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Abstract: Today with the fast and powerful computers, large data storage systems and 

modern softwares, the probabilities distribution and efficiency of statistical testing algorithms 
can be estimated using computerized simulation. Here, we use Monte Carlo simulation (MCS) to 
investigate the power of the test and error probabilities of the Baarda’s iterative data snooping 
procedure as test statistic for outlier identification in the Gauss-Markov model. The MCS discards 
the use of the observation vector of Gauss-Markov model. In fact, to perform the analysis, the 
only needs are the Jacobian matrix; the uncertainty of the observations; and the magnitude 
intervals of the outliers. The random errors (or residuals) are generated artificially from the 
normal statistical distribution, while the size of outliers is randomly selected using standard 
uniform distribution. Results for simulated closed leveling network reveal that data snooping can 
locate an outlier in the order of magnitude 5σ with high success rate. The lower the magnitude of 
the outliers, the lower is the efficiency of data snooping in the simulated network. In general, 
considering the network simulated, the data snooping procedure was more efficient for α=0.01 

(1%) with 82.8% success rate. 
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1. INTRODUCTION 

Data snooping is the best established method for identification of gross errors in geodetic data analysis. 
This method is due to (Baarda, 1968). Here, it is assumed that outliers are observations contaminated by 
gross errors (blunders), following the statement of Lehmann (2012) that in Geodesy, ‘outliers are most 
often caused by gross errors and gross errors most often cause outliers’. In practice, Data Snooping 
procedure is applied iteratively, identifying and removing an outlier at a time. The method is applied until 
no observations are identified. Here, this procedure will be called Iterative Data Snooping. Since data 
snooping is based on a statistical hypothesis testing, it may lead to a false decision as follows: 

• Type I error or false alert (probability level α) – Probability of detecting an outlier when there is none; 
• Type II error or missed detection (probability level β) – Probability of non-detecting an outlier when 

there is at least one; and 
• Type III error or wrong exclusion (probability level κ) – Probability of misidentifying a non-outlying 

observation as an outlier, instead of the outlying one. 
Lehmann & Voß-Böhme (2017) mention that while the rate of type I decision error can be selected by 

the user, the rate of type II decision error cannot. They also point out that a test statistic with a low rate of 
type II is said to be powerful. However, without considering the Type III error, there is a high risk of over-
estimating the successful identification probability. Besides that, we highlight that the Iterative Data 
Snooping procedure can identify more observations than real number of outliers (we call here “over-
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identification”). Thus, we consider a powerful statistical test when the rates of type II and type III errors as 
well as the over-identification are simultaneously minimized for a given probability level α. 

 From this point, we posed the following problem: how to compute the probabilities levels above? 
Unlike Baarda, we have fast computers at our disposal. In this paper we show that the statistical quantities 
can be determined by frequency distributions of computer random experiments performed using random 
numbers. This is known as Monte Carlo Simulation (MCS). MCS methods are used whenever the functional 
relationships are analytically not tractable, as is the case for Iterative Data Snooping procedure (Rüdiger 
Lehmann, 2012b). The MCS has already been applied in outlier detection (Lehmann & Scheffler, 2011; 
Lehmann, 2012; Klein et al., 2012; Klein et al., 2015; Erdogan, 2014; Niemeier & Tengen, 2017)  

The studies presented in this paper are a continuation of the first experiments presented by Rofatto et 
al. (2017). However, unlike Rofatto et al., (2017), here in this paper we evaluate the proposed method in a 
geodetic network with uncorrelated observations and also we analyze the power of the test of Iterative 
Data Snooping procedure when outliers of magnitude equal to the MDB (Minimal Detectable Bias) are 
inserted into the geodetic network.   

The outline of the paper is as follows: first the paper show a theoretical background of Iterative Data 
Snooping procedure in the Gauss Markov model. Next, the MCS approach is introduced as tool to analyze 
the power of the test and the probabilities of decision errors (type II, type III and over-identification) of the 
Iterative Data Snooping procedure. Then, the efficiency of the Iterative Data Snooping is demonstrated by 
means of the Monte Carlo method on the example of simulated closed leveling network. The mathematical 
model generally adopted in geodetic data analysis is the linear(ized) Gauss-Markov model, given by Koch 
(1999): 

e y A x= − .......(1) 

 
where e is the n x 1 random error vector, A is the n x u design (or Jacobian) matrix with full rank column, x is 
the u x 1 unknown parameters vector and y is the n x 1 observations vector. The most employed solution 
for a redundant system of equations ( n u ) is the weighted least squares estimator (WLSE) for the vector 

of unknowns ( x̂ ): 
1ˆ ( ) ( )T Tx A W A A W y−= ........(2) 

 

In which W is the n x n weight matrix of the observations, taken as 2 1

0 yW  −=  , where 2

0 is the 

variance factor (here it is assumed as known) and 
y  is the covariance matrix of the observations; if 

y  is 

diagonal, one speaks of weighted LSE (WLSE); if it is full, generalized LSE (GLSE). More details about LSE 
estimation in Ghilani (2017). A geometric interpretation of the LSE can be found in Teunissen (2003) and 
Klein et al. (2011). 

The least-squares method is the Best Linear Unbiased Estimator (BLUE) for the unknown parameters and 
it is also a maximum likelihood solution when the observation errors follow a central Gaussian distribution 
(Teunissen, 2003). However, the least squares is no longer optimal in the presence of grossly erroneous 
observations (Baarda, 1968). In other words, despite optimal properties for least square, they lack 
robustness or insensitivity to outliers in observations (Huber, 1992; Rousseeuw & Leroy, 1987; Lehmann, 
2013). In recent years, two categories of advanced techniques for the treatment of observations 
contaminated by outliers have been developed: robust adjustment procedures (Wilcox, 2011; Klein et al., 
2015) and outlier detection based on statistical tests (Klein et al., 2016) . The first one is outside the scope 
of this paper. Besides the undoubted advantages of robust adjustment, the outlier tests are also used. The 
following advantages of outlier analysis are mentioned by Lehmann (2013); 

• Detected outliers provide the opportunity to investigate causes of gross measurement errors; 

• Detected outliers can be re-measured; and 

• If the outliers were discarded from the observations then the standard adjustment software, which 
operates according to the least squares principle, can be used. 
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Data snooping procedure is a particular case of maximum likelihood ratio test when only one outlier (i.e. 
q = 1) is present in the data set at a time (Baarda, 1968; Berber & Hekimoglu, 2003; Lehmann, 2012) Thus, it 
is formulated by the following test hypotheses (Baarda, 1968; Teunissen, 2006): 

0 : { }       vs      : { } ; 0A yH E y Ax H E y Ax c= = +     .......... (3) 

 
Where cy is outlier model for q=1, i.e. the n x 1 unit vector with 1 in its ith entry and zeros in the 

remaining (e.g.  
1

0 0 1 0 0
nx

T

yc =  ), and ∇ is a scalar value with the gross error (outlier) at ith 

observation being tested. Therefore, in the null hypothesis (H0), it is assumed that there are no outliers in 
the observations, while in the alternative hypothesis (HA), is it assumed that the ith observation being tested 

(  i 1, ,for n= ) is contaminated by gross error of magnitude ∇. 

If we consider one outlying observation in at certain known locations (q = 1), then the likelihood ratio test 
for data snooping (Tq = 1) is given by Teunissen (2006): 

0

1 1 1 1 1

ˆ1 0 0
ˆ ˆT ( )T T T

q y y y y e y y y ye c c c c e− − − − −

= =       .......... (4) 

where 0ê  and 
0ê  is the estimated random error vector and a posteriori covariance matrix of the 

estimated random error computed by LSE into H0, respectively.  Under H0, observation errors are zero-
mean (multivariate) normally distributed. The null hypothesis is rejected if the following test statistic (Tq = 
1) of the ith observation being tested exceeds a given critical value Κα , i.e.: 
 

0

0 1

2 2 1 1 2

ˆ0 1 (1,0) 1 (1, )

Reject H  if: T

: T ~ ; : T ~ ,  with 

q

T

q A q y y e y y

K

H H c c



  

=

− −

= =




=    

........ (5) 

 
Important to mention that the critical value follows from a chi-squared distribution with one degree 

freedom at a significance level of  in a one-tailed test. Baarda (1968) and Teunissen (2006) demonstrate 
that if q = 1, then the test statistics (equation 4) can also be formulated based on a standard normal 
distribution in a two-tailed test (so-called w-test). Both the chi-squared and normal distribution tests are 

equivalent. Usually in geodesy, the value of  is set between 0.1% and 1% (Kavouras, 1982; Aydin & 
Demirel, 2004; Lehmann, 2013). Furthermore, data snooping contains multiple alternative hypotheses, as 
each observation is individually tested. Therefore, the only observation considered contaminated by outlier 
is the one whose test statistic satisfies the inequalities Tq=1 > Κα. In the case that two or more observations 
exceed the critical value Κα only the observation with the largest Tq=1 is flagged as an outlier. After having 

identified the observation most suspected of being an outlier (at given ), it is excluded usually from the 
model, and the WLSE and data snooping procedure are applied iteratively until there are no further outliers 
identified in the observations (Berber & Hekimoglu, 2003).  

The power of the test (γ) is the probability of correctly identifying the outliers. In the case of a round of 
Data Snooping, the power of the test depends on the type II and type III errors, for a given level of 
significance (α) (i.e. γ = 1 – (β + κ)). Considering the “Iterative Data Snooping”, the power of the test also 
depends on over-identification error, and it is given by γ = 1 – (β + κ + over-identification). Baarda's 
conventional reliability theory considers only a single alternative hypothesis (Baarda, 1968), and therefore, 
it is based only on type I and II errors. Type III error is addressed by Förstner (1983) considering two 
alternative hypotheses. Yang et al. (2013) extended the solution given by Förstner (1983), and presented an 
analytical solution for type III error considering multiple alternative hypotheses and the presence of an 
outlier (i.e. for a round of Data Snooping). Examples of the efficiency of the analytical solution presented by 
Yang et al. (2013) can be found in Klein et al. (2015). 

The focus of this paper is the Iterative Data Snooping. An analytical solution to the probabilities of 
decision error and power of the test for Iterative Data Snooping has not yet been developed and is of 
rather difficult solution. A well-established procedure to compute the probabilities levels is the Monte 
Carlo Simulation (MCS). As pointed out by Lehmann (2012), in essence the MCS replaces random variables 
by computer generated pseudo random numbers, probabilities by relative frequencies and expectations by 
arithmetic means over large sets of such numbers. A computation of one set of pseudo random numbers is 
a Monte Carlo experiment. In Geodesy, Monte Carlo Simulation has been applied in some studies since the 
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pioneering work of (Hekimoglu & Koch, 1999). For example, Lehmann & Scheffler (2011) have already 
applied MCS in data snooping to determine the optimal level of error probability α (type I error). Here, on 
the other hand, we proposed to use MCS in the “Iterative Data Snooping” to compute the follows 
probabilities levels: power of the test; type II error and type III error. In addition to these probabilities, we 
also compute the rate of experiments where the Iterative Data Snooping procedure identified more outliers 
than simulated (we call “over-identification”- i.e., q > 1). In the next section we show how to obtain these 
probabilities levels experimentally. Thus, we can analyze the efficiency of the Iterative Data Snooping 
testing procedure based on MCS as promised by the title of this paper. 
 

2. DATA AND METHODS 

In order to analyze the Iterative Data Snooping procedure, the MCS was applied to compute the 

probabilities levels. To do so, a sequence of m random errors vector ,  1, ,=
K

e k m  of a desired 

statistical distribution is generated. The “m” is known as the number of Monte Carlo experiments. Usually, 
assume that the random errors of the good measurements are normally distributed with expectation zero. 
Thus, we generate the random errors using multivariate normal distribution, since the assumed stochastic 

model for random errors is based on covariance matrix of the observations, i.e. 2

0
~ (0, )

y
e N  . 

On the other hand, an outlier (q=1) is selected based on magnitude intervals of the outliers for each m 
Monte Carlo experiments. Positive and negative outliers are clipped between 3σ and 3.5σ, 3.5σ and 4σ; 4σ 
and 4.5σ; 4.5σ and 5σ; 5 and 5.5σ; 5.5σ and 6σ; 6σ and 6.5σ; 6.5σ and 7σ; 7σ and 7.5σ; 7.5σ and 8σ; 8σ and 
8.5σ; 8.5σ and 9σ in each experiment (σ is the standard deviation of the observation). Here, we use the 
standard uniform distribution to select the outlier magnitude. The uniform distribution is a rectangular 
distribution with constant probability and implies the fact that each range of values that has the same 
length on the distributions support has equal probability of occurrence (Lehmann & Scheffler, 2011). For 
example, for 10,000 Monte Carlo experiments, if the one choices a magnitude interval of the outliers of |3σ 
to 9σ|, the probability of a 3σ error occurring is virtually the same as -3σ, and so on. At each iteration of the 
simulation, a specific observation is chosen to receive a gross error based on the discrete uniform 
distribution (i.e., all observations have the same probability of being selected). Random and gross errors 
are assumed to be independent (by definition) and both are combined to the total error as follow 
(Kavouras, 1982): 

,  0ye c = +     ...... (6) 

 
where  is the n x 1 total error vector, e is n x 1 random errors vector and cy is outlier model for q=1 (see 

expression 3), and ∇ is a scalar value with the outlier at ith observation being tested. We assume that ∇ 

>e. Before computing statistical test Tq=1 (expression 4)  it is necessary to relate the random error vector e 

and total error vector ε, since this statistical test depends on the estimated random error vector 0ê . In the 

sense of LSE, this relationship is given by Kavouras (1982): in which R is the n x n redundancy matrix and I is 
the n x n identity matrix. 

0
ˆ =e R , ....... (7) 

1( )T TR I A A WA A W−= −  .......... (8) 

 
In the equation 7 the reader should be informed that the multiplication of the redundancy matrix (R) 

and the total error  provides the estimated random error vector 0ê . Now, the 0ê  is not only composed by 

random errors, but also it has one of its elements contaminated by an outlier. Now it becomes possible to 
compute the test statistic Tq=1 considering the relation given by equation 4.   

The significance level is varied, taken as α = 0.001 (0.1%), α = 0.01 (1%), α = 0.025 (2.5%), α = 0.05 (5%) 
and α = 0.1 (10%). Each simulation has a unique combination of significance level and interval of magnitude 
of outliers. We ran 10,000 experiments for each simulation and compute the probabilities levels of type II 
error, type III error, the power of the test and the number of over-identification (more outliers identified 
than simulated) in Iterative Data Snooping, totaling 12 x 5 x 10,000 = 600,000 Monte Carlo simulations. It is 
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important to emphasize that the proposed method does not depend on the unknown parameters vector or 
the vector of observations.  

 

3. RESULTS AND DISCUSSION 

In order to demonstrate the analysis of the efficiency of data snooping, we simulated a closed leveling 
network. The goal is to illustrate how to use MCS approach to compute statistical quantities numerically; 
further considerations about levelling networks are outside the scope of this study. 

We consider a closed levelling network, with one control station (benchmark), and 4 points with 
unknown heights (A, B, C and D), totaling four minimally constrained points as shown in Figure 1. The 
benchmark is fixed, and the distances of the adjacent and non-adjacent stations are approximately 240 m 
and 400 m, respectively. The equipment used is a spirit level with nominal standard deviation for a single 
staff reading of 0.02 mm/m. Lines of sight distances are kept at 40 m. Thus, each total height difference 


i

h  between adjacent or non-adjacent stations is made of, respectively, three or five partial height 

differences (p). Each partial height difference, in turn, involves one instrument setup and two sightings: 
forward and back. The standard deviation for each 

i
h  equals to 

2  4 0 0 . 0 2 m m / m 2 0 . 8 m mi ip p =     =   , where p is 3 or 5. The readings are assumed 

uncorrelated and 2

0  = 1.  

 

 

Figure 1. Simulated leveling network 

For each unknown point, there are four height difference measurements. Thus, there are n = 10 
observations, u = 4 unknowns, and n - u = 6 degrees of freedom in this simulation. The design matrix (A) has 

dimension 10 x 4 and the covariance matrix of observations has dimension1 0 x 1 0 . Each station is 
involved in four height differences, so there are three redundant observations for the determination of 
each unknown. 

In the sense of reliability, the minimum and maximum redundancy numbers of the observations in the 
network are 0.46 and 0.75, respectively. This means that the ability of the outlier detection is not uniform 
in every part of the network. We also compute the Minimal Detectable Bias (MDB) as an indicator of 
system internal reliability. The MDB is derived from a local test proposed by Baarda (1968), which makes a 
decision between the null and a unique alternative hypothesis. By definition the MDB is based on Type I 
(false alert) and Type II (missed detection) error. The conventional MDBs are ranged from 4.7σ to 6σ for 
α=0.001; 3.9σ to 5σ for α=0.01; 3.5σ to 4.5σ for α=0.025; 3.2σ to 4σ for α=0.05; finally, 2.8σ and 3.6σ for 
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α=0.1. The computations of these MDBs were based on probability of Type II error of 0.2 (Baarda, 1968). In 
addition, the maximum positive and negative correlation between the test statistics are 0.61 (between 

4
h and

5
h ) and -0.58 (between 

2
h and

3
h ), respectively. The correlation coefficient is presented by 

Förstner (1983). 
Applying the method presented in section 3, the success and error probabilities of Iterative Data 

Snooping were estimated. Figure 2 shows the success rate (number of experiments that only outlying 
observation was identified), i.e. the power of the Iterative Data Snooping testing procedure for one 
simulated outlier (γ). The misidentifications rates are showed in the Figures 3-4. The misidentifications are 
divided in two types of classes are counted in the simulations: number of experiments where the procedure 
yielded none observation identification (type II error - β); number of experiments in which the procedure 
detected a single observation but wrong identification (type III error - κ). In addition to these classes, we 
consider “over-identification”, i.e. the number of experiments where the procedure detects more outliers 
than simulated. 

 
 

 

Figure 2. Success rate (power of the test) of the iterative data snooping testing procedure for simulated 
leveling network vs. magnitude intervals of the outliers for each probability level α. 

 

Figure 3. Type II error for simulated leveling network vs. magnitude intervals of the outliers for each 
probability level α. 
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Figure 4. Type III error for simulated leveling network vs. magnitude intervals of the outliers for each 
probability level α. 

 

Figure 5. Over-identification vs. magnitude intervals of the outliers for each probability level α. 

Figures 3–5 show that, in general, the lower the magnitude of the outliers, the lower is the efficiency of 
data snooping in the simulated network. This is expected. However, there is not direct relation between the 
power of the test and significance level (α) for the network analyzed. Here, we do not recommend to use 
α=0.1(10%), because many good observations are eliminated. In this case, as shown in the Figure 5, the 
over-identification rate stands out in relation to the other types of errors. Furthermore, in this case (α=0.1), 
the power of the test is virtually independent of the outlier size (see Figure 1). 

It appears that higher values for α are not recommended for outliers of greater magnitude and that 
lower values for α are not recommended for outliers of smaller magnitude. Therefore, these results show 
the importance of a correct choice of α, as pointed out by Lehmann (2012); it also highlights the challenges 
in controlling the error rate in multiple hypotheses tests. Regarding the three classes of misidentification 
rates, in general, an increase in the magnitude interval of outliers, leads to a slight increase in the over-
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identification rate (more outliers being identified than simulated) and a cutback in the type II error. This 
fact is due to the error propagation among all residuals. The rate of cases with correct number of outliers 
but with wrong identification (type III error) also decreases when increasing the magnitude interval of 
outliers. 

We can observe (Figure 2) from the interval of magnitude outlier (5σ - 5.5σ) the value of the power of 
the test (success rate) is practically stable for all levels of significance (except for α=0.001): approximately, 
50% (α=0.1), 70% ( α=0.05), 83% (α=0.025) and 92% (α=0.01). For α=0.001, the success rate is greater than 
90% from the interval of magnitude outlier (5.5σ - 6σ). 

In general, considering the network simulated, the Iterative Data Snooping procedure is efficient for 
outliers greater than 5σ, with a mean success rate of 76.4% for α=0.001(0.1%); 82.8% for α=0.01 (1%); 78% 
for α=0.025 (2.5%); and 67.9% for α=0.05 (5%). Therefore, with an appropriate choice of α, results show 
that data snooping can locate an outlier in the order of magnitude 5σ with high success rate. However, the 
number of outliers to be considered, that also affects the efficiency of Iterative Data Snooping, requires 
further investigation. 

In order to compare the power of the test of Iterative Data Snooping and the conventional power of the 
test (80%), the method described in section 3 was also applied considering the outliers with the size of its 
MDBs for each significance level. As pointed out, the MDBs ranged from 4.7σ to 6σ for α=0.001; 3.9σ to 5σ 
for α=0.01; 3.5σ to 4.5σ for α=0.025; 3.2σ to 4σ for α=0.05; finally, 2.8σ and 3.6σ for α=0.1. Such MDBs 
were based on the conventional power of the test of 0.8 (80%). The probabilities of committing different 
types of errors and the power of the Iterative Data Snooping considering these MDBs for each significance 
level are showed in the Table 1. 

 
Table 1. Probabilities of Iterative Data Snooping (%) considering the size of conventional MDBs 

Significance levels α Power of the test % Type II Error % Type III error % Over-identification % 

0.001 77.09  19.97 2.5 0.45 

0.01 70.72  17.66 6.76 4.86 

0.025 62.94 15.7 10.35 11.01 

0.05 53.05 12.66 12.82 21.47 

0.1 38.41 9.15 15.52 36.92 

 

In Table 1, it is noticeable that the higher the significance level, the greater the divergence between the 
power of the Iterative Data Snooping and the power used to compute the MDB (i.e. 80%). The explanation 
for this difference is that the computation of the MDB depends only on Type I and Type II error, while the 
Iterative Data Snooping also considers the probability of Type III error and over-identification. In future 
research, it is intended to investigate a function that relates the power of the test considering the MDB to 
the power of Iterative Data Snooping. 

To conclude, it is important to mention that outlying observation can be presented among the detected 
observations in the over-identification case. If all detected observations are wrong, the over-identification 
case could be classified as type III error.  The over-identification case will be investigated in more details in 
future studies. 

 

4. CONCLUSIONS 

Many methods of quality control for geodetic data analysis have been developed and investigated since 

the pioneering work of Baarda (1968). However, these methods still deserve further investigation. Thus, the 

goal of this paper was to analyze the data snooping testing procedure to locate an outlier by means of the 

MCS. The MCS discards the use of the observation vector of Gauss-Markov model. In fact, to perform the 

analysis, the only needs are the geometrical network configuration (given by Jacobian matrix); the 

uncertainty of the observations (given by nominal standard deviation of the equipment); and the 
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magnitude intervals of the outliers. The random errors (or residues) are generated artificially from the 

normal statistical distribution, while the size of outliers is selected using standard uniform distribution. 

Iterative Data Snooping shows high success rates in the experiments of a simulated levelling network for 

single outlier randomly generated between four and five standard deviations. However, the efficiency of 

Iterative Data Snooping significantly decreases for outlier smaller than five standard deviations. The 

efficiency of the data snooping also depends on the significance level (α). Here, the optimal value for the 

significance level was 0.01 (1%) for the simulated network. When we insert the MDB as an outlier in the 

geodetic network, we verified that the higher the significance level, the greater the difference between the 

power of the test of Iterative Data Snooping and the power of the test used for the MDB computation. In 

future research, it is intended to investigate a function that relates the power of the test considering the 

MDB to the power of Iterative Data Snooping.  

Finally, we show that Monte Carlo Simulation is a feasible method to compute the probabilities level 

associated to a statistical testing procedure regardless of the statistical tables. Future studies should 

consider various issues: the performance of the data snooping in cases of linearized (originally non-linear) 

models; it should consider geodetic networks in the sense of multiple outliers; the development of 

reliability measures; and the method performance in different networks with various geometry and varying 

redundancy. There are others approaches to identify multiple outliers in the observations, such as the 

recent proposal of Lehmann & Lösler (2016) using the p-value concept and the Sequential Likelihood Ratio 

Tests for Multiple Outliers (SLRTMO) presented by Klein et al. (2016). A suggestion for future work is to 

increase the power of the test (success rate) of Iterative Data Snooping procedure by means of a unifying 

testing procedure relating the iterative Data Snooping (a single outlier at time) with approaches for 

multiple outliers identification such as those presented in  Lehmann & Lösler (2016) and Klein (2016). 
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