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Abstract: The spatial distribution and concentration of Total Suspended Solids (TSS) 

are one of the coastal parameters, which is required to be examined to understand the 
quality of the water. The rapid development of remote-sensing technology has resulted 
in the emergence of various methods to estimate TSS concentration. SPOT-6 data has 
spatial, spectral, and temporal characteristics that can be used to estimate TSS 
concentration. The purposes of this research are (1) to determine the best method for 
estimating TSS concentration, (2) to map TSS distribution, and (3) to determine the 
correlation between TSS concentration and chlorophyll-a concentration using SPOT-6 
data in Segara Anakan. The estimation of TSS concentration in this research was 
performed using an empirical model built from SPOT-6 and TSS field data. Bands used 
in this research are single band data (blue, green, red, and near-infrared) and 
transformed bands such as band ratio (12 combinations), Normalized Difference 
Suspended Solid Index (NDSSI) and Suspended Solid Concentration Index (SSC). The 
result shows that blue, green, red, and near-infrared bands and SSC index significantly 
correlated to TSS. Afterward, regression analysis was performed to determine the 
function that can be used to predict TSS concentration using SPOT-6 data. Regression 
function used are linear and non-linear (exponential, logarithmic, second order 
polynomial, and power). The best model was chosen based on the accuracy assessment 
using Standard Error of Estimate (SE). The selected model was used to calculate total 
TSS concentration and was correlated with chlorophyll-a field data. The result of 
accuracy test shows that the model from the blue band has an accuracy of 70.68 %, 
green band 70.68 %, red band 75.73 %, near infrared band 65.58 %, and SSC 73.67 %. 
The accuracy test shows that red band produced the best prediction model for mapping 
TSS concentration distribution. The total TSS concentration, which was calculated using 
red band empirical model, is estimated to be 6.13 t. According to the correlation test, 
TSS concentration in Segara Anakan has no significant correlation with chlorophyll-a 
concentration, with a coefficient correlation value of -0.265. 
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1. INTRODUCTION 

Remote-sensing technology has the advantage of studying an object without having to go directly to the 
field (as in a terrestrial survey), and thus, the work becomes more efficient, both time, cost, and energy. 
Characteristics of remote-sensing images that vary both spectral, spatial, and temporal characteristics can 
be applied to identify some of the main characteristics of coastal and ocean, both physical, chemical, 
geological and biological (Lo, 1986). One of the parameters related to water quality in this study is Total 
Suspended Solid (TSS), which can be extracted from satellite images using certain approaches (Lo, 1986; 
Lim et al. 2013; Fauzi & Wicaksono 2016; Yanti et al. 2016). Also, object analysis using satellite images will 
have a spatial reference, so that the relationship between specific objects can also be spatially-correlated. 
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Segara Anakan waters located in the Cilacap Regency is semi-enclosed water, in the form of estuary 
ecosystems and lagoons with a narrow gap connected to the sea. The narrow gap becomes the entry point 
of seawater originating from the Indian Ocean, rendering the water in Segara Anakan brackish. The water 
has unique characteristics because they are affected by processes from land and ocean, and causing this 
region to be highly potential but also very dynamic and vulnerable (Daniel, 2007). One of the problems in 
Segara Anakan is sedimentation. According to UNEP (2015), increased sedimentation could potentially 
cause damage to coral reefs, seagrass, and mangrove ecosystems. Furthermore, a decreased penetration of 
sunlight in water may inhibit macro-algae growth and macrophytes, increases water temperature and 
inhibits natural vegetation growth, reduce oxygen content, increases siltation of estuaries, and lead to the 
increase of toxic chemicals, heavy metals, and nutrients with the further impact of eutrophication. 

The rivers that empty into Segara Anakan is Citanduy, Cibeureum, Cimeneng, and Cikonde. These four 
rivers are the main contributor of materials from upstream and middle part of the watershed. These 
materials are called sediments. Sediment consists of two types: bed load and suspended load. Bed load is 
materials that have been deposited in the bottom of the water, while the suspended load is a suspended 
material in the water column. Total Suspended Solid (TSS) is one of the coastal parameters, whose 
distribution and concentration needs to be studied to determine the water quality. TSS is suspended 
materials (diameter > 1 μm) retained on a Millipore filter with a pore diameter of 0.45 μm. TSS consists of 
mud, fine sand, and microorganism's body (Nurandani, 2013). 

The diversity of the phytoplankton can influence the formation of climate, through the scattering of 
sunlight radiation. Some of the most important physical factors affecting the presence of phytoplankton are 
the temperature and brightness of the waters (Daniel, 2007). Clear water facilitates the phytoplankton to 
photosynthesize because the sunlight can penetrate the water column. Turbid water may be indicated by 
the amount of TSS and may inhibit the penetration of sunlight. Additionally, as described in UNEP (2015), 
the impact that can occur if TSS contains excess nutrients, such as phosphate waste (PO3-) derived from 
fertilizers, can cause blooming of phytoplankton and algae. 

The distribution and concentration of TSS need to be assessed to determine the quality of the water and 
can be used as a reference for more appropriate coastal area management. TSS is one component of water 
that can be extracted using remote-sensing technology (Lo, 1986). The remote-sensing satellite image, 
which has the spectral, spatial, and temporal characteristics that can be used for extracting TSS 
information, is SPOT-6 image with 6 m spatial resolution. SPOT-6 has four multispectral bands, which are 
three visible bands and a near-infrared (NIR) band. These bands can be used to study the conditions of the 
water body using remote-sensing (TSS, phytoplankton, dissolved organic matter, and mineral particles) 
(Doxaran et al., 2002) 

Each water has different TSS characteristics, thus, inducing various proposed methods for TSS mapping 
using remote-sensing data (Imen et al. 2015; Dorji & Fearns 2016; Dorji & Fearns 2017). Various 
combinations of bands and image transformations can be used to extract information regarding TSS (Lim et 
al.2013; Fauzi & Wicaksono 2016). According to Robinson (2004) in Lee (2011), various types and 
concentration of suspended sediment were related to reflectance at the specific spectral wavelength. 
Water with TSS has a higher spectral reflectance characteristic with increasing wavelengths. The higher the 
concentration of TSS, the higher the reflectance value. Lodhi et al. (1997) in Jensen (2014) also concluded 
that the visible wavelengths (0.580 – 0.690 µm) can be used to obtain information regarding suspended 
sediment types, while the near-infrared wavelengths (0.714 – 0.880 µm) can be used to determine the 
amount of suspended sediment when the suspended sediment is the dominant element in the water 
column. 

The aims of this research are (1) to map TSS concentration in Segara Anakan using SPOT-6 image, (2) to 
identify the best input, between reflectance bands (blue, green, red, near infrared), band ratio 
transformation, Normalized Difference Suspended Solid Index (NDSSI), and Suspended Solid Concentration 
Index (SSC) in mapping and estimating TSS distribution, and (3) to correlate TSS estimation results with 
chlorophyll-a content in Segara Anakan water. The research was conducted in Segara Anakan water of 
Cilacap Regency, Central Java Province. Segara Anakan is semi-enclosed water sheltered by 
Nusakambangan Island. The total area of Segara Anakan is about 24,000 hectares, including water, 
mangrove forests, and muddy lands formed by sedimentation (Yuliarko, 2010). 
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2. DATA AND METHODS 

2.1. Data 

In this research we used SPOT-6 image part of Cilacap Regency (Segara Anakan), recorded on 25 January 
2016  (Figure 1) and Landsat 8 OLI image of Central Java, recorded on 4 April 2016. Indonesia base map  
(scale 1 : 25.000), sheet Kalipucung 1308-241, Pengolahan 1308-242, Gandrungmangu 1308-243, 
Kawonganten 1308-244, and Geology Map, sheet Pangandaran, Jawa 1308-2 (1 : 100.000) were also used. 
 

 

 

Figure 1. Research location at Segara Anakan, Cilacap Regency. 

 
2.2. Image pre-processing 

The pre-processing procedure of the remote-sensing data covers geometric correction, radiometric 
correction, atmospheric correction, image masking, image transformation, and determining the location of 
the sample. The SPOT-6 image product used is the primary product, that is, georeferencing has not been 
done yet and has no coordinate system. Therefore, geometric correction is needed. A geometric correction 
was done by registering the image, based on Ground Control Points (GCPs) obtained from Google Earth 
Image. The topographic condition of the study area is suitable for the 2nd order polynomial transformation, 
which according to Danoedoro (2012), the amount of GCP required for geometric correction is at least 12 
points. The radiometric corrections performed include sensor calibration, sunlight correction, and 
atmospheric correction. The atmospheric correction used the relative atmospheric correction method of 
Dark-Object Subtraction (DOS). The sampling technique used is Stratified Random Aligned Sampling with 
the help of transect line. The strata used is mapping units obtained from the result of density slice method 
on SSC transformation result.  

 
2.3. Field survey 

A field survey was conducted on 8 June 2016. Water samples were collected using water sampler at a 
depth of 0.3 m. In accordance with Congalton & Green (2009), the optimum depth of TSS sampling is 
shallower than 0.5 m. Water samples were stored in a dark bottle to avoid the effects of sunlight since they 
will be tested for TSS and chlorophyll-a. The number of samples obtained was 58. Based on laboratory 
tests, 20 samples had poor results so that the samples used were only 38, where 20 samples (Figure 2) 
were used for empirical modeling, and 18 samples were for accuracy assessment of the model.  
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Figure 2. Sample locations across the study area. 
 

 
2.4. TSS mapping 

TSS mapping was performed by empirical modeling between SPOT-6 image with TSS field data. The 
input for modeling were reflectance bands (blue, green, red, and near-infrared (NIR)), band ratio 
transformation, SSC index transformation (Li, 2010) and NDSSI (Hossain et al., 2007). To obtain the TSS 
empirical model, statistical analysis is needed, i.e., data normality test, Pearson Product Moment 
correlation analysis, and regression analysis. The data normality test is performed because the analysis is 
categorized in parametric inferential statistics, and thus the data must be normally-distributed. Correlation 
analysis aims to determine the relationship between image pixel values with TSS field data. Inputs with 
significant correlation with TSS were used in the regression analysis to obtain regression functions that can 
be used to predict TSS concentrations from the SPOT-6 image in Segara Anakan. The regression analyses 
applied were linear and non-linear regression model. The non-linear models used were logarithmic, 
exponential, second order polynomial, and power. Regression analysis produces the coefficient of 
determination (R2) and resultant regression function. The R2 describes the total variation of the dependent 
variable (TSS) that can be explained or predicted by the variation of independent variables (image pixel 
values). 

The predicted TSS model was tested for accuracy using the Standard Error of Estimate (SE) method. 
Since the SE value does not show the accuracy percentage of the mode, the calculation of percentage 
accuracy was conducted by calculating upper range, lower range, minimum error, and maximum error 
based on 95% confidence level from the mean (Wicaksono et al. 2011; Wicaksono et al. 2016). The TSS map 
was obtained from the model with the highest accuracy and the lowest SE value and then used to estimate 
total TSS across the study area. The total TSS was estimated by calculating the total TSS per pixel, then the 
total TSS of all pixels in the study area was summed. In accordance with the depth of sampling, the 
estimated total TSS is assumed to be up to the depth of 0.3 m.  

2.5. Correlation analysis of TSS and chlorophyll-a 

The value of TSS in the location of field chlorophyll-a data was extracted and correlation analysis 
between modeled TSS and field chlorophyll-a data was performed. The value of modeled TSS was extracted 
from TSS concentration map with the highest accuracy. This analysis was used to determine the 
relationship between the concentration of TSS and chlorophyll-a, particularly in the Segara Anakan water. 
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3. RESULTS AND DISCUSSION 

3.1. Empirical modeling 

Based on the Kolmogorov-Smirnov test results in Table 1, both TSS and chlorophyll-a field data were 
normally distributed. Correlation analysis was performed to determine the relationship between image 
pixel value and TSS. The input band is considered to have a significant correlation with TSS if the correlation 
coefficient value (r) is above 0.444 (95%CL, n = 20). Based on Table 2, inputs that are significantly correlated 
with TSS are all visible bands (blue, green, and red) and SSC. Input having the highest correlation with TSS is 
green band with r of 0.590, while the lowest is band ratio between green and red band (B1/B2, r = -0.081).  

 
Table 1. The result of data normality test using Kolmogorov-Smirnov test. 

Statistics TSS Chlorophyll-a 

Sample No. 20 20 
Mean 23.89 1.62 

Standard deviation 11.24 1.36 
Dn 0.19 0.23 

KS table (0.05) 0.29 0.29 

 

 

Table 2. Correlation analysis between reflectance bands, NDSSI, and SSC with field TSS data.  

Input R Band ratio r Band ratio r 

B0 (blue) 0.504* B0/B1 0.391 B2/B0 -0.379 
B1 (green) 0.590* B0/B2 0.354 B2/B1 0.150 
B2 (red) 0.567* B0/B3 0.345 B2/B3 0.279 
B3 (NIR) 0.482* B1/B0 -0.420 B3/B0 -0.326 
NDSSI 0.333 B1/B2 -0.081 B3/B1 -0.087 
SSC 0.535* B1/B3 0.219 B3/B2 -0.201 

* significant at 95%CL 

 

 

Table 3 shows the model that produced the highest and the most consistent R2 is the power model, 
except on green band. Non-linear models produced higher mean values of R2 than the linear model 
because the nature of the relationship between pixel values and field TSS is non-linear. TSS variation is very 
complex and dynamic. Hence, it is difficult for the TSS to correlate linearly with the reflectance value, 
primarily since the reflectance value of particular water body pixel is also contributed from the reflection of 
various objects within the water column. Consequently, the non-linear models delivered higher R2 values 
due to the capability to follow the sample distribution more flexible. Scatter plot of the regression analysis 
result can be seen in Figure 3. 

Accuracy assessment was performed to measure the quality of the resulting model. In addition, 
accuracy assessment was also conducted to determine the best model for TSS mapping in Segara Anakan 
water using the SPOT-6 image. Although the value of R2 may represent the strength of the relationship 
between the two variables better than the value of r, the R2 value cannot be used as a reference in 
determining the best regression model as it only represents the amount of TSS variation explained by the 
pixel values. Therefore, SE calculation was done to obtain the absolute accuracy of the model. According to 
Table 4, TSS empirical model from the red band using power regression model has the highest accuracy. 
This model produced SE of 6.68 mg/l, with a maximum accuracy of 75.72%. Model with the lowest accuracy 
was generated from NIR band using a logarithmic regression model with SE of 9.48 mg/l and maximum 
accuracy of 65.59%. 
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Table 3. Results of regression analysis between image pixel values and field TSS data. 

Model Regression function R2 

Blue band 
Linear  621.07BLUE + 10.703 0.254 
Exponent  12.014e27.512BLUE 0.288 
Logarithmic  9.9538ln(BLUE) + 63.521 0.263 
2nd order polynomial  -20290BLUE2 + 1386.8BLUE + 5.1933 0.266 
Power  130.25BLUE0.4519 0.313 

Green band 
Linear  374.67GREEN + 0.2412 0.348 
Exponent  7.4603e16.804GREEN 0.404 
Logarithmic  19.366ln(GREEN) + 78.299 0.329 
2nd order polynomial  3444GREEN 2 - 19.127GREEN + 10.354 0.354 
Power  259.1 GREEN 0.8852 0.398 

Red band 
Linear  331.38RED + 4.2094 0.321 
Exponent  9.3574e14.044RED 0.333 
Logarithmic  17.136ln(RED) + 73.275 0.312 
2nd order polynomial  1108.3RED 2 + 203.15RED + 7.527 0.323 
Power  188.46 RED 0.7525 0.348 

NIR band 
Linear  290.02NIR + 7.2367 0.232 
Exponent  10.869e11.917NIR 0.226 
Logarithmic  18.108ln(NIR) + 76.448 0.238 
2nd order polynomial  340.08NIR2 + 243.84NIR + 8.654 0.232 
Power  208.25NIR0.7816 0.256 

SSC 
Linear  139.22SSC + 7.7078 0.286 
Exponent  11.09e5.7143SSC 0.279 
Logarithmic  15.295ln(SSC) + 57.879 0.289 
2nd order polynomial  -41.85SSC2 + 149.73SSC + 7.126 0.286 
Power  93.137SSC0.6587 0.310 

 

 

 

 

Figure 3. Regression models between image pixel values and field TSS data. 
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Table 4. Accuracy assessment result of different TSS empirical models. 

Model SE (mg/l) Accuracy (%) 

Blue 
Linear 8.77  68.17  
Exponent 8.07  70.68  
Logarithmic 8.51  69.09  
2nd order polynomial 8.70  68.41  
Power 8.12  70.51  

Green 
Linear 8.70  68.39  
Exponent 8.10  70.59  
Logarithmic 8.58  68.83  
2nd order polynomial 8.98  67.39  
Power 8.07  70.68  

Red 
Linear 6.73  75.58  
Exponent 6.76  75.44  
Logarithmic 6.80  75.30  
2nd order polynomial 6.72  75.61  
Power 6.69  75.72  

NIR 
Linear 10.41   62.21  
Exponent 12.23  55.58  
Logarithmic 9.48  65.59   
2nd order polynomial 10.64  61.36  
Power 10.23  62.85  

SSC index 
Linear 7.35  73.32  
Exponent 7.47  72.89  
Logarithmic 7.30  73.51  
2nd order polynomial 7.34  73.36  
Power 7.25  73.67  

 

Based on the results of accuracy assessment, the difference of accuracy between models is not much 
different, that is not more than 1.5%, and the difference of SE is less than 1 mg/l. Overall, power regression 
model produced the most accurate and consistent model, while for the lowest is the exponential model. 
This may be due to the trend of the correlation between image pixel values and field TSS data, which bend 
at the end of the line instead of full-straight, and the fittest curve is the power curve. The exponential 
model produced the lowest accuracy although the regression line is also bending. However, the curve 
formed by the exponential model is not representative of the TSS spectral response characteristics. 
Compared to the curve formed by other non-linear models, the curve of the exponential model curves 
down at the end of the line, while for other models they curved upward. This did not resemble TSS spectral 
response characteristics where water with higher TSS content will have higher spectral response across 
bands as well. In contrast, the exponential curve bent down at high TSS concentration. 

All band ratios have a very low correlation with TSS concentration, and none is feasible for regression 
analysis. This may be due to the reflectance characteristics of TSS on each band, which is not significantly 
different. As a result, band ratio did not adequately represent the variation of TSS. As an example, band 
ratio between green and red band produced a very low correlation, which is -0.081 (B1/B2) and 0.150 
(B2/B1). The reflectance characteristics of TSS on the green and red band are relatively similar; hence, 
when both bands is rationed, it produced a very low correlation with TSS. In order to maximize the 
performance of band ratio to explain the TSS concentration variations, the rationed bands must have 
different TSS spectral response characteristics. 
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Based on the correlation analysis of SSC and NDSSI, only SSC index can be used to perform regression 
analysis with field TSS. The assumptions used by Hossain et al. (2014) in making the NDSSI algorithm is to 
add two bands with significantly different TSS spectral response, and divided by the difference of the 
reflectance on both bands. These bands are blue and NIR band. TSS reflectance is higher in NIR band and 
lower in blue band, and thus, the variation of TSS can be highlighted. However, in case of Segara Anakan, 
the TSS in water is not well-represented in NIR band, which resulted in a very low correlation of NDSSI and 
field TSS. 

 

 

Figure 4. TSS distribution modeled from the best model of different inputs. 

 

The SSC algorithm is more suitable to model TSS concentration in the study area than NDSSI. SSC 
algorithm uses green and red band. The SSC algorithm has the advantage of suppressing the interference of 
chlorophyll-a reflectance at low TSS concentration. In the SSC algorithm, pixel values of the green band are 
coupled with a red band and then divided by the ratio of the green and red band. The band ratio of the 
green and red band is what suppressed chlorophyll-a reflectance. Chlorophyll-a has high reflectance in 
green band and low reflectance in the red band because these energies are absorbed for photosynthesis. 
SSC transformation passed the correlation analysis because the bands used are the visible bands so that 
water absorption is not so high, and TSS variations can be represented in the image. Although SSC has a 
good correlation, the resulting TSS map does not produce the highest accuracy. This may be because SSC 
algorithm was developed using Landsat image (Li, 2010). The application of SSC algorithm on SPOT-6 image 
results slightly differently, as the sensitivity of SPOT-6 bands is different from Landsat bands. The study area 
characteristics of Li (2010) are also different, where Changjiang Estuary is dominated by water with high 
TSS concentration, i.e., up to 1,000 mg/l. In contrast, Segara Anakan is a semi-enclosed lagoon and the 
water is not directly adjacent to the high seas but is connected by small gaps with medium TSS 
concentration, i.e., up to 61 mg/l. This is what reduced the effectiveness of SSC algorithm in predicting TSS 
concentration in Segara Anakan. 

Based on the TSS distribution maps in Figure 4, maps with higher accuracy show more varied TSS 
distribution. TSS map modeled from red band and SSC index, with 75.72% and 73.66% accuracy 
respectively, have better TSS concentration variation compared to blue and green bands with 70.68% and 
70.68% accuracy respectively. Based on the accuracy, TSS map from red band and SSC index have higher 
accuracy than from blue and green band, whereas map produced by NIR band produced the lowest 
accuracy (62.84%). Although there are some areas with high TSS concentration, the study area is 
dominated by water with low TSS concentration. This indicates that infrared channel reflection is very low 
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because it is dominated by the absorption of radiation by water. TSS concentration is high only in the water 
close to the shoreline, and not too observable from the map. This further confirms that NIR band is less 
effective to explain the variation of TSS in water dominated by low TSS concentration. 

Based on the analysis, it can be concluded that the use of NIR band for estimating TSS concentration in 
Segara Anakan water using the SPOT-6 image is not effective. This is not in accordance with research 
conducted by Jensen (2007) and Lo (1986), which states that NIR wavelength (0.7 – 0.8 µm) is suitable to 
explain the variation of TSS. The assumption used was that water does not reflect NIR energies, hence very 
low reflectance, so when there is a high NIR reflectance from water body, it indicates the presence of TSS. 
However, this assumption is less appropriate when applied in Segara Anakan water, mainly due to the 
difference of TSS characteristics. In the study area, NIR band cannot represent the variation of TSS because, 
in some locations, the TSS concentration is low, hence strong water absorption is more dominant than TSS 
reflectance. The use of NIR band is more suitable for use in water with high and dominant TSS 
concentration, but not appropriate when used in water with low and dominant TSS concentration. This is 
contrast to the research conducted by Zheng (2015), where NIR band is suitable for TSS mapping. In 
contrast to the characteristics of TSS in Segara Anakan, Dongting Lake has higher TSS concentration with 
the highest TSS concentration of 88 mg/l (Zheng 2015). Meanwhile, in Segara Anakan the highest TSS 
concentration was only 42 mg/l. Thus, the use of NIR band results in a better TSS distribution map when 
implemented in Dongting Lake because the TSS concentration is very high and dominant across the study 
area. 

TSS prediction in areas with low TSS concentration can be performed using visible bands because on 
this spectrum the water still reflects the downwelling energies it receives so that the absorption feature is 
not dominated by water absorption. In this study, TSS map with the best accuracy was produced from the 
red band. Between the visible bands, the red band has the longest wavelength. In accordance with the 
reflectance characteristics of TSS within the water column, the reflectance will increase with increasing 
wavelengths. This also caused the blue band to be less effective to model TSS because, on blue band, water 
reflectance is more dominant than TSS. These results are almost similar to the previous study that red band 
(0.61-0.68 μm) of the SPOT data was best suited to estimate TSS concentration, by reason of the low 
influence of chlorophyll and yellow substance and the range of gray value is adequate to describe the full 
range of concentrations (Lehner et al., 2004). 

The use of various regression models did not show significantly different prediction. In general, the 
non-linear regression models have higher R2 than linear regression model. This may be due to the highly 
complex and dynamic TSS characteristics, which are not likely to be linearly correlated to the image pixel 
values. Based on the previous studies related to TSS estimation using remote-sensing images, the best 
regression model used is non-linear regression model (Hung, 2014). The regression line generated by linear 
models cannot follow the trend of TSS sample variation, resulting in a low R2 value.  

The calculation of the total estimate of TSS up to the depth of 0.3 m equal to 6.13 t. This suspended 
material will eventually settle in the bottom of the water. This can lead to various problems such as silting 
and disruption of ecosystems in Segara Anakan. To date, no standardized method has been developed to 
map the TSS. This is because TSS variation is highly dynamic and complex, and the characteristics of TSS will 
vary with water and climates characteristics. Also, the variation of TSS’s grain size, density, as well as the 
optical complexity of water body also influences the choice of mapping method to be used. 

 
3.2. Correlation analysis of TSS and Chlorophyll-a 

The result of correlation analysis between TSS and chlorophyll-a can be seen in Table 5. The result of 
correlation analysis showed an r value of –0.265. This value indicates that TSS and chlorophyll-a have no 
significant correlation because the r value is below 0.444. A negative value indicates that when TSS gets 
lower, chlorophyll-a concentration gets higher and vice versa. This is in accordance with a theory that high 
TSS content can inhibit the growth of phytoplankton (UNEP, 2015). This may be due to the variables used 
was only TSS. TSS concentration does not fully determine the abundance of chlorophyll-a because the 
development of phytoplankton is not only influenced by water turbidity, but also other variables such as 
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salinity, pH, temperature, Dissolved Oxygen content, and others (Daniel, 2010). The nature of the 
correlation between TSS and chlorophyll-a obtained in this study may not be universal. 

Correlation analysis was also done based on the distribution of chlorophyll-a samples in a certain range. 
The chlorophyll-a data was grouped into 3 classes, i.e., 0-1 μg/l, 1.1 – 3.0 μg/l, and 3.1 – 5.0 μg/l. From 
Table 5, it is clear that all ranges have positive relationship. The only significant correlation is at 0-1 μg/l, 
with an r value of 0.779. This indicates that high chlorophyll-a concentration does not correlate with the 
abundance of TSS in the water. In contrast, the increase of chlorophyll-a concentration up to 1 μg/l is 
positively correlated with the TSS. Previous correlation analysis applied to all samples showed a negative 
correlation, but when the chlorophyll-a data was divided into different ranges, all ranges showed a positive 
correlation. Hence, the correlation analysis result between TSS and chlorophyll-a obtained in this study 
cannot be used as a reference, because the resulting nature of the relationship between the two variables 
is inconsistent. This may be due to the poor quality of chlorophyll-a data. However, this can also be caused 
by the small number of chlorophyll-a samples used in the analysis. 

 

Table 5. Correlation analysis of TSS with chlorophyll-a at different concentration. 

Range (µg/l) r Sample No. 

0 – 1.0 0.779* 10 

1.1 – 3.0 0.696 6 

3.1 – 5.0 0.248 4 

* significant at 95%CL 

 
The inconsistent correlation analysis results between TSS and chlorophyll-a can also be caused by the 

error caused by the TSS empirical modeling process. As shown in Table 6, the correlation between 
reflectance bands and chlorophyll-a is consistent where visible bands have negative correlation value while 
NIR band has a positive correlation value. Negative correlation in visible bands is mainly caused by the 
strong chlorophyll-a absorption in visible bands. The green band also significantly correlated to the 
abundance of chlorophyll-a as this band is not strongly absorbed by chlorophyll-a compared to the blue and 
red band. In NIR band, the correlation is positive because chlorophyll-a in water column has similar 
reflectance characteristics to vegetation. 

 
Table 6. Correlation analysis between reflectance bands and chlorophyll-a concentration. 

Band r 

B0 (blue) -0.259 

B1 (green) -0.451 

B2 (red) -0.247 

B3 (NIR) 0.471 

4. CONCLUSION 

The best input in mapping TSS concentration distribution using SPOT-6 image in Segara Anakan water is 
the red band, using power regression model with SE of 6.69 mg/l and maximum accuracy of 75.72%. The 
blue band produced TSS map with a maximum accuracy of 70.68%, green band 70.68%, NIR band 62.85%, 
and SSC 73.66%. Using the most accurate model, total TSS in Segara Anakan up to the depth of 0.3 m, with 
a study area of 849.93 ha, is estimated to be around 6.13 tonnes of suspended solids. In our study area, TSS 
concentration has no significant correlation with the abundance of chlorophyll-a with r of -0.265 (not 
significant at 95%CL). The value of r between TSS and chlorophyll-a at 0 - 1 μg/l is 0.779, at 1.1 – 3.0 μg/l is 
0.696 and at 3.1 – 5.0 μg/l is 0.248. The result of correlation analysis between TSS and chlorophyll-a 
obtained in this study may not be universal because the resulting nature of the relationship between the 
two variables is inconsistent.  
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