel	Actual	Target	Improvem	Kab/Ko ta	Variabel	Actual	Target	Improvem
a	Ffisiensi	Teknis Bia	va	ent	ta	Ffisiensi	Teknis Bi	ava	ent
	(+) Rasio Puskesmas	1.068	1.391	0.323	ł	(+) Rasio Puskesmas	0.811	1.391	0.580
	(+) Rasio Tenaga Medis	8.076	43.926	35.850		(+) Rasio Tenaga Medis	4.293	43.926	39.633
Kab.	(+) Rasio Tenaga Bidan	14.738	30.212	15.474	Kab.	(+) Rasio Tenaga Bidan	16.743	30.212	13.469
Wonogir	Efisiensi [*]	Teknis Sits	em		Remban	Efisiensi ⁻	Teknis Sit	sem	
i	(+) AKB	10.00	8.38	-1.623	g	(+) AKB	15.03	8.03	-6.999
	(+) AKI	83.33	66.30	-17.026		(+) AKI	155.88	116.13	-39.757
	(+) AHH	76	76.385	0.385		(+) AHH	74.32	75.218	0.898
		Teknis Bia					Teknis Bi		
	(+) Rasio Puskesmas	0.723	1.358	0.635		(+) Rasio Puskesmas	0.698	1.349	0.651
Kab.	(+) Rasio Tenaga Medis (+) Rasio Tenaga Bidan	8.467 17.038	48.286 32.009	39.819 14.971	Kah	(+) Rasio Tenaga Medis (+) Rasio Tenaga Bidan	7.219 16.821	49.507 32.512	42.288 15.691
Karanga	` /	Teknis Sits		14.971	Kab. Pati	. ,	Teknis Sit		15.091
nyar	(+) AKB	12.66	12.66	0.001	Pati	(+) AKB	8.43	7.31	-1.124
	(+) AKI	72.56	72.57	0.014		(+) AKI	90.99	79.29	-11.701
	(+) AHH	77.31	77.31	0.000		(+) AHH	75.8	76.065	0.265
	()	Teknis Bia				()	Teknis B		
	(+) Rasio Puskesmas	0.669	1.235	0.566		(+) Rasio Puskesmas	0.759	1.279	0.520
Kah	(+) Rasio Tenaga Medis	12.508	64.705	52.197		(+) Rasio Tenaga Medis	6.482	58.845	52.363
Kab.	(+) Rasio Tenaga Bidan	22.901	38.774	15.873	Kab.	(+) Rasio Tenaga Bidan	21.577	36.359	14.782
Kudus		Teknis Sits			Demak	Efisiensi			0.004
	(+) AKB	7.59	6.60	-0.992		(+) AKB	6.33	6.33	-0.001
	(+) AKI (+) AHH	72.59 76.44	62.23 76.675	-10.359 0.235		(+) AKI (+) AHH	67.14 75.27	67.13 75.27	-0.010 0.000
	· /	Teknis Bia		0.233			Teknis B		0.000
	(+) Rasio Puskesmas	0.515	1.356	0.841	Kab. Temang	(+) Rasio Puskesmas	0.988	1.391	0.403
	(+) Rasio Tenaga Medis	7.677	48.521	40.844		(+) Rasio Tenaga Medis	5.414	43.926	38.512
Kab. Jepara	(+) Rasio Tenaga Bidan	12.189	32.106	19.917		(+) Rasio Tenaga Bidan	17.546	30.212	12.666
		Teknis Sits				Efisiensi			
	(+) AKB	5.21	5.21	0.000		(+) AKB	12.53	12.53	-0.001
	(+) AKI	57.91	57.93	0.014		(+) AKI	67.46	67.47	0.015
	(+) AHH	75.68 Teknis Bia	75.68	0.000		(+) AHH	75.42 Teknis B	75.42	0.000
	(+) Rasio Puskesmas	0.71	1.391	0.681	ł	(+) Rasio Puskesmas	0.94	1.391	0.451
** 1	(+) Rasio Tenaga Medis	4.944	43.926	38.982		(+) Rasio Tenaga Medis	1.818	43.926	42.108
Kab.	(+) Rasio Tenaga Bidan	11.125	30.212	19.087	Kab.	(+) Rasio Tenaga Bidan	15.862	30.212	14.350
Semaran		Teknis Sits	em		Kendal	Efisiensi	Teknis Sit	sem	
g	(+) AKB	6.26	6.26	0.001		(+) AKB	0.94	0.94	0.000
	(+) AKI	111.83	111.82	-0.011		(+) AKI	1.818	1.818	0.000
	(+) AHH Efisiensi	75.57 Teknis Bia	75.57	0.000		(+) AHH Efisiensi	15.862 Teknis B	15.862	0.000
	(+) Rasio Puskesmas	0.833	1.385	0.552		(+) Rasio Puskesmas	0.988	0.988	0.000
	(+) Rasio Tenaga Medis	3.928	44.731	40.803		(+) Rasio Tenaga Medis	77.31	77.31	0.000
Kab.	(+) Rasio Tenaga Bidan	18.371	30.544	12.173	Kota	(+) Rasio Tenaga Bidan		31.564	0.000
Batang	Efisiensi	Teknis Sits			Surakart	Efisiensi	Teknis Si	tsem	
	(+) AKB	12.73	8.22	-4.506	a	(+) AKB	2.73	2.73	0.000
	(+) AKI	127.27		-10.209		(+) AKI	70.74	70.75	0.009
	(+) AHH	74.5	74.729	0.229		(+) AHH	77.06		0.000
		Teknis Bia					Teknis B		
	(+) Rasio Puskesmas	0.914		0.321		(+) Rasio Puskesmas	0.953		0.282
Kab.	(+) Rasio Tenaga Medis	7.955		56.750		(+) Rasio Tenaga Medis	49.543		15.162
Pekalon	(+) Rasio Tenaga Bidan	30.23		8.544		(+) Rasio Tenaga Bidan	31.282		7.492
gam		Teknis Sits 8.35		-3.323	Salatiga	(+) AKB	15.00		0 612
	(+) AKB (+) AKI	102.01	65.82	-36.197		(+) AKI	236.87	6.39	-8.613 -204.929
	(+) AHH	73.46		0.757		(+) AHH	76.98		0.510
		Teknis Bia		0.131		. ,	Teknis B		0.510
	(+) Rasio Puskesmas	0.579		0.767	1	(+) Rasio Puskesmas	0.632		0.000
	(+) Rasio Tenaga Medis	5.392	49.879	44.487		(+) Rasio Tenaga Medis	47.739		0.000
Kab.	(+) Rasio Tenaga Bidan	14.048		18.617	Kota	(+) Rasio Tenaga Bidan	19.287	19.287	0.000
Pemalan	Efisiensi	Teknis Sits	em		Semara	Efisiensi	Teknis Si		
g	(+) AKB	5.53	5.54	0.001	ng	(+) AKB	7.56	6.39	-1.173
	(+) AKI	100.26	100.28	0.012		(+) AKI	88.28	31.94	-56.341
	(+) AHH	72.98	72.98	0.000		(+) AHH	77.21	77.49	0.280

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

Kab/Kot a	Variabel	Actual	Target	Potential Improvem	Kab/Ko ta	Variabel	Actual	Target	Potential Improvem	
	Efisiensi Teknis Biaya					Pek	alongan		Î	
	(+) Rasio Puskesmas	0.607	1.235	0.628		(+) Rasio Puskesmas	1.391	1.391	0.000	
	(+) Rasio Tenaga Medis	6.174	64.705	58.531		(+) Rasio Tenaga Medis	43.926	43.926	0.000	
Kab.	(+) Rasio Tenaga Bidan	21.095	38.774	17.679	Kota	(+) Rasio Tenaga Bidan	30.212	30.212	0.000	
Tegal	Efisiensi	Teknis Sits	em		Pekalon	Efisiensi '	Teknis Sit	sem		
	(+) AKB	7.86	7.86	0.001	gan	(+) AKB	9.08	3.80	-5.274	
	(+) AKI	52.67	52.69	0.017		(+) AKI	171.26	69.88	-101.379	
	(+) AHH	71.14	71.14	0.000		(+) AHH	74.19	75.407	1.217	
	Efisiensi	Teknis Bia	ıya			Efisiensi	Teknis Bi	iaya		
	(+) Rasio Puskesmas	0.635	1.235	0.600		(+) Rasio Puskesmas	0.967	1.257	0.290	
	(+) Rasio Tenaga Medis	4.059	64.705	60.646		(+) Rasio Tenaga Medis	30.351	61.775	31.424	
Kab.	(+) Rasio Tenaga Bidan	21.314	38.774	17.460		(+) Rasio Tenaga Bidan	28.9	37.567	8.667	
Brebes	Efisiensi	Teknis Sits	em		Tegal	Efisiensi '	siensi Teknis Sitsem			
	(+) AKB	12.36	12.36	0.000		(+) AKB	11.49	6.39	-5.100	
	(+) AKI	95.11	95.11	-0.002		(+) AKI	45.96	31.94	-14.012	
	(+) AHH	68.61	68.61	0.000		(+) AHH	74.23	77.49	3.260	
	Efisiensi	Teknis Bia	ıya							
	(+) Rasio Puskesmas	1.235	1.235	0.000						
Kota	(+) Rasio Tenaga Medis	64.705	64.705	0.000						
Magelan	(+) Rasio Tenaga Bidan	38.774	38.774	0.000						
g		Teknis Sits								
5	(+) AKB	6.63	4.21	-2.425						
	(+) AKI	192.55	55.07	-137.489						
	(+) AHH	76.66	77.234	0.574						

Pembahasan

Hasil perhitungan pencapaian nilai efisiensi teknis melalui metode DEA, diketahui dari keseluruhan 35 kabupaten/kota yang diamati selama kurun waktu periode penelitian masih belum mencapai nilai efisiensi sempurna (= 1), baik secara teknis biaya maupun sistem, dengan capaian nilai efisiensi pada masing-masing daerah berbeda satu sama lain. Penelitian ini serupa dengan penelitian yang dilakukan oleh Gunarson (2008) dan Verhoeven (2007) yang menunjukkan adanya inefsiensi pada daerah penelitian. Penelitian lain yang sejalan dengan penelitian ini yaitu penelitian Aristyasani (2015) yang hasilnya menunjukkan efisiensi yang terjadi pada beberapa kabupaten/kota yang diteliti bervariasi dan masih terdapat inefisiensi

Pada hasil penelitian ini masih terdapat daerah yang memiliki *input* yang besar namun tidak diiringi dengan *output* yang optimum. Salah satunya yang terjadi pada Kabupaten Banyumas. Nilai rata-rata capaian Efisiensi teknis biaya di Kabupaten Banyumas selama periode penelitian menunjukkan pencapaian yang belum efisien sebesar 0,52. Jika dilihat dari sisi *input*, Kab. Banyumas merupakan daerah dengan *input* berupa belanja kesehatan yang tinggi (jika dibandingkan kab/kota lain) setelah Kota Semarang, akan tetapi *output* yang dihasilkan tidak sebanding dengan *input* yang digunakan. Begitu juga dengan Kota Semarang dengan nilai efisiensi teknis biaya sebesar 0,65, dan memiliki *input* (belanja kesehatan) yang tertinggi, namun *output* yang dihasilkan tidak sebanding dengan *input* yang digunakan. Ini mengindikasikan bahwa dari sisi efsiensi teknis biaya, Kab. Banyumas, dan Kota Semarang memiliki *input* berupa belanja kesehatan yang tinggi, namun besarnya belanja kesehatan ini tidak diimbangi dengan penyediaan sarana kesehatan berupa fasilitas dan layanan kesehatan yang optimum.

Lebih lanjut, Kota Pekalongan merupakan daerah dengan belanja kesehatan terendah di antara ke-35 kab/kota lainnya, namun pencapaian nilai efisiensi teknis biaya mampu mencapai nilai sempurna (= 1). Begitu pula dengan Kota Magelang

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

yang memiliki belanja kesehatan terendah setelah Kota Pekalongan, dan mampu mencapai nilai efisiensi teknis biaya sempurna (= 1).

Daerah dengan belanja kesehatan yang tinggi cenderung mengalami konidisi inefisiensi. Hal ini sejalan dengan hasil penelitian yang dilakukan Indriati (2014) dan Nurul Ainul Mardiyah (2012) yang menyatakan bahwa daerah dengan belanja kesehatan yang jauh lebih kecil cenderung untuk menjadi paling efisien dibanding daerah yang belanja kesehatannya lebih besar. Hal ini dimungkinkan karena pengelolaan APBD yang besar relatif lebih sulit dalam pengelolaannya untuk menjaga efisiensi penggunaannya (Nurul Ainul Mardiyah, 2012). Lalu hal ini tidak sejalan dengan hasil penelitian yang dikemukakan oleh Atmawikarta (2005) bahwa salah satu faktor yang mempengaruhi tinggi rendahnya pencapaian derajat kesehatan adalah seberapa besar tingkat pembiayaan untuk sektor kesehatan, semakin besar belanja kesehatan, maka semakin baik derajat kesehatan masyarakat.

Pada penelitian ini inefisiensi secara umum terjadi pada inefisiensi teknis biaya yang ditunjukkan oleh tingkat keparahan yang terjadi pada efisiensi teknis biaya berada dalam kriteria efisiensi rendah, berbeda dengan efisiensi teknis sistem, yang nilai efisiensinya mendekati 1.

KESIMPULAN

Selama kurun tahun 2015-2017, hanya terdapat 2 Kota yang telah mencapai efisiensi sempurna teknis biaya dan sebanyak 33 kabupaten/kota lainnya masih belum optimal dalam penggunaan belanja kesehatannya. Secara efisiensi teknis sistem menunjukkan hanya terdapat 4 kabupaten/kota yang mencapai kondisi efisiensi teknis sistem sempurna dan 31 kabupaten/kota lainnya masih belum optimal dalam penggunaan fasilitas dan layanan kesehatan dalam menghasilkan derajat kesehatan yang baik. Selama periode penelitian, ditemukan permasalahan terjadi pada inefisiensi teknis biava, di mana tingkat keparahan yang terjadi berada dalam kriteria efisiensi rendah, berbeda dengan efisiensi teknis sistem, yang secara umum nilai efisiensinya mendekati 1. Tingkat potential improvement tiap kabupaten/kota memiliki perbedaan dalam variabel yang perlu diperbaiki. Hasil penelitian ini menguatkan penelitian sebelumnya oleh Eitbar Jafarov dan Victora Gunnarsson (2008), dan Aristyasani (2015), dan tidak membuktikan penelitian yang di sebutkan Atmawikarta (2005), bahwa salah satu faktor yang mempengaruhi tinggi rendahnya pencapaian derajat kesehatan adalah seberapa besar tingkat pembiayaan untuk sektor kesehatan.

KETERBATASAN DAN SARAN

Untuk memenuhi asumsi DEA, penelitian ini memproksikan indikator angka kematian supaya memiliki arah yang positif. Penggunaan data belanja kesehatan belum secara spesifik, penggunaan data belanja yang lebih spesifik akan menghasilkan hasil data yang lebih akurat. Penggunaan variabel fasilitas dan layanan kesehatan maupun derajat kesehatan masyarakat hanya menggunakan indikator secara umum, belum lebih dalam lagi seperti jumlah tempat tidur, angka kesakitan dan gizi, mengingat keterbatasan data yang disediakan pemerintah daerah kota/kabupaten. Indikator yang lebih dalam dan tajam akan menghasilkan hasil efisiensi yang lebih akurat, terlebih dapat mengukur langsung di setiap permasalahan

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

kesehatan, seperti kesehatan gizi (stunting), kehamilan, dan kesakitan. Studi selanjutnya perlu lebih dalam lagi dalam melihat jenis indikator fasilitas dan layanan, maupun *outcome* kesehatan masayrakat, dan bisa melanjutkan tahap selanjutnya dalam melihat korelasi antara hasil variabel efisiensi dengan variabel lain yang, mempengaruhi keuangan daerah (contohnya derajat desentralisasi), maupun faktor yang mempengaruhi kesehatan seperti yang dilakukan oleh Eitbar Jafarov dan Victora Gunnarsson (2008).

Daerah yang belum mencapai kondisi efisen secara teknis biaya dan teknis sistem dapat melakukan potential improvement (melalui pengoptimalan output) dan benchmarking ke daerah yang telah mencapai kondisi efisiensi sempurna, dan Bagi daerah yang telah mencapai kondisi efisiensi sempurna, diharapkan pemerintah daerah tersebut tetap melakukan pengawasan dan pengevaluasian belanja sektor kesehatan untuk meminimalisir peluang terjadinya pemborosan.

DAFTAR PUSTAKA

- Atmawikarta, A. (2005). Investasi Kesehatan untuk Pembangunan Ekonomi. *Www.Bappenas.Go.Id*, 1–14. https://doi.org/10.1016/0005-2795(79)90110-7
- Badan Pusat Statistik. (2015). Analisis Tematik ST2013 Subsektor Efisiensi Sistem Produksi dan Tataniaga Hortikultura.
- Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. *European Journal of Operational Research*, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8
- Coelli T, Prasada Rao DS, B. G. (1998). *An Introduction to Efficiency and Productivity Analysis*. Boston/Dordrecht/London: Kluwer Academic Publishers.
- Dinas Kesehatan Provinsi Jawa Tengah. (2014). Profil Dinas Kesehatan Provinsi Jawa Tengah Tahun 2015 (Vol. 3511351).
- Dinas Kesehatan Provinsi Jawa Tengah. (2017). Profil kesehatan Profinsi Jawa Tengah Tahun 2017 (Vol. 3511351).
- Farrell, M. J. (1957). The Measurement of Productive Efficiency. *Journal of the Royal Statistical Society. Series A (General)*, 120(3), 253–290. Retrieved from http://goo.gl/AFhm2N
- Fullman, N., Barber, R. M., Abajobir, A. A., Abate, K. H., Abbafati, C., Abbas, K. M., ... Murray, C. J. L. (2017). Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: An analysis from the Global Burden of Disease Study 2016. *The Lancet*, 390(10100), 1423–1459. https://doi.org/10.1016/S0140-6736(17)32336-X
- Goldin, C. (2014). Human capital, schooling and health. In *Economics and Human Biology* (Vol. 1, pp. 207–221). https://doi.org/10.1016/S1570-677X(03)00035-2
- Gunnarsson, V., Carcillo, S., & Verhoeven, M. (2007). Education and Health in G7 Countries: Achieving Better Outcomes with Less Spending. *IMF Working Papers*, 07(263), 1. https://doi.org/10.5089/9781451868265.001
- Gunnarsson, V., & Jafarov, E. (2008). Government Spendingon Health Care and Education in Croatia: Efficiency and Reform Options. *IMF Working Papers*,

Jurnal Dinamika Ekonomi Pembangunan

https://ejournal.undip.ac.id/index.php/dinamika_pembangunan/index

- 08(136), 1. https://doi.org/10.5089/9781451869958.001
- Haryadi, A. (2011). ANALISIS EFISIENSI TEKNIS BIDANG PENDIDIKAN (Penerapan Data Envelopment Analysis) TESIS.
- Indriati, N. E. (2014). Analisis Efisiensi Belanja Daerah di Kabupaten Sumbawa (Studi Kasus Bidang Pendidikan dan Kesehatan). *Jesp*, 6(2), 192–205.
- Kementerian Kesehatan Republik Indonesia. (2018). *Profil Kesehatan Indonesia* 2017. https://doi.org/10.1002/qj
- Kesehatan, K., & Indonesia, R. (2015). Profil Kesehatan Indonesia 2015.
- Kurnia, A. S. (2006). Model Pengukuran Kinerja Dan Efisiensi Sektor Publik Dengan Metode Free Disposable Hull (Fdh). *Jurnal Bisnis Strategi*, Vol. 15, pp. 50–69.
- Mangkoesoebroto, G. (1999). Ekonomi Publik. Yogyakarta: BPFE.
- Mills, G. (1990). Ekonomi Kesehatan untuk Negara-Negara sedang berkembang. Jakarta: PT. Dian Rakyat.
- Nurul Ainul Mardiyah. (2012). Analisis Efisiensi Pengeluaran Publik pada Pemerintah Provinsi di Indonesia tahun 2011. *Universitas Indonesia*.
- Pradipta, Z. I., Tama, I. P., & Yuniarti, R. (2014). Analisis Tingkat Efisiensi Pusat Kesehatan Masyarakat (Puskesmas) dengan Metode Data Envelopment Analysis (DEA): Studi Kasus Puskesmas Kota Surabaya. *Rekayasa Dan Manajemen Sistem Industri*, 2(5), 1021–1031. Retrieved from rmsi.studentjournal.ub.ac.id/index.php/jrmsi/article/view/147
- Putri, A. (2015). Efisiensi Teknis Anggaran Belanja Sektor Kesehatan Propinsi Jawa Barat. *Signifikan: Jurnal Ilmu Ekonomi*, 4(2), 127–150. https://doi.org/10.15408/sjie.v4i2.2302
- Rusydiana, A. S. (2013). Mengukur Tingkat Efisiensi dengan Data Envelopment Analysis (DEA): Teori dan Aplikasi. Bogor: Smart Publishing.
- Tjiptoherijanto, S. (1994). Ekonomi Kesehatan. Jakarta: PT Rineka Cipta.
- Todaro, Michael P, Stephen, C. S. (2012). *Economic Development* (Edisi sebe). Boston: Pearson Education.