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Abstract: Until recently, the most highly accurate digital surface models were obtained 

from airborne lidar. With the development of a new generation of large format digital 
photogrammetric aerial cameras, a fully digital photogrammetric workflow became 
possible. This research concerned with the generation of digital surface models and 
orthophotos as applications from high-resolution images. True digital ortho from the 
digital aerial camera and orthoimage will be generated using the LIDAR digital elevation 
model. Leica Photogrammetric Suite (LPS) module of Erdas Imagine 2014 software was 
utilized for processing. The results show that the automatic digital surface model DSM 
produced from the digital aerial camera method has very high dense photogrammetric 
3D point clouds compared to the LIDAR 3D point clouds. The best cue integration is 
intensity (pan)+nDSM+entropy followed by intensity (pan)+nDSM+mean then intensity 
image+mean+entropy after that DSM) image and two texture measures (mean and 
entropy) followed by the color image. The maximum likelihood classifier is the best 
followed by minimum distance and the neural network classifier. 
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1. INTRODUCTION  

LIDAR is a mature remote sensing technology that can provide accurate elevation data for topographic 
surfaces and above-ground objects (Yunfei et al., 2008). LIDAR consists of three main components: (i) (GNSS), 
(ii) an Inertial Measurement Unit (IMU), and (iii) a Laser Scanner Unit. While the GNSS receiver is used to 
record the aircraft position, the IMU measures the angular attitude of the aircraft (roll, pitch, and yaw or 
heading). The Laser Scanner Unit transmits pulses of light toward the surface of interest and records both 
the travel time of the laser beam and the energy, which is reflected by the surface (Jochem et al., 2009). A 
LiDAR sensor delivers 3D point clouds with the intensities of the returned signals. A point cloud is a collection 
of discrete three-dimensional locations (points) that can have additional metadata associated with each 
record. LiDAR has become a valuable data source for urban feature acquisition (buildings and roads). 
Buildings and roads data are important for urban planning. 

The potential of digital photogrammetry was already demonstrated for different applications and 
datasets, including aerial images, satellite images, or video sequences (Haala & Rothermel, 2012). 
Photogrammetric imaging methods are being converted from analog to digital (Honkavaara et al., 2008). 
Digital photogrammetric cameras of large-format have been commercially introduced since 2000 (L. Zhang 
et al., 2006).  High resolution and high spectral digital cameras improved image quality. This means new 
potential for automatic image measurement and interpretation. Digital imaging, coupled with advanced 
direct georeferencing methods, makes updated georeferenced imagery available for users within hours of 
image collection (Honkavaara et al., 2008). 

The digital photogrammetry era has also enabled new methods for elevation (DSM) extraction using 
automatic image matching technique (Demir, Poli, & Baltsavias, 2008). It has also enabled new methods of 
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image processing to be used in orthophoto production. Until recently, the collection of high-quality digital 
surface models was assigned to airborne lidar use. The increasing quality of digital airborne cameras and 
improvements in matching algorithms allow for an automatic image-based acquisition as a suitable 
alternative (Haala & Rothermel, 2012). Matching algorithms, autonomous orientation of images by means of 
automatic aerial triangulation ease the use of photogrammetry and reduce the costs in digital maps 
production (Rinaudo et al., 2010). 

A classifier is an algorithm that takes a set of parameters (or features) that characterize objects (or 
instances) and uses them to determine the type (or class) of each object (Mandal & Prabaharan, 2006). The 
most common approach to the segmentation and interpretation of multi-spectral remotely sensed data for 
land cover mapping utilizes a suite of probabilistic classification and clustering algorithms. Supervised 
classifications may be considered to comprise three distinct stages: training, allocation, and testing (Foody & 
Mathur, 2004). Supervised classifications exploit the radiometric properties of known 'training' regions to 
identify areas elsewhere on the image with similar spectral properties. The hypothesis is that the land cover 
of the training regions is identical to regions elsewhere in the scene with similar spectral characteristics 
(Wyatt, 2000). It is important and difficult to select training data that are truly representative of spectrally 
unique classes (Wyatt, 2000). In this work, five classifiers have been performed. Maximum likelihood (MLC), 
minimum distance (MD), Support vector machine (SVM), artificial neural network (ANN), and spectral angler  

In this research, the automatic digital surface model DSM was produced from a digital aerial camera and 
from LIDAR data. True digital ortho has been generated from a digital aerial camera also orthoimage will be 
generated using LIDAR digital elevation model (DSM). This research method will be proposed for feature 
extraction based on subpixel based (neural network) and pixel-based (minimum distance and maximum 
likelihood). 

 

2. DATA AND METHODS 

2.1. Study Area and Data 

Free sample dataset of downtown  Toronto / Canada, North America,  kindly provided by the (ISPRS) –
summer 2017. The aerial images were captured by the Microsoft Vexcel's UltraCam-D (UCD) camera, and the 
LiDAR data were captured with Optech airborne laser scanner ALTMORION M. The area contains high-rise 
buildings. 

Digital Aerial Images taken by UltraCam-D cover the downtown of Toronto which was operated and 
processed by FBS (First Base Solutions) company located in the Greater Toronto Area in Canada. The data 
consist of strip 3 with 60% forward overlap. The images were taken from an altitude of 1600 m above ground. 
The total number of the images in the test area is 3 and the exterior orientation parameters are provided. 
The image size is 7500 × 11500 pixels and the pixel size is 9 μm, the interior and exterior orientation 
parameters of the images are available. See Table 2 and Table 3. The "Downtown Toronto" datasets also 
provide ALS data acquired by Optech.  Optech flew over the "Downtown Toronto" area and acquired ALS 
data using Optech’s ALTM-ORION M in February 2009 with the aircraft speed of 120 knots at the flying 
altitude of 650 m. The ALTM ORION M operates at a wavelength of 1064 nm (Near Infrared) and scans the 
underlying topography with a scan width of 20 degrees and the scan frequency of 50 Hz. The reflected echoes 
were digitized at a sampling rate of 100 kHz.  

The data set consists of 6 strips and point density is approximately 6.0 points/m2. The ALS data provided 
is formatted in ASPRS’s LAS 1.3 format and refers to the same coordinate system as the orientation 
parameters of the UltraCam-D images. In addition to the original ALS point cloud, a digital surface model 
(DSM) is provided.  

 

2.2. Methodology 

The methods of this study are: 

1. Aerial image orientation ,triangulation. 
2. Generation of Digital Surface Model (DSM)  from the digital aerial camera using LPS module in Erdas 

Imagine and generation of DSM using Lastools. 
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3. Generation of RGB Orthoimage from both DSM produced from the digital aerial camera and LIDAR 
DSM. 

4. Multi cue extraction will be performed. 

• Extraction of two texture measures (mean, entropy) 

• Generation of intensity image using Lastools. 

• Generation of the fused image from(Pan intensity image, texture, and RGB Orthoimage from LIDAR 
DSM). 

5. Classification of the orthorectified image based on LIDAR DSM using subpixel based (neural network ) 
and pixel based ( minimum distance and maximum likelihood).  

6. Classification of layers stacked images(multi cue integrated) was  performed 

• In the first approach, the aerial color image was fed into the classifiers. 

• In the second approach, combined height information from LIDAR data (DSM )image and two texture 
measures (mean and entropy) were fed into the classifiers.  

• In the third approach, combined intensity image and two texture measures (mean and entropy) were 
fed into the classifiers. 

• In the fourth approach, combined intensity image and nDSM and mean texture measures were fed 
into the classifiers. 

• In the fifth approach, intensity image and nDSM and entropy texture measures were fed into the 
classifiers. 

• Assessment of Classification accuracy. 
 

2.2.1. Photogrammetric project creation 

Photogrammetric project creation means defining a project name, the reference coordinate system, 
datum, units, and the used camera for the project. A project was created to include digital camera images. 
Leica Photogrammetric Suite (LPS) module of Erdsa Imagine 2014 software was utilized for processing. Figure 
1 shows Strip 2 configuration. 

 
 

 

 
 

Figure 1. Strip 2 configuration (digital sensor camera) 
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Figure 2. Sensor definition 
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2.2.2. Importing images 

Importing images is the most sophisticated data conversion process because it usually involves a file 
with relatively large size. The technique to being used to import data depends on the type of sensor that is 
associated with the imagery. Erdas Imagine 2014 was used for importing imagery. The following images were 
imported. 
 

Table 1. Summary of the configuration of the digital aerial camera 
 

Strip2  
 

03747*, 03749*, 03751, 
03753, 03755, 03757* 

 

2.2.3. Computation of image pyramids 

Pyramid layers are used to optimize image display and automatic tie point collection. Using this pyramid, 
image contents are preserved, and computation times are reduced. Pyramid layers for the images in the strip 
were computed. 

 
2.2.4. Image Orientation 

Interior orientation parameters and exterior orientation parameters were defined. The interior 
orientation parameters were defined for all 6 images according to Table 2. 

1. Interior orientation of the digital images. 
Table 2. The interior orientation of the digital images of the strip3. 

2. Exterior orientation 
The exterior orientation parameters were defined for all 13 images according to Figure 3. Aerial 
triangulation is the process of establishing a mathematical relationship between the images contained 
in a project, the camera or sensor model, and the ground. The information resulting from aerial 
triangulation is required as input for the orthorectification, DEM creation, and stereo pair creation 
processes (Leica, 2006). Leica Photogrammetric Suite (LPS) module of Erdas Imagine 2014 software was 
utilized for defining exterior orientation parameters. 

 

Table 2. Summary of the configuration of the digital aerial camera 
 

Strip Image file 
Projection Centres 

Rotation Angles (ω: primary, x; 

Ф: secondary, y; κ: tertiary, z) 

X0 [m] Y0 [m] Z0 [m]  

2 03747.tif 629623.149 4834071.793 1634.685 0.04670 0.15983 -99.55331 

2 03749.tif 630013.209 4834069.204 1632.655 0.06512 0.14967 -100.09653 

2 03751.tif 630403.456 4834066.892 1631.609 0.05856 0.14668 -100.12411 

2 03753.tif 630793.356 4834065.998 1632.673 0.04750 0.14308 -100.16600 

2 03755.tif 631183.635 4834064.731 1636.076 0.04186 0.14102 -100.34950 

2 03757.tif 631572.979 4834064.233 1639.348 0.07123 0.12940 -100.21586 
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2.2.5. Automatic tie points generation 

Tie points were generated manually in the overlap area. The resulted RMS of triangulation was 0.192m. 

 

 

 
 

Figure 3. Aerial Triangulation results 
 

2.2.6. Digital Surface Model (DSM) 

Digital Surface Model (DSM) includes any buildings, vehicles, vegetation (canopy and understory), as 
well as the "bare ground". To generate the required 'bare-earth DEM, ground, and non-ground features/data 
points must be distinguished from each other so that the latter can be eliminated before DEM building 
(Kunapo, 2005). Figure 4 shows Lidar DSM of the study area. Figure 5 illustrates the resulted digital aerial 
camera DSM of the study area. 

 

 
 

Figure 4. Lidar DSM of the study area 
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Figure 5.  The resulted digital aerial camera DSM of the study area 

 
2.2.7. Validation using Checkpoints produced using  tie-point 

Checkpoints extracted from automatic tie point generation were used for checking the height of LIDAR 
DSM  and digital aerial camera DSM. 

 

It was found that LIDAR DSM is more accurate than the digital aerial camera DSM. The RMS of LIDAR DSM is 
14 cm, while the RMS digital aerial camera DSM is 20 cm. 

 
2.2.8. True orthoimage generation from a digital photogrammetric aerial camera 

Digital aerial photographs acquired on-flight with a matricial sensor present a pronounced perspective 
caused by their broad field-of-view (FOV). To change the perspective into orthogonal projection and 
formulate the topographic correction, internal and external image orientations (IO and EO) and a DEM are 
required (Valbuena et al., 2011). 

The orthoimage generation process consists of five steps: interior orientation, exterior orientation, DEM 
generation, and editing or using of existing DEM, orthoimages generation, and mosaic creation (Sebari, 
Lahmami, & Ettarid, 2011). 

Digital aerial photographs were orthorectified to a 15 cm spatial resolution using Lidar DSM, and digital 
aerial camera DSM and compared though they were resampled with the nearest neighbor resampling. After 
that image mosaicking were made. The whole procedure was implemented in Leica photogrammetric suite 
LPS digital photogrammetric –ERDAS Imagine software 2014. Figure 6.a. depicts an example of true ortho 
produced using LIDAR DSM Figure 6.b. illustrates a mosaic of digital orthophoto resulting from a digital 
photogrammetric camera using Lidar DSM.  Figure 7 depicts the Overlay of the mosaic of true orthophoto 
and the digital aerial camera DSM of the study area using swipe utilities.   
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(a) (b) 

Figure 6. (a) Example of true ortho of produced using LIDAR DSM and (b) Mosaic of true orthophoto 

 

 
Figure 7. Overlay of the mosaic of true orthophoto and the digital aerial camera DSM of the study area 

using swipe utilities 

 
2.2.9. Merging las point clouds 

The merged file of las point cloud was extracted by merging the 6 strips of las point clouds. The lastool 
software was used for this purpose. Figure 8 depicts merging different las point clouds strips into one file 
using lastools. 
 

 
 

Figure 8. Merging different las point clouds strips into one file using lastools 
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2.2.10. Multi cue extraction 

1. Intensity extraction 

Intensity image was extracted from the merged file of the las point cloud using lastool software (Figure 
9). The following parameters were used in Lastool software for producing intensity image: 
 
Grid size 3 
Item intensity 
Output .img 
By classification of return: First only 

 

 

(a) 

 

 

(b ) 

Figure 9. illustrates extraction using lastools and (b) depicts produced Intensity image from Lastool 

 
 



 
Taha et al. / Geoplanning: Journal of Geomatics and Planning, Vol 7, No 2, 2020, 57-74 
doi: 10.14710/geoplanning.7.2.57-74 

66 | 
 

 
2. Digital Surface Model (DSM) 

Digital Surface Model (DSM) was produced from the merged file of the las point cloud using lastool 
software. This is reflected from the surface of objects such as the soil, buildings, cars, leaves, and so on. The 
process aims to create a high-resolution DSM interpolated from LiDAR data into a regular grid of 3*3m cells. 
Lastool was used for producing the DSM (Figure 10). The following parameters were used in Lastool software 
for producing DSM: 
 
Grid size 3 
Item elevation 
Output .img 
By classification of return: First only 
 

 

(a) 

 

 

(b) 

Figure 10. (a) indicates the used parameters and (b) depicts produced DSM from Lastool 
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3. Digital Elevation Model (DEM) 

Digital Elevation Model (DEM) was produced from the merged file of the las point cloud using lastool 
software. The last pulse data from LiDAR gives data from the surface that was the last hit by the laser pulse. 
However, for returns from the ground and landscape features (such as vegetation), it is the last pulse that 
would give the elevation of the surface last hit by the pulse, or nearest to the ground (Figure 11). The 
following parameters were used in Lastool software for producing DEM:  
 
Grid size 3 
Item elevation 
Output .img 
By classification of return: last only 
 

 
(a) 

 

 
(b) 

Figure 11. (a) depicts the used parameters for DEM extraction in Lastools and (b) illustrates DEM from 
Lastool 
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2.2.11. Calculation of normalized digital surface model (nDSM) 

After the computation of both DTM and DSM, nDSM has been calculated by subtraction of DTM from 
DSM (DSM–DTM). ENVI band math was used for this purpose. Figure 12 depicts difference between DSM and 
DTM. 

 

 

Figure 12. Difference between DSM and DTM 

 
2.2.12. Texture extraction 

Texture analysis offers interesting possibilities to characterize the structural heterogeneity of classes. In 
the statistical approach, the stochastic properties of the spatial distribution of the grey level (GL) in the image 
are characterized. Amongst all popular algorithms, Grey Level Co-occurrence Matrix (GLCM) is the widely 
adopted one (Shaker, Yan, & El-Ashmawy, 2012; Alhaddad, Roca, & Burns, 2009).  The co-occurrence matrix 
is a method which surveys image pixel and describes the distribution of gray. It can generate some texture 
measures (Zou & Li, 2009). First-order texture measures on GLCM consists of Standard Deviation, Range, 
Minimum, Maximum, and Mean. The second order of texture measures includes Angular Second Moment, 
Contrast, Correlation, Dissimilarity, Entropy, Information Measures of Correlation, Inverse Difference 
Moment, and Sum of Squares Variance. The third-order texture measures such as skewness. The fourth-order 
texture measures such as kurtosis.  

Texture information was extracted from the LIDAR DSM band using ENVI 5.1 software, forming new 
bands based on two texture measures. The statistical measures used in this study are mean and entropy. 

 
         N-1  N-1    
Mean=∑      ∑ iPi,j                       Equation 1  
           i=0     j=0 
 
 
                     N-1 N-1    
Entropy=Ent=∑     ∑ Pi,j (-ln Pi,j)            Equation 2 
          i=0     j=0 

 
 
Texture information was extracted from the LIDAR DSM band using ENVI  5.1 software, forming new bands 
based on two texture measures. The statistical measures used in this study are mean and entropy. A window 
size of 5*5 was adopted (Figure 13). 
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(a) 

 

 

(b) 

Figure 13. (a) Mean texture of all strips and (b) Entropy texture of all strips 

 

2.2.13. Classification process  

The framework consists of three major parts:(1) data combination; (2) classification; and (3) evaluation. 

1. Maximum likelihood classifier  

Maximum likelihood (ML) classifier is the most commonly used supervised method in remote sensing. 
ML classifier is one of the statistical classifiers that depend on the multivariate normal distribution of the 
data in each class (Kavzoglu & Colkesen, 2009).  By computing the mean spectral vector and covariance matrix 
for each spectral class from training samples, a decision function is generated to calculate the probability of 
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a pixel belonging to this specific class according to Bayesian theorem. By comparing the probabilities of a 
pixel belonging to all classes, the pixel is then categorized into the class with the maximum probability (J. 
Zhang, Zhang, & Yao, 2009). 

2. Minimum Distance (MD)  

The minimum distance classification is performed by placing a pixel in the class of the nearest mean. It 
uses the mean vectors of each region of interest (ROI) and calculates the Euclidean distance from each 
unknown pixel to the mean vector for each class. All pixels are classified to the closest ROI class unless the 
user specifies standard deviation or distance thresholds, in which case some pixels may be unclassified if they 
do not meet the selected criteria. This method calculates the center for each group of pixels and measures 
the distance from the center of each group to the pixel being considered. The pixel is classified into the group 
with the nearest center. The center of the group then is recalculated each time a pixel is added or taken 
away. The feature vector is computed for these samples again and a distance Euclidean and Mahalanobis 
classifiers are used to classify the unknown samples (Mandal & Prabaharan, 2006).  

3. Artificial Neural Network (ANN) 

The MLP-BP model with three layers (input, hidden, and output layer) was employed. The number of 
input neurons is equal to a number of input features, the number of neurons in the output layer is the number 
of land cover classes to be classified. The number of neurons in the hidden layer was determined by the 
sequential testing and validation process using the training data (Kavzoglu & Colkesen, 2009). The sigmoid 
function was used as the transfer function. The other parameters were set as follows: maximum number of 
iteration: 1000; learning rate: 0.01-0.1; training momentum: 0.9 

Maximum likelihood, Minumum distance, and Neural network classifiers have been used for feature 
detection, firstly, feature detection from the classification of color-true ortho aerial camera image only. The 
second approach is feature detection from the classification of combined height information from LIDAR data 
(DSM )image and two texture measures (mean and entropy). The third approach is feature detection based 
on combined intensity image classification and two texture measures (mean and entropy). The fourth 
approach is the classification of combined intensity image and nDSM and means texture measure. The fifth 
approach is the classification of combined intensity image and nDSM and entropy texture measure 

Three land cover classes have been defined (buildings, agricultural lands, roads), plus a class for 
shadows. Shadows are not a problem for low-resolution satellite images, contrary to high-resolution ones 
such as digital aerial camera images, where shadows play a relevant role. 

Signatures have been collected and evaluated from the resulted in three cases. Accuracy assessment of 
classifications was carried out using the overall accuracy and kappa coefficient. Seventy randomly selected 
points were used for this purpose. 
 

Table 3. Overall classification accuracy and Kappa coefficient  
for the five approaches using  neural network classification 

 

Approach overall Accuracy % Kappa coefficient 

aerial color image alone 78.15 0.73 

combined height information from LIDAR data (DSM )image 

and two texture measures (mean and entropy) 

93.49 0.89 

intensity image +mean+ entropy 94.19 0.91 

combined intensity (pan) +nDSM+mean 95.60 0.92 

combined intensity (pan) +nDSM+ entropy 96.24 0.94 
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Figure 14. Overall classification accuracy and Kappa coefficient for the five approaches using neural 
network classification 

 
 

Table 4. Overall classification accuracy and Kappa coefficient for the five approaches using Minimum 
distance classification 

 

Approach overall Accuracy % Kappa coefficient 

aerial color image alone 75.35 0.76 
combined height information from LIDAR data (DSM) image 
and two texture measures (mean and entropy) 

87.76 0.81 

intensity image +mean+ entropy 88.91 87.0 
combined intensity (pan) +nDSM+mean 92.46 0.89 

combined intensity (pan) +nDSM+ entropy 94.42 0.91 

 

 
 

Figure 15. Overall classification accuracy and Kappa coefficient for the five approaches using Minimum 
distance classification 
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Table 5. Overall classification accuracy and Kappa coefficient for the five approaches using maximum 
likelihood classification 

 

Approach overall Accuracy % Kappa coefficient 

aerial color image alone 80.65 0.75 
combined height information from LIDAR data (DSM )image 

and two texture measures (mean and entropy) 
95.89 0.89 

intensity image +mean+ entropy 96.05 0.91 
combined intensity (pan) +nDSM+mean 97.4 0.94 

combined intensity (pan) +nDSM+ entropy 98.3 0.96 

 

 
 

Figure 16. Overall classification accuracy and Kappa coefficient for the five approaches using maximum 
likelihood classification 

 

3. RESULTS AND DISCUSSION 

Firstly, image orientation AT has been performed. The resulted RMS of triangulation was 0.192m. Then 
the automatic digital surface model DSM generation has been produced from a digital aerial camera. It was 
found that LIDAR DSM  is more accurate than the digital aerial camera DSM. 

Thirdly true digital orthophoto has been generated from a digital aerial camera also orthoimage will be 
generated using LIDAR digital elevation model (DSM). Leica Photogrammetric Suite (LPS) module of  Erdsa 
Imagine 2014 software was utilized for processing. Then the resulted orthoimages from both techniques 
were mosaicked. The results show that the automatic digital surface model DSM produced from the digital 
aerial camera method has very high dense photogrammetric 3D point clouds compared to the LIDAR 3D point 
clouds. It was found that the true orthoimage produced from the second approach is better than the true 
orthoimage produced from the first approach. 

The five approaches were tested for classification of the best-orthorectified image mosaic using subpixel 
based (neural network) and pixel-based ( minimum distance and maximum likelihood). Multicues were 
extracted such as texture(entropy-mean),Digital elevation model, Digital surface model ,normalized digital 
surface model (nDSM) and intensity image. The contributions of the individual cues used in the classification 
have been evaluated. 



 
Taha et al. / Geoplanning: Journal of Geomatics and Planning, Vol 7, No 2, 2020, 57-74 

doi: 10.14710/geoplanning.7.2.57-74 
                                                              

| 73  
 

It was found that the best cue integration is intensity (pan) +nDSM+ entropy followed by intensity (pan) 
+nDSM+mean then intensity image +mean+ entropy after that DSM )image and two texture measures (mean 
and entropy) followed by the color image. The integration with height data increases the accuracy. Also, it 
was found that the integration with entropy texture increases the accuracy. 

Resulted in fifteen classification cases, it was found that the maximumlihood classifier is the best followed 
by minimum distance then neural network classifier. We attribute this to the fine resolution of the digital 
camera image. Subpixel classifier (neural network) is not suitable for classifying aerial digital camera images. 

LiDAR and photogrammetry are complementary to each other, and thus the integration of both 
technologies is important in a number of remote sensing applications such as building extraction, image 
classification, 3D city modeling, and so on. The integration of LiDAR and photogrammetry is expected to 
produce more accurate and higher-quality products. 

Leica Photogrammetric Suite (LPS) –Erdas imagine 2014 software has been used for producing true digital 
orthoimages from digital aerial camera images using DSM from LIDAR data and DSM produced from the 
digital aerial camera. True orthomosaic was then generated for both sets. 

Several recent studies have demonstrated the use of Lidar for high-quality digital surface models (Brédif 
et al., 2013; Huo et al., 2018; Mahadi et al., 2018; Margolis et al., 2017; Shirowzhan & Trinder, 2017). The 
increasing quality of digital airborne cameras and improvements in matching algorithms allow for an 
automatic image-based acquisition as a suitable alternative (Haala & Rothermel, 2012). This study shows that 
the digital surface model from Lidar is more accurate than the digital aerial camera. However, the 
combination of Lidar and photogrammetry produces more accurate and quality results. 

 

4. CONCLUSION 

This research succeeded in making the digital elevation model from a digital aerial camera and LIDAR data 
for urban feature extraction. The results show that the automatic digital surface model DSM that has been 
produced from the digital aerial camera method has very high dense photogrammetric 3D point clouds 
compared to the LIDAR 3D point clouds. It was found that the true orthoimage produced from the second 
approach is better than the true orthoimage produced from the first approach. 

It was found that the maximumlihood classifier is the best followed by minimum distance then neural 
network classifier. It is recommended to evaluate building extraction from las point clouds produced from 
the digital aerial camera and LIDAR data. It is also recommended to implement a filtering software to get 
DEM from DSM. 
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