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Abstract: This research to analyze the pattern of rice field productivity that is identified 

through landscape perspective. Identification of productivity pattern has been done partially 
based on each typology of land components into several segment of the Citarum watershed, 
West Java Province, Indonesia. Spatial autocorrelation through GIS tool is used as the method in 
this research. By using moran’s I (index) measurement, degree of dependency of these variables 
are generated to find the spatial pattern. The result of this study is separated the value of 
productivity based on segments of watershed, the values of the average of productivity are 
upstream (6.39 ton/Ha), middle stream (6.52 ton/Ha), and downstream (7.17 ton/Ha), 
sequentially. The highest productivity is in the downstream area (9.83 ton/Ha) and the lowest is 
in the upstream area (4.55 ton/Ha). In accordance with physiographic typology showed the rice 
field in the middle stream has more variation than the upstream or the downstream area. The 
highest of average rice field productivity is on alluvial plain. Overall, the rice field productivity on 
the hills is higher rather that other types of landform the structural formation is more dominant, 
in addition. The spatial pattern shows the distribution of rice field productivity most likely to 
clustered based on the similarity of physiographic type. Statistically, it has p-value <0.01 and z-
score >2.58 (239.26) correspond to Spatial Autocorrelation (Moron’s I). This positive value means 
a less than 1% likelihood that this clustered pattern could be result of random choice, which the 
rice field productivity value has similar pattern to others. Thus, it can be generated that the 
pattern of rice field productivity has a very close relation with the physical characteristics which 
associated of each typology of land components. 
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1. INTRODUCTION 
In the modern scientific context, many researchers express that, agricultural productivity is a 

multidimensional concept, which incorporates innovative headway, effective management of available 
resources and authoritative setup for the agricultural production (Kumar & Manimannan, 2014). These 
elements thus, influence the relative creation in any region. The term of productivity is viewed as the 
estimation of production and inputs required for the production of that output is known as agricultural 
productivity (Ogale & Nagarale, 2014). 

Citarum watershed is one of the largest and strategic watersheds in West Java Province, Indonesia. The 
rice field area in the Citarum watershed is 17.7% of the rice field area in the whole province, which is the 
widest among other watersheds. According to the Indonesia the government's data, the rice field in 
Citarum watershed has a lot of potential and contribution to agricultural production in West Java Province. 
Thus, the existence of rice field area has an important role related to national food security (FAO, 2014; 
Nurliani & Rosada, 2016). However, there were several constraints on rice fields that cause problems in 
food sector. For instance, reducing rice-field area through land conversion. Several areas are expanded into 
urban areas, while the other district maintains as the buffer area. The development of many cities in West 
Java expands to other built-up area, for instance the residential and industrial area (Santoso et al., 2017). 
The expansion from agricultural areas to non-agricultural is dominant. The change of rice-field area was 
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caused by low productivity of rice-field, decreasing quality of land, particularly physical condition (Nurliani 
& Rosada, 2016; Santoso et al., 2017).  

West Java has great potential in agriculture, however the use of data and spatial analysis to support the 
process of decision making is still considered lacking. Spatial data and techniques are becoming an 
increasingly popular tool to identify potential opportunities in many sector (Mennis & Guo, 2009), in 
particular as agricultural sector (Jones et al., 2017). A wide variety of new spatial data have recently been 
developed using innovative data mining techniques, such as high-resolution satellite imagery and geo-
referenced environmental data. On the agriculture side, there are several important international initiatives 
to examine current land use and potential crop productivity in connection to physical conditions of 
agricultural area (Iimi et al., 2015; Mennis & Guo, 2009).This research has examined the agricultural 
productivity of West Java, within Citarum watershed unit, by using spatial analysis through an examination 
of the characteristics of the land components. The objective is specifically aims at generating the spatial 
agricultural for rice field and potential data in the watershed area, and analyse the pattern of rice field 
productivity that is identified from the characteristics of the land component based on physiographic 
typology (Donfouet et al., 2017; Ziadat, 2007). In particular, this paper addresses the local pattern of rice 
field productivity through landscape variables by applying the spatial autocorrelation model (Moran's I 
Index) to find out the productivity pattern (Kumar & Manimannan, 2014; Ord & Getis, 1995).  
 

2. DATA AND METHODS 

2.1. Area of Study, Data and Work Processing 
The Citarum Watershed is the largest watershed in West Java. The Citarum river as the main channel 

starts flowing from Mount Wayang and run out through the Java Sea. Geographically, The Citarum 
watershed area extends at 106 ° 58'30.22 "- 107 ° 54'7.92" E and 5 ° 57'44.13 "- 7 ° 13'58.86" S. The 
Department for Water Resource Management of West Java Province has stated this watershed covered 13 
districts that consisted of Bandung, West Bandung, Bekasi, Bogor, Cianjur, Garut, Karawang, Subang, 
Sukabumi, Purwakarta, Sumedang, Bandung City and Cimahi City (Figure 1).  

 

 

Figure 1. Area of study 

The rice field area in the Citarum watershed are distributed in part of those districts entirely. To reach 
this objective, this research uses several data which are divided to determine two main indicators, these are 
land component and agriculture potency. Each variable of land component was obtained from certain data 
sources which consists of Indonesia Topographic Map (RBI), soil map, SPOT 6 Imagery and DEM derived 
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from Shuttle Radar Topographic Mission (SRTM). While the data of agriculture potency was obtained from 
the statistical data for each administration unit, and rice field map was generated to obtain agriculture area 
in this research study unit. These data entirely compiled from 2014 to 2016. Further, the data in this 
research described by following table (Table 1). 

 
Table 1. Relation data and variable trough this research 

5 Variable Data source Instrument and method 

Land component 1. Segment of watershed (upstream, middle 

stream, downstream) 

DEM - SRTM Extraction; Interpretation; 

Reclassification; Overlay Topographic Map (RBI) 

2. Physiography SRTM 

Topographic Map (RBI) 

3. Soil type Soil Map 

Agriculture potency 1. Rice field Rice field map (LP2B) Updating; Spatial Join 

SPOT 6 Imagery 

2. Administration Topographic Map (RBI) 

3. Productivity Statistic data (BPS) 

 

In this study, data processing consisted of two main steps (Figure 2). First, built the typology 
components of rice field area. Second, identification of rice field productivity spatially by generated 
statistical data. Furthermore, results of these data processing are used to analyse productivity patterns 
based on typology of the land component (Álvarez-López et al., 2008). Spatial data of the rice field contains 
productivity information obtained from spatial analysis function (spatial joint) between rice field maps 
(LP2B) with topographic maps (RBI). Spatial data of the rice fields typology is derived from the land system 
map by reclassifying attributes related to land suitability criteria (Álvarez-López et al., 2008; Ziadat, 2007). 
The physiographic maps were generated from morphologic and topographic approaches. Morphology 
information was identified by analyzing the slope, consisting of plains, hills and mountains types (Mokarram 
& Hojati, 2017; Suwartha et al., 2017). The identification of morphogenesis was interpreted from shading 
map visualization including volcanic, structural, karst, fluvial and structural. Analysis of the patterns of rice 
fields productivity is compiled from overlaying the typology map of land components with rice fields 
productivity maps (Kumar & Manimannan, 2014; Ogale & Nagarale, 2014). Furthermore, the analysis of 
productivity patterns based on land components was accomplished related to rice fields area which have at 
least 60% of the area of rice fields in each typology of land component. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flow of data processing 
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2.2. Approach and Analysis 
Land component is identified by landscape approach (Álvarez-López et al., 2008; Dorner et al., 2002). 

The best productivity value for each type of land component typology is used as the reference productivity 
value to calculate the potential productivity by the similarity of land unit. Analysis of production component 
is performed into the same land units with different productivity levels. 

Identification of productivity pattern is conducted to know the correlation between productivity level 
and land component typology (Álvarez-López et al., 2008; Kumar & Manimannan, 2014; Jiang et al., 2013). 
Identification of productivity pattern is generated partially by each land component. Then, all parameters of 
the land component are combined simultaneously. Spatial analysis is generated by the result of map 
overlay related to variation of productivity value (Álvarez-López et al., 2008; Diao et al., 2012; Jiang et al., 
2013; Legendre, 1993; Saroinsong et al., 2007). The analysis of variation productivity patterns is based on 
land component typology that provides information of productivity levels in each typology (Kumar & 
Manimannan, 2014; Jiang et al., 2013). The range of highest, lowest and average productivity values reflects 
the productivity level of a land component typology (Álvarez-López et al., 2008; Saroinsong et al., 2007). 
That value can be compared between each typology of land component. Identification of productivity 
pattern includes variations of rice field productivity value related to spatial distribution of the land 
component typology. Identification of the variation pattern of productivity value is based on the unit of rice 
field area which considered representing typology of land component (Saroinsong et al., 2007). The rice 
field unit is mostly (60% or more) related in one typology of land component, and then it is necessary to 
sort the data by area distribution (Álvarez-López et al., 2008; Jiang et al., 2013).The pattern of rice field 
productivity is divided by each segment of watershed, and then analyzed based on two land components, 
including soil type and physiographic character. The analysis is done separately (by each land component) 
and simultaneously (combining all land components). Spatial pattern of rice field productivity is analyzed 
based on Spatial Autocorrelation Moran’s I model (Diniz-Filho et al., 2009; Iimi et al., 2015a; Ord & Getis, 
1995). Spatial analysis of Moran’s I (Figure 3) is used to identified the spatial pattern of rice field 
distribution, whether the pattern will be clustered or random, and the pattern follows uniformity of 
productivity value. The Moran’s I method gauges spatial autocorrelation based on geographic location and 
attribute data values using Global Moran I statistical model  (ESRI, 2012; Legendre, 1993; Ord & Getis, 
1995). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3. Spatial Autocorrelation Moran’s I (ESRI, 2012) 
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The spatial autocorrelation model (Global Moran's I) measures the correlation between objects in terms 
of location and attribute values simultaneously (ESRI, 2012). The model measures the location pattern and 
object attribute whether it is grouped, spread, or randomly based on the Moran Index value as indicated by 
the z (z-score) and p (p-value) which represented the significance number of the model. In this research 
context, statistical model that used is Anselin Local Moran's Index. Through Geographical Information 
System (GIS), the Anselin Local Moran's I was used in spatial autocorrelation calculation tool (ESRI, 2012). 
This model is used to identify spatial clusters of variables with high or low values. The model also identifies 
spatial outliers (Anselin, 1995). To performs this model, the tool calculates a local Moran's I value, a z-score, 
a p-value, and a code representing the cluster type for each statistically significant parameter. The z-scores 
and p-values represent the statistical significance of the computed index values. Thus, it’s formulated as 
following equations. 

............................... (1) 

   .....................................(2) 

 

 ....................................(3) 

 

 ....................................(4) 

 
where   
Xi  :  attribute for feature (variable) i 
Ẋ : mean of corresponding attribute 
Wi,j  : the spatial weight between feature i and j 
zi : deviation of i value against mean value (xi – X) 
  wi,j : weighted factors by each data 
  n : sum of data 
So : sum of weighted factors 

 

3. RESULTS AND DISCUSSION 
3.1 Distribution of rice field productivity in Citarum Watershed 

There are three categories resulted from the aggregation of rice productivity, they are: Low productivity 
(<6 ton/Ha), Moderate Productivity (6-7 ton/Ha) and High productivity (>7 ton/Ha). Entire area of the 
watershed, the proportion of rice field productivity detailed as follow (Figure 4). 
 

 
Figure 4. Proportion of rice field productivity within watershed area 
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Distributions of rice field productivity values are grouped based on the segment of watershed. It consists 
of upstream, middle stream, and downstream. Moderate productivity dominates in whole areas with the 
proportion toward rice filed area in each segment of watershed is 88%, 70.4% and 51.22%. The average of 
rice field productivity in the upstream area (6.39 ton/Ha) is lower than the average of rice field productivity 
in the middle stream area (6.52 ton/Ha), and also lower than downstream area (7.17 tons/Ha). The highest 
productivity is in the downstream area (9.83 ton/Ha) and the lowest is in the upstream area (4.55 ton/Ha). 
The variation of rice field productivity in segments of watershed illustrated as follow (Figure 5). Spatial 
distribution of rice field productivity is shown in the Figure 6. Each color shown on the map illustrate the 
rice productivity in each segment of watershed. The level of productivity was described by the color 
gradation on the map, the light colors means low values and the darks colors means high values. 

 

 
Figure 5. Variation of rice field productivity within the segments of watershed 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Spatial distribution of rice field productivity in Citarum Watershed 
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3.2 Distribution of Rice Field Productivity Toward Soil Type 
The result of overlay between rice field productivity with soil type shows different proportions of 

productivity class in particular soil type. The dominant soil type across all segment of the Citarum 
watershed is Incept sols, involve 74.1% of whole rice fields area in the watershed. The second soil type is 
Andisols, with 6.7% of rice field area in the watershed. Distribution of rice field area based on productivity 
class and soil type is presented in Table 2. 

Table 2. Distribution of rice field productivity class based on soil types 

No Soil type Upstream (ha) Middle stream (ha) Downstream (ha) 

Productivity Class Productivity Class Productivity Class 

(High) (Mod) (Low) (High) (Mod) (Low) (High) (Mod) (Low) 

1 Inceptisols 301.9 51,182.2 2,527.8 9,657.2 21,838.8 3,917.9 18,478.0 20,015.4  

2 Ultisols  906.8 0.8 2,493.9 4,307.8 1,505.1 0 884.2  

3 Alfisols  1,936.0 108.0 27.8 1,923.2 95.4    

4 Oxisols     934.6 352.3    

5 Andisols 236.2 4,879.4 2,475.6  3,893.3 83.9    

6 Entisols    619.1 225.7  1,402.2   

7 Mollisols  48.2        

8 Residential 
area 

1,597.8  73.8       

9 no data 809.8 1,091.4 51.3 35.6 62.8 24.1 34.7 8.0  

10 Bogor 
District 

    11,583.6     

Total 2,945.7  60,044.0  5,237.4  12,833.6  44,769.7  5,978.7  19,915.0  20,907.7   

 

 

Figure 7. The class of productivity related to soil types 
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The spatial distribution shows the highest productivity is on Inceptisol that spread in the downstream 
area, these patterns illustrated as the Figure 7. Statistically, the Inceptisols type tend to increase rather than 
the productivity on Andisols soil type (Figure 8). 

As the significant proportion, the result of analysis focuses on the dominant soil type (Incept sols and 
Andisols). The highest productivity was (9.83 ton/ha) found in rice field on Inceptisols type, while the lowest 
productivity (4.55 ton/ha) was found in rice field on Andisols type. Each averages value of both shows that 
Inceptisols is higher. Statistically, the value of the variation of the dominant soil types within watershed 
segments were showed as follow (Table 3). 
 

Table 3. Variation of productivity according to soil type 
No. Soil type Upstream Middle Downstream 

Max Min Avg Max Min Avg Max Min Avg 

1 Andisols 6,513 4,548 5.99 6.12 6.12 6.12 - - - 

2 incept sols 7,793 5,589 6.40 7,793 5,589 6.65 9,834 6,018 7.17 

 

According to statistical results, distribution of rice field productivity based on the type of soil can be 
spatially identified that the productivity of rice fields in the Inceptisols more increase in every segment of 
watershed, which compared to the Andisols.  Inceptisols and Andisols are the main soil in the Citarum 
watershed, either were found in rice field area mostly. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Variation pattern of productivity according to the dominant of soil types  
 

3.3 Distribution of Rice Field Productivity According to Land Physiographic 
Based on physiographic analysis, the physiographic type in the upstream is the volcanic plain. This type 

can be found in 35.2% number of the upstream area. Further, the proportion areas of each physiographic 
type are 20% for structural mountainous; 17.4% for the volcanic hills and 12.2% structural hills, respectively. 
The area with volcanic mountain is 3.3% by total area of rice field in the upstream watershed. Mostly, the 
class productivity was dominated by moderate value (Table 4). 

In the middle stream area also dominated by moderate productivity class which is found in the structural 
hills with 17.5% area, 16,4% in structural mountains and 15.43% in the structural plain. While in the 
downstream area is in fluvial plains with high and medium productivity class, mostly. Overall, the 
proportion of rice field in the downstream area has high and medium productivity class by 53.1% and 
45.2%. 
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Table 4. Distribution of rice field productivity by physiographic types (ton/ha) 

No Physiography Upstream (ha) Middle stream (ha) Downstream(ha) 

Productivity Class Productivity Class Productivity Class 

(High) (Mod) (Low) (High) (Mod) (Low) (High) (Mod) (Low) 

1 Fluvial Plain    4,037.7 1,385.9  19,899.6 18,547.4  

2 Marine       15.4 621.8  

3 Structural Plain    2,777.3 10,610.0 1,195.7  1,130.5  

4 Volcanic Plain 2,096.8 23,953.1 1,990.3 1,519.1 2,253.7 2,245.3  97.8  

5 Structural 
Mointains 

341.3 13,620.1 472.8  10,173.7 200.3  510.2  

6 Volcanic 
Mountain 

1.2 2,244.2 876.2 56.4 2,629.3 443.7    

7 Karst Hills    19.7 8.8 56.2    

8 Structural hills 7.3 8,308.8 240.7 4,423.4 10,815.1 1,769.4    

9 Volcanic hills 499.0 11,917.8 1,657.4  6,893.3 68.3    

Total 2,945.7  60,044.0  5,237.4  12,833.6  44,769.7  5,978.7  19,915.0  20,907.7   

 

The highest productivity is found in rice field with fluvial plain whereas the lowest productivity was 
found in structural hills. Related to morphological types, the plains have the highest average productivity, 
followed by the hilly type. On the other side, the Volcanic Mountains has the lowest average productivity. 
Based on morphogenesis, the highest average productivity is found in fluvial, followed by structural and 
volcanic. Variation of rice field productivity related to physiographic types illustrated by Figure 9. 

 

 

Figure 9. Variation of productivity based on physiographic (morphology) 
 

Based on physiographical typology shows that rice field in middle stream of the Citarum Watershed has 
more variation than the upstream and downstream areas. Based on variation, the highest average 
productivity was in the alluvial plains. Amount of productivities in the Hills type was higher than the 
Mountains, while the Structural form has higher productivity than the Volcanic. The difference pattern of 
these values can explain the rice field productivity which is identified from the aspect of physiographic 
(Álvarez-López et al.,2008; Saroinsong et al.,2007). The distribution of productivity value toward 
physiographic types of rice field area illustrated as following figure (Figure 10). However, to know related 
factors that influence the difference of productivity level of rice field within same physiographic typology 
need to be analyzed by physical component deeply (Álvarez-López et al., 2008; Diao et al., 2012; Jiang et al., 
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2013; Legendre, 1993; Saroinsong et al., 2007). Furthermore, that factors should be studied 
comprehensively in particular correlated to others external factor, such as sociocultural and economic 
influence (Kumar & Manimannan, 2014; Mahananto, 2009; Ogale & Nagarale, 2014). 

 

Figure 10. Distribution of rice field productivity based on physiographic (morphologic) 
 

3.4 Spatial Pattern of Rice Field Productivity 
The spatial pattern of rice field productivity was examined by using spatial autocorrelation of Moran's I, 

whether the results will be clustered or disperse. In this section, the spatial autocorrelations showed the 
size and distribution of the different types of productivity value, as well as the association between 
physiographical types in the segment of Citarum watershed. Based on the productivity and physiographical 
association, the current pattern should be separated according to its homogeny or heterogenic values.  The 
result of typology clustered presented in Figure 11. 
 

 
Figure 11. Cluster of typologies based on Moran’s I spatial distribution pattern 

 

The values for neighboring variable are either both larger than the mean or both smaller than the mean, 
so the cross-product will be positive. When one value is smaller than the mean and the other is larger than 
the mean, the cross-product will be negative. In this case, the larger the deviation from the mean, the larger 
the cross-product result. The values in the results tend to cluster spatially (high values cluster near other 

•Cluster of area with low
productivity is 

surrounded by field area 
with high productivity

•Cluster of area with high
productivity is 

surrounded by field area 
with low productivity

•Cluster of area with low
productivity is 

surrounded by field area 
with low productivity

•Cluster of area with high
productivity is 

surrounded by field area 
with high productivity

(HH) (LL)

(LH)(HL)
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high values; low values cluster near other low values), the Moran's Index will be positive, vice versa. When 
high values eliminate other high values, and tend to be near low values, the Index will be negative. If 
positive cross-product values balance negative cross-product values, the Index will be near zero (Anselin, 
1995). 

The spatial pattern shows the distribution of rice field productivity tends most likely to be clustered 
based on the similarity of physiographic type (Álvarez-López et al., 2008; Diao et al., 2012). Statistically, it 
has p-value <0.01 and z-score >2.58 (239.26) correspond to Spatial Autocorrelation (Moran’s I). A high 
positive z-score indicates that the surrounding variable have similar values (either high values or low 
values). The variable field in the output be HH for a statistically significant cluster of high values and LL for a 
statistically significant cluster of low values. A low negative z-score indicates a statistically significant spatial 
data outlier. The variable field in the result will indicate if the variable has a high value and is surrounded by 
variable with low values (HL) or if the variable has a low value and is surrounded by variable with high 
values (LH). 

According to the result of this analysis, it indicates that Type HH, HL, and LH, which are the three 
typologies of high productivity potential areas. This is followed by Type LL which can be attributed to the 
similarly physiographic types which has low productivity in Citarum Watershed. On the other hand, half of 
the rice field areas in Citarum watershed were characterized as HH primarily because of the physiographic 
characteristic that suitable for agriculture, in particular with rice field production. The results also show that 
the potential for rice field productivity and physiographic types are spatially correlated. The spatial 
distribution of rice field productivity depicted in this following figure (Figure 12).   

 
Figure 12. Spatial distribution pattern based on Moran’s Index 

 
3.5 The Affect of Land Component Toward Rice Field Area Productivity Pattern 

The identification of productivity based on land component is done to know the pattern of productivity 
based on physical characteristic which is more accurate, where each typology is clustered based on the 
same physical characteristic. Combination of land component shows the potential of the rice field area 
physically. Thus, it can be identified the impact of land component variety across to the productivity on 
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each rice field area. According to combination of land component, it can be determined area which has the 
same typology related to class of productivity. 

The overlay of land component with rice field area produce 365 typology which are the combination of 
27 soil varieties and 9 class of physiographic. It differentiated based on the upstream, middle stream, and 
downstream area. Furthermore, the distribution of rice field based on administration area is representing 
60% the same land component in each district. The result is 53 from 127 rice field area per district 
represents its land component typology. Those 53 field areas are consisted of 15 lands component 
typologies that are labeled from A to O. In detail are presented as the following (Table 5). 

 
Table 5. Typology of land component of rice filed area in Citarum Watershed 

No Typology of land 
component 

Land component character Segment of 
Watershed 

∑ 
District 

Productivity 
variation Soil type Physiographic 

1 A Typic Endoaquepts Fluvial plain Downstream 1 Moderate 
2 B Typic Epiaquepts Fluvial plain Downstream 1 Moderate to high 
3 C Oxyaquic 

Dystrudepts 
Structural hills Upstream 1 Moderate 

4 D Residential Volcanic plain Upstream 1 High 
5 E Residential Volcanic plain Upstream 1 High 
6 F Typic Epiaquepts Structural 

mountains 
Upstream 1 High 

7 G Typic Endoaquepts Volcanic plain Upstream 1 Low to moderate 
8 H Typic Eutrudepts Structural 

mountains 
Upstream 1 Moderate 

9 I Typic Eutrudepts Structural hills Upstream 1 Moderate 
10 J Typic Eutrudepts Volcanic hills Upstream 1 Moderate 
11 K Typic Eutrudepts Volcanic hills Upstream 1 Moderate 
12 L Typic Hapludands Structural 

mountains 
Upstream 2 Moderate to high 

13 M Typic Hapludands Volcanic hills Upstream 1 Low to moderate 
14 N Typic Epiaquepts Volcanic plain Middle stream 1 Moderate to high 
15 O Typic Eutrudepts Structural 

mountains 
Middle stream 1 Moderate 

 

4. CONCLUSION 
Based on the result of the analysis spatial pattern of rice field area distribution and factors that affect to 

the value of productivity in Citarum Watershed, it can be concluded that physical factor of land component 
affects significantly toward the rice field productivity. Further, that determines the variation of the 
productivity on lowest and highest threshold. According to the result of the analysis, it shows that rice field 
productivity values increased sequentially, from the upstream to the downstream area. Based on 
morphological types, the rice field productivity values tend to increase from mountains, hills, and plain. 
According to the aspect of morphogenesis, the productivity rose from the structural landform, volcanic, and 
fluvial, respectively. In accordance with spatial distribution, the pattern shows the distribution of rice field 
productivity tends to clustered or grouped based on the similarity of physiographic type. Further, it 
delivered by the result of Spatial Autocorrelation (Moran’s Index) that showed p-value <0.01 and z-score 
>2.58 (239.26). This value indicates statistical significance. Therefore, that correlation has tendency toward 
clustered of surrounding variable which have similar values. Thus, it can be concluded that the pattern of 
rice field productivity has a very close relationship with the physical characteristics which associated with 
each typology of land component. 
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