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Abstract: The ability to better understand tropical peat ecosystems for restoration and 

climate change mitigation is often hampered by the lack of availability accurate and 
detailed data on vegetation cover and hydrologys, which is typically only derived from 
detailed and high-resolution imaging or field-based measurements. The aims of this 
study were to explore the potential advantage of airborne discrete-return lidar for 
mapping of forest cover in peat swamp forests. We used 2.8 pulse.m-1 lidar and the 
associated 1-m DTM derived from an airborne platform. The lidar dataset fully covered 
a 120 thousand hectare protection forest in Central Kalimantan. We extracted 
maximum vegetation heights in 5-m grid resolution to allow detailed mapping of the 
forest. We followed forest definition from FAO for forest and non-forest classification. 
We found that lidar was able to capture detail variation of canopy height in high-
resolution, thus provide more accurate classification. A comparison with existing maps 
suggested that the lidar-derived vegetation map was more consistent in defining 
canopy structure of the vegetation, with small standard deviations of the mean height 
of each class.  
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1. INTRODUCTION 

The importance of tropical peat swamp forests as carbon sinks and sources are well recognized 

(Murdiyarso, Hergoualc’h, & Verchot, 2010). The organic soil of the peat swamp forest, formed by the 

accumulation of dead vegetation, stores a huge amount of carbon (Jaenicke et al., 2008). On the other 

hand, there has been a long history of deforestation and forest degradation of peat swamp forests in South 

East Asia (Miettinen, Shi, & Liew, 2012). In addition, recurring fires in this region, boosted by El Nino-driven 

prolonged drought, continues to release carbon into the atmosphere at an alarming rate (Page et al., 2002).  

Given the relationships between ecological, hydrological conditions and fire occurrence in tropical peat 

swamp ecosystems (Wösten et al., 2006), more accurate and detailed baseline information on vegetation 

cover is needed to support restoration activities designed to mitigate the ecological impact of climate 

change (Jaenicke et al., 2010). Remote sensing techniques have been deployed for large area mapping of 

tropical regions, including with high-resolution products (Asner et al., 2012). In peat swamp forest of 

Central Kalimantan, small-scale illegal logging activities can only be detected using high-resolution (1 – 5 

meter resolution) optical imagery, due to their low impact to the existing stands (Franke et al., 2012). 

Airborne light detection and ranging (Lidar) has emerged as a tool to characterize detailed forest structures, 

providing more accurate ground elevation measurements under canopy and covering a large area (Wulder 

et al., 2012).  
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Lidar has been applied in tropical peat swamp forests for estimating aboveground biomass (Jubanski et 

al., 2013; Kronseder et al., 2012). However, according to our knowledge, no previous study in tropical peat 

swamp forests has been carried out for land and forest classification using lidar. Lidar has proven to be an 

accurate tool for measuring canopy height (Takahashi et al., 2005). Given the advantages of high-resolution 

airborne lidar in providing highly accurate forest measurements, previous studies have successfully 

explored the effect of ecological and topographic factors on tree height variations (Saremi et al., 2014) as 

well as the use of lidar to improve the classification of vegetation structures (Dowling & Accad, 2003). 

According to the FAO definition, “Forest is a land spanning more than 0.5 hectares with trees higher 

than 5 meters and a canopy cover of more than 10 percent, or trees able to reach these thresholds in situ” 

(FAO, 2010a). Formally, the forest and land cover maps produced by the government of Indonesia followed 

correspondingly the definition used by the FAO (FAO, 2010b). Due to technical limitation and the 

unavailability of high-resolution data, a so-called working definition was used for forest classification and 

mapping throughout Indonesia (MoEF, 2015).  

In this study, we were interested in the utilization of lidar metrics for forest and land cover mapping in a 

tropical peat swamp ecosystem following the definition of ‘forest’ by FAO. According to our knowledge, no 

study has been carried out related to vegetation classification mapping using lidar in tropical peat swamp 

ecosystem in Indonesia. The aim of this study was to explore the potential advantage of airborne discrete 

lidar for mapping of forest and land cover in a peat swamp ecosystem. The specific objectives were (1) to 

classify forest and land cover types based on vegetation heights and (2) to compare with existing forest and 

land cover maps. This research provides an alternative technique for accurate mapping of peat swamp 

forest and land cover which is useful for the implementation of land use and spatial planning policies 

related to restoration of degraded peat land and moratorium oil palm development in high density peat 

swamp forests. 

2. DATA AND METHODS 

2.1. Study Site 

Our study site was located at a protection forests, ex Kalimantan Forest Carbon Partnership (KFCP) 

project area (114o 23.5’ – 114o 40.3’ E; 1o 56.0’ to 2o 30.1’ S) in Kapuas District, Central Kalimantan Province, 

Indonesia (Figure 1). The study site encompasses 119,737 ha of tropical peat swamp ecosystem with a 

range of degradation levels due to conversion for agriculture, timber extraction and fires.  

Figure 1. Study site in peat swamp forest of Central Kalimantan, Indonesia (ESRI and KFCP) 

 
 
 
 
 
 
 
 
 
 
 

2.2. Lidar Data 

Lidar data sets were provided by the KFCP project. The calculated pulse density was 2.8 pulse.m-2. All 

datasets were captured using Optech ALTM 3100 and Optech Orion M200 instruments mounted in Pilatus 

Porter fixed wing aircraft. The vendor provided a 1- meter resolution lidar-derived digital terrain model 

(DTM) for the KFCP area. The lidar point data was stored in LAS format and split into 1618 tiles. An accuracy 

assessment carried out after data acquisition found that the vertical accuracy of the lidar data was 0.14 m 

(Ballhorn et al., 2014).  
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2.3. Pointcloud Data Processing 

We used FUSION 3.4 LTK Processor to extract lidar metrics from the tiles of pointcloud data and 

converted into lidar metrics. The 1-m resolution DTM was used for normalizing the terrain effect on the 

vegetation height. We generated 5-m resolution lidar metrics including the canopy height model in raster 

format. All relevant lidar metrics were converted to a raster format for further processing.  

2.4. Existing Land and Forest Cover Maps 

Due to the capability in covering a large area, satellite-derived imageries were commonly used for 

producing land and forest cover maps in Indonesia, such as Landsat and Alos Palsar imageries. Three 

existing and relevant forest and land cover maps were identified and compiled for the comparison analysis, 

i.e. produced by Ministry of Forestry (MoF) (Ministry of Forestry, 2012), KFCP (Siegert et al., 2013) and JAXA 

(Shimada et al., 2014). 

The MoF map utilized a mosaic of Landsat imageries from 2010 to 2012. Operators were trained and 

familiarized with the MoF classification system. The classification was carried out using visual 

interpretation. KFCP forest and land cover map were clipped from the original file that covered the whole 

district. The map was produced using object-based classification from a Landsat mosaic. The JAXA map was 

generated based on Alos Palsar imageries derived from 2010. Only two classes, i.e. forest and non-forest, 

were produced. 

2.5. Land and Forest Cover Classification 

In this study, we interpreted the vegetation cover based on the canopy height model derived from 

airborne lidar. Instead of “land use”, we used  the “land cover” as a basic term for the classification of 

forest (Lund, 2002). Furthermore, the Land Cover Classification System (LCCS)  requires information on 

vegetation structures, including tree height (Di Gregorio, & Jansen, 1998). Therefore, for detailed 

classification of forest and land cover, we further classified the canopy height model into several height 

classes, i.e. 1, 2, 5, 10, 20 and 30 meters (Table 1). For visualization and comparison purposes, we 

generalized the classified lidar map (Figure 2). We used ArcGIS 11 Desktop software for the data 

classification and visualization. 

Table 1. Vegetation structures and classification used in this study  

(modified from Dowling & Accad (2003)) 

Vegetation Height 
(m) 

Description Class Generalized 
Classes 

0 – 1 An open land or bareland, dominated by grasses, ferns and 
herbaceous plants.  

Grassland Non Forest 

1 - 2 An area covered by shrubs or a mixed between tall grasses 
and low woody vegetation, including tree seedlings 

Shrub Non Forest 

2 - 5 An area covered by tall shrubs and poles  Bush Non Forest 
5 - 10 An area covered with trees with height more than 5 m Low forest Forest 

10 – 20  An area covered with trees with height more than 10 m Medium tall forest Forest 
20 up An area covered with trees with height more than 20 m Tall forest Forest 

 

We compared the result with the existing forest cover maps and computed the mean and standard 

deviation of canopy height within the various land and forest cover classes of each map. To assess the 

significances of the means height difference, we extracted the canopy height values from a set of point 

samples, which were systematically distributed. As each point represented 1 ha area (100 m × 100 m), the 

total number of sample was 119,616 points. We performed the Tukey Honesty Significant Difference test 

for each class in each map. The significantly different classes were depicted by the different in the mean 

canopy height. We used JMP 12 for the statistical analysis. 
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Figure 2. Flow chart of generating forest cover map using canopy height lidar ESRI (ESRI, 2015). 

 

 

 

 

 

 

 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. Lidar-derived Land and Forest Cover Map 

A vegetation-height profile showed that detailed variation of the canopy from low vegetation to tall 

trees can be captured using lidar (Figure 3). Trees along the canals remained after large fires were also 

detected. This suggested that mapping vegetation structures with high accuracy using lidar was sensible. A 

forest cover map of the study area was produced using lidar-derived canopy height model, which included 

forest and non-forest classes with three sub-classes each. More than 65 % of the study site was covered by 

forest, dominated by medium-tall forest (height between 10 – 20 m) (Table 2). About 35% of the study site 

was not forested, which predominantly covered by grasslands and ferns. Open peatlands such as this are 

the result of repeated fires (Hoscilo et al., 2011; Langner, Miettinen, & Siegert, 2007).  

Figure 3. Canopy height profile depicted detail variation of vegetation height 

 (Own Analysis, 2016) 

 

 

 

  

 

 

 

 

Table 2. Summary of vegetation classes covering study site (Own Analysis, 2016) 

Vegetation Classes Size (ha) Size (%) Ha forest % Forest and Non-Forest 

Grassland 25,162 21.0 41,413 34.6 

Shrub 5,923 5.0   

Bush 10,328 8.6   

Low Forest 11,164 9.3 78,235 65.4 

Medium Tall Forest 67,054 56.0   

Tall Forest 17 0.0   
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3.2. Comparison with Existing Land and Forest Cover Maps 

We carried out a mean canopy height comparison between the lidar-derived map and the existing 

maps. We computed the mean canopy height and its standard deviation of the classes of each map. Most 

of the secondary forest classes from the existing maps were in agreement with our medium tall forest class, 

which had canopy height ranging between 10 m – 20 m and mean canopy height about 13 meters (Figure 

4). However, none of the forest classes of existing maps were equivalent to our low forest classes, which 

had height range between 5 m – 10 m. The KFCP bush/shrub/regrowth class was equivalent to our low 

forest class, with the mean canopy height of 7.5 m. The MoF bush/shrub class had lower mean canopy 

height (4.8 m) than the KFCP bush/shrub class, although it was extremely closed to the threshold of the 

FAO forest definition (5 m). None of the class in the existing maps represented the high canopy forests 

similar to our tall forest class. Surprisingly, the KFCP primary forest class had an even lower mean height 

than its secondary forest. In contrast, the MoF settlement class had the mean height of 9.3 m, much higher 

than the lowest height threshold of FAO forest definition. Furthermore, most of the KFCP and MOF non-

forest classes had insignificant differences in mean heights (Figure 4). 

Figure 4. Mean canopy height of vegetation classes and their standard deviation. Different letters depicted 
significant differences of the mean values within each map (Tukey’s HSD test). 

 

Figure 5 illustrated the significantly-different mean heights between forest and non-forest classes of each 

map. This suggested that the existing forest/non-forest maps had better accuracy in defining the classes 

than the detailed forest and land classification maps. Regarding size of the area, the Jaxa forest/non-forest 

map had better agreement with our result. However, regarding the spatial distribution of the forests, we 

found that the KFCP forest/non-forest map was in better agreement with the lidar-derived forest/non-

forest map (Figure 6). 

Figure 5. Mean canopy height of each forest and non-forest classes and their standard deviation  

(Own Analysis, 2016) 
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Figure 6. Forest and land cover maps of the study area, derived by (a) this study, (b) Shimada et al. 

(2014) (c) Ministry of Forestry (2012) and (d) Siegert et al. (2013)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mapping of vegetation structures with high accuracy using lidar is sensible. This approach will support 

more detailed and accurate vegetation mapping, and in particular, will allow the use of a classification 

system based on physiognomy and canopy height structures (Ellenberg & Mueller-Dombois, 1966; 

Woodwell, 1984). On the other hand, existing forest and land cover maps, which relied on optical and 

active sensor imageries, tend to be inconsistent in identifying the spatial distribution of detail forest and 

land classes, due to their lower resolution. However, high-resolution optical imagery may also have a 

similar limitation (Nagendra & Rocchini, 2008). 

Compared to the aerial photos, lidar offers great advantages in accuracy and fully automated digital 

processing in vegetation mapping (Dowling & Accad, 2003). Lidar also advanced in the identification of 

inundated wetland areas using the pulse intensity (Lang & McCarty, 2009). Floristic classification remains a 

practical limitation in tropical vegetation mapping using lidar, which is also a common problem with other 

optical sensors. To overcome this limitation, several studies successfully integrated lidar with hyperspectral 
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sensor for species identification in temperate regions (Holmgren, Persson, & Söderman, 2008; Jones, 

Coops, & Sharma, 2010), although it was less successful in mangrove vegetation (Hirano, Madden, & Welch, 

2003) and highly diverse tropical forests (Clark et al., 2011).  

4. CONCLUSION 

The goal of this study was to explore the potential advantage of airborne discrete lidar for vegetation 

cover mapping in peat swamp forests. Lidar was able to capture detail variation of canopy height in high-

resolution, thus provide more accurate classification. A comparison with existing maps, suggested that the 

lidar-derived vegetation map was more consistent in defining canopy structure of the vegetation. 
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