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Abstract 

The infrastructure of Malang City is currently being directed towards the eastern and southeastern parts, Kedungkandang 

District. Infrastructure plays an important role in the aspect of land cover change, which raises the complexity of the 

emergence of urban forms and dynamics. This study compares three models, Artificial Neural Network (ANN), Logistic 

Regression (LR), and Multi-Criteria Evaluation (MCE), to predict changes in land cover in the Kedungkandang District 

using the Cellular Automata (CA) approach. The prediction results indicate that the ANN and MCE models have the highest 

overall Kappa values (prediction accuracy), while the ANN and LR models have the highest location-specific Kappa values. 

However, overall, the ANN model demonstrates the highest accuracy and performance among the other two models. This 

research makes a significant contribution to urban planning by highlighting the importance of using machine learning-

based technology to predict land cover changes in Malang City, particularly in the Kedungkandang District. Stakeholders 

can leverage this technology to design more effective and sustainable infrastructure policies and implement preventive 

measures to mitigate the negative impacts of uncontrolled urban growth. 
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1. Introduction  

Cellular Automata (CA) is a land cover change modeling approach that explicitly calculates urban drivers 

and influences from the surrounding environment (Campos et al., 2018; Wahyudi & Liu, 2016). Historically, CA 

has long been used to capture the complex dynamics of land cover change processes created by John von 

Neumann (1903–1957) during the 1950s. CA is considered the simplest type of dynamic spatial model (Sfa et al., 

2020; White & Engelen, 2000) and is a grid-based modeling approach where each cell is in a specific state, in this 

case, specific land use or cover. Five important components prepared and determined in the CA process, including 

cell space, cell state, neighborhood, transition rules, and iteration time (Feng et al., 2019). Time runs in discrete 

time steps. At each time step, all cells update their state simultaneously based on the previous cell state, 

environment, and transition rules (Qian et al., 2020; van Delden et al., 2011). The core of the CA-based model is 

the transition rule, where the appropriate transition rule is the main determinant for the ability of a good 

predictive model (Xing et al., 2020). This transition rule requires several spatial factors of land change to model 

the transition potential.   

Many techniques are used to model transition potential and map transition potential (Dewa et al., 2022; 

Roodposhti et al., 2019; Sfa et al., 2020), including Weight of Evidence (Campos et al., 2018), Logistic Regression 

(Campos et al., 2018; Cao et al., 2020; Mustafa et al., 2018; Wang et al., 2019), Multi Criteria Evaluation (Campos 

et al., 2018; Fu et al., 2018; Gharaibeh et al., 2020; Mohamed & Worku, 2020; Sipahioğlu & Çağdaş, 2023), 
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Artificial Neural Network (Campos et al., 2018; Gharaibeh et al., 2020; Li & Yeh, 2001). Support Vector Machine 

(Campos et al., 2018), and other techniques. Each of these analytical techniques uses structurally different 

formulations, which will affect the accuracy of the results of modeling land cover changes in CA (Roodposhti et 

al., 2019). This study tries to compare the predictions of land cover change in Kedungkandang District, Malang 

City and use three transition potential model techniques, including Artificial Neural Network (ANN), Logistic 

Regression (LR), and Multi-Criteria Evaluation (MCE).  

ANN is considered the best model that relies on artificial intelligence (Gharaibeh et al., 2020) and has a 

large enough capacity to recognize and classify patterns through the training or learning process (Yeh & Li, 

2002). Non-linear relationship between land change factors and the process of understanding complex patterns 

such as urban growth can be captured by the ANN model very well (Gharaibeh et al., 2020). ANN can be designed 

to estimate the likelihood of land change and development in each iteration of the simulation in CA based on past 

trends (Yeh & Li, 2002). However, ANN has major drawbacks, one of which is that it is difficult to understand 

its internal computation process (Park et al., 2011; Shafizadeh-Moghadam et al., 2017). 

In contrast to ANN, the use of LR is quite popular because of its ability to analyze the relationship between 

land cover changes and the factors that occur quantitatively. In addition, the LR model can also identify the 

extent to which these factors influence land cover change, thereby enabling researchers to clearly understand 

the role of various land change factors in the future (Cao et al., 2020). The ANN and LR models in this study are 

specifically based on machine learning, where there is no researcher intervention in the modeling process. To 

compare the results between the model generated by machine learning and the model with human intervention, 

the researchers also considered using MCE. This MCE model substantially relies on expert knowledge and 

judgment in making the weighting of its spatial factors (Yeh & Li, 2002). Based on this, it can be understood that 

MCE integrates spatial conditions and human decisions, thereby demonstrating a great ability to measure the 

comprehensive effects of various factors of resulting land cover change (Yao et al., 2022; Zadbagher et al., 2018) 

As a sub-district that has developed rapidly over the last ten years and supported by various infrastructure 

developments, the changes in the spatial dynamics of Kedungkandang District in the future need to be identified. 

It is in line with the statement (Shafizadeh-Moghadam et al., 2017), that in carrying out efficient monitoring and 

management of land cover, knowledge of previous land dynamics, current trends, and predictions of future 

developments are required. Three techniques in modeling the transition potential in this study are utilized to 

formulate the best model that can capture the dynamics of change in Kedungkandang District in the future 

2. Data and Methods 

2.1. Study Area 

Malang City, as the second-largest city in East Java Province, continues to experience very rapid urban 

development, in terms of population and land development, as well as the growth of primary and regional 

activities. This caused settlement development to be pushed towards the outskirts of the city due to the saturation 

that occurs in the city center (Adrianto et al., 2017). One of the potential areas for settlement development is 

Kedungkandang District, where the area of non-developed land is the highest in Malang City currently (55% of 

the total area of undeveloped land). In line with this, historically, Kedungkandang District has also experienced 

the conversion of non-built land into the highest built-up land in Malang City from 2009 to 2019 (Table 1). It 

can be indicated that the conversion of non-built land into built-up land in Kedungkandang District has the 

potential to occur again in the future. 

Administratively, Kedungkandang District has 12 sub-districts (Fig. 1), most of them adjacent to Malang 

Regency. Previous research Rofii (2021) showed an urban sprawl phenomenon in Malang City in 2014 with a 

type of land spread, ribbon development that leads to outside Malang City, one of which is around the city limits 

in Kedungkandang District. Based on these conditions, the researcher considers the Kedungkandang District 

area to have a high urgency to be modelled the dynamics and patterns of land cover changes, so that the Regional 

Government can take the right policy. 
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Table 1. Land Cover Change of Non-Built Land to Built-up Land per District in Malang City 

District 

2009 Land Cover (hectares) 2019 Land Cover (hectares)  Land 
Cover 

Change 

(ha) 

Wet 
Land 
Paddy 

Non-Wet 
Land 
Paddy 

Non-
Agricultural 

Land 
Wet Land Paddy Non-Wet Land Paddy Non-Agricultural Land 

Kedungkandang 619 1,505.31 1,864.69 511 1,207 2,271 406.31 

Sukun 322 396.80 1,378.20 181 452 1,464 85.80 
Klojen 0 0 883 0 1 882 0 

Blimbing 142 7 1,628 75 10 1,692 64 
Lowokwaru 311.62 102.44 1,944.10 247 78 1,935 40.18 

Source: Malang City Central Bureau of Statistics 2010 and 2020 

 
Source: Author, 2022 

Figure 1. Location of Study 

2.2. Data Source and Research Framework 

Initially, land cover data for three different years were collected to enable analysis of changes over time. 

Additionally, several spatial factors identified as drivers of land cover changes in Kedungkandang District were 

also included in the analysis. These factors may include distances from key infrastructure such as main roads or 

existing urban facilities. The data were gathered from various available open-source platforms and then 

processed using GIS (Geographic Information System) software, specifically QGIS, to prepare them for further 

analysis. An innovative aspect of data collecting in this research is the utilization of web scraping or data 

scrapping technique to retrieve Point of Interest (POI) data from the Google Maps platform. All collected and 

processed data will be utilized in the simulation process to predict future land cover changes. Detailed 

explanations regarding the data sources and collection techniques can be found in Table 3. 

There are three scopes in the research framework presented in Figure 3. The first scope is land cover map 

using Landsat 7 and Landsat 8 data. This map is to identify the dynamics of previous land change in 

Kedungkandang District, namely in 2012, 2016 and 2020. The second scope is to conduct an evaluation with 

correlations among various spatial factors used to determine only a few spatial factors with the highest 

relationships. The third scope is the transition potential model from three techniques or models, including ANN, 

LR and MCE. The last scope is the simulation of prediction of future land cover changes, which is until 2036.  

This study will use MOLUSCE (Modules for Land Use Change Evaluation) and LanduseSim as CA-based 

modeling tools. MOLUSCE is used in the prediction simulation process using the ANN and LR techniques. The 

prediction simulation process using the MCE technique is using the LanduseSim software. It is due to the 

limitations and difficulties in using MOLUSCE for the MCE model simulation process. Modeling with the MCE 

technique used in this study only uses the weights generated from previous studies. So, MOLUSCE is harder to 

run because it must include a pairwise comparison matrix. Then, by using the MCE model, MOLUSCE can only 

represent the transition from one class in one simulation process, while LanduseSim makes it easier for 
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researchers to perform simulations by representing all transition classes. The following are the steps for 

processing CA in this study: 

1. Preparation of Land Cover Maps 

The study area is divided into cells as the basis of analysis in modeling. Landsat image was generated 

using the USGS Earth Explorer with a resolution of 30 meters. Pansharpening process is carried out to get a 

smaller image resolution of 15 meters. It is because the study area only covers the administration of the sub-

districts. The land cover map in this study was produced through a land cover classification process based on the 

appearance of Landsat image using the supervised classification technique. The Semi-Automatic Classification 

Plugin (SCP), which is an open source plugin in QGIS, is used in the supervised classification process. Land 

classification uses the five land cover categories described in Table 2. Furthermore, the classification results need 

to be validated and tested for accuracy, where the validation of the land cover classification is processed with the 

THRASE plugin with references to GoogleEarth images in 2012, 2016, and 2020. Then, test the classification 

accuracy of land cover is done using the AcATAMa (Accuracy Assessment of Thematic Maps) plugin, so it can 

generate Kappa values. 

Table 2. Land Cover Categories 

No. Land Classification Description 

1 Built-up areas  Areas undergoing changes or conversions from natural or semi-natural land cover to impermeable 
and permanent land cover such as buildings, roads, and other pavements 

2 Vegetation Areas that are not cultivated for agricultural activities are generally dry land overgrown with 
natural vegetation such as forests, shrubs, grass, reeds, and others. 

3 Agricultural Areas Areas that are cultivated for agricultural activities 
4 Water body All water features such as rivers, swamps and others 

5 Bare land Areas that are not covered are either artificial, natural or semi-natural 

Source: Author, 2022 

2. Modelling the Transition Potential 

In creating the transition potential model, various spatial factors of land cover change are required. The 

spatial factors used in this study include, (1) distance to road networks; (2) proximity to highways; (3) proximity 

to toll roads; (4) distance to parks/green areas; (5) distance to existing settlements; (6) availability of 

telecommunication networks; (7) availability of electricity networks; (8) proximity to transportation facilities; (9) 

distance to educational facilities; (10) distance to healthcare facilities; (11) distance to trade and service facilities; 

(12) distance to industrial areas; (13) distance to office facilities; (14) distance to city centers; (15) slope; (16) water 

bodies; (17) boundaries; (18) cultural heritage sites; (19) wetlands; and (20) disaster-prone areas. Furthermore, 

Pearson correlation was used to measure the relationship between one spatial factor and another (i.e., existing 

settlement factors with other spatial factors). The correlation evaluation results of various spatial factors of land 

cover change in Kedungkandang District showed that there are 4 spatial factors that have a strong and positive 

correlation with the development of existing settlements in Kedungkandang District, (1) distance to electricity 

networks with a correlation value of 0.66; (2) distance to educational facilities with a correlation value of 0.67; (3) 

distance to commercial facilities with a correlation value of 0.72; and (4) distance to road networks with a 

correlation value of 0.66. The correlation values of these four spatial factors in this study are positive, indicating 

that land cover changes around existing settlements may potentially occur if the distance to these four strongly 

correlated spatial factors is closer. 

The spatial factors of land cover changes used in the simulation process must be converted into raster units 

based on proximity measurements. Proximity is a measurement based on the distance between two objects as 

points in geographic space. Two of the most commonly used proximity metrics are Euclidean Distance and 

Manhattan Distance (Nkweteyim, 2018). Measurement of proximity in this study was carried out using the 

Euclidean distance. Euclidean distance is a commonly used technique, it can recognize distances and calculate the 

proximity of each factor to land cover changes based on the distance (Liang et al., 2018). The Euclidean distance 

in this research is processed in QGIS using the Proximity tool and is measured based on the grid/cell distance 

that is per 15 meters. Figure 2 shows various spatial factors of land cover change in Kedungkandang District that 
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have gone through the Euclidean distance process. Then, the transition area along with the driving and limiting 

factors that have been in the euclidean distance, was analyzed in the MOLUSCE plugin with several techniques 

(ANN, LR and MCE) to produce a potential model for land cover change transitions.  

     
Distance to Road Distance to Commercial 

Facilities 
Distance to  

Existing Settlement 
Distance to Educational 

Facilities 
Distance to  

Electricity Network 

Source: Author, 2022 

Figure 2. Euclidean Distance Map of Spatial Factors of Land Cover Change  

3. Simulation of Land Cover Change Prediction 

The simulation of land cover change uses the Cellular Automata approach, based on the transition 

potential model implemented in the previous stage. This study performs five iterations of the simulation starting 

from 2016 to 2036. The simulation results, the generated predictions, need to be validated to test the accuracy 

of the results. One of the most frequently used techniques to test simulation results is Kappa statistics. The CA 

process in the MOLUSCE plugin also provides tools to validate simulation results, especially with Kappa 

statistics. The Kappa statistical process is to compare the simulated map with the actual map in the same year, 

in order to evaluate the accuracy of the model using the % truth and the Kappa validation coefficient (Mienmany, 

2018). 

Table 3. List of the used Datasets in this Study 

No. Varıabel Metadata Processing Source 

1 Land Cover 
1.1 2012 land cover map ▪ Satellite portrait dated 

04-28-2012  
▪ Cloud <10% 
▪ Resolusi of 30m  

Pansharpening process to a 
resolution of 15m 

Landsat 7 image 

1.2 2016 land cover map ▪ Satellite portrait dated 
05-08-2016  

▪ Cloud <10% 
▪ Resolution of 30m  

Pansharpening process to a 
resolution of 15m 

Landsat 8 image 

1.3 2020 land cover map ▪ Satellite portrait dated 
22-12-2020 

▪ Cloud <10% 
▪ Resolution of 30m  

Pansharpening process to a 
resolution of 15m 

Landsat 8 image 

2 Spatial Factors of Land Cover Change 
2.1 Distance to road  Malang city road base map Rasterized with a pixel size 

of 15x15 meters 
▪ OpenStreetMap  

▪ The Spatial Planning of 
Malang City for the period 
of 2020-2030 

2.2 Distance to existing 
settlement 

2020 land cover map Rasterized with a pixel size 
of 15x15 meters 

Citra Landsat 8 

2.3 Distance to electricity 
network 

POI of electrical substation Rasterized with a pixel size 
of 15x15 meters 

PT. PLN (State Electricity 
Company) 

2.4 Distance to educational 
facilities 

POI of school building Rasterized with a pixel size 
of 15x15 meters 

Data Scrapping 

2.5 Distance to commercial 
facilities  

POI of trade and service 
buildings 

Rasterized with a pixel size 
of 15x15 meters 

Data Scrapping 
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Source: Author, 2022 

Figure 3. Research Framework  

3. Results and Discussion 

3.1. Land Cover Change 

Land cover change is calculated through the MOLUSCE plugin as a power input, especially in 2012 – 

2016 and 2016 – 2020, resulting in a land cover change transition map (Figure 4) and a land cover change 

transition matrix (Table 4). The largest change in land cover from 2012 to 2020 in Kedungkandang District 

occurred due to the addition of 335.53 hectares of built-up land and a reduction of 297.90 hectares of vegetation. 

Agricultural areas have decreased, but not as significant as vegetation. In line with the built-up land, bare land 

also experienced an increase, indicated by the initiation of new development, resulting in the opening and 

preparation of open land. 

1. Transition: 2012 - 2016 2. Transition: 2016 - 2020 

            
            Source: Analysis, 2022 

Figure 4. Land Cover Change Transition Map 
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Table 2. Land Cover Change Transition Matrix  

Land Classification Areas (Hectares) Land Cover Change (Hectares) 

2012 2016 2020 

Built-up Areas 955.03 1,117.53 1,290.56 335.53 
Vegetation 2,244.17 2,150.13 1,946.27 -297.90 

Agricultural Areas 553.61 544.07 470.30 -83.31 
Water Bodies 26.10 26.10 26.10 0.00 

Bare Land 211.81 152.89 257.49 45.68 

Source: Analysis, 2022 

3.2. Transition Potential Model 

The transition potential model of land cover change in Kedungkandang District will use Artificial Neural 

Network, Logistic Regression and Multi Criteria Evaluation analysis techniques. When running the ANN 

model, a learning process is needed using the ANN model parameters (Table 5). This study utilizes a Moore 3x3 

neighborhood version (1 px). The neural network learning process requires 1,000 random samples to model the 

transition potential with ANN. With a learning rate of 0.08, a maximum of 100 iterations, 5 hidden layers, and 

momentum of 0.05, the best accuracy is obtained from these neural network learning parameters. The minimum 

validation error is 0.023, with a Kappa value reaching 90%, allowing for the simulation of land cover change 

prediction. 

Table 3. Parameters of Artificial Neural Network Learning Process Model 

Parameter Value 
Neighbourhood 1px 

Sampel 1000 
Learning rate 0,08 

Maximum iteration 100 
Hidden layer 5 

Momentum 0,05 

Source: Analysis, 2022 

Similar to the ANN transition potential model, the LR transition potential model also needs to define 

several parameters as described in Table 6. The maximum considered iteration number is 100, and the pixel 

neighborhood size is 1 px, which means 9 cells (3x3 cells) as well as 1,000 random samples. With these 

parameters, a pseudo r-square value of 99.1% is generated, which indicates that the logistic regression model is 

good.  

Table 4. Parameter Model Logistic Regression 

Parameter Value 
Neighbourhood 1px 

Sampel 1000 

Maximum iteration 100 

Source: Analysis, 2022 

The third transition potential model is MCE. The MCE in the transition potential model of land cover 

change requires the weight of each land change factor. The weights in this study use the results of previous 

research by Rofii (2021) generated through the AHP process. The study resulted in five spatial factors in land 

cover change in Malang City, where the four spatial factors were the same as the spatial factors used in this 

study. The weight of the spatial factors in this study is described in Table 7. 

Table 5. Spatial Factor Weighting Land Cover Change for MCE Model 

Spatial Factor Weight 
Existing built-up areas 0,404 

Roads 0,263 
Education facilities 0,125 

Commercial facilities 0,121 
Electricity network 0,087 

Source: (Rofii, 2021), processed 2022 
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The three models also produce a transition probability map (Table 8) to be further used in the simulation 

process for predicting land cover changes. The transition potential map represents the possibility of land change 

with a potential value range of 0 to 100. A value of 0 indicates a low potential for transitional change, while a 

value of 100 indicates a high transition potential. As the intensity of red color increases, it indicates higher 

potential transition to other land cover types. 

Table 6. Transition Potential Model Map 

Model Transition Potential Model Map 

ANN 

Vegetation → Built-up Areas Agricultural Areas → Built-up 
Areas 

Bare Land → Built-up Areas 

  
 

 

LR 

Vegetation → Built-up Areas Agricultural Areas → Built-up 
Areas 

Bare Land → Built-up Areas 

 
 

  

MCE 

 
Source: Analysis, 2022 
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3.3. Land Cover Change Prediction Simulation 

By utilizing the ANN transition potential model, the prediction of land cover change in Kedungkandang 

District was generated as described in Figure 5. The prediction results indicate a growth of built-up areas by 

146.78 hectares from 2016 to 2036. The most significant changes occurred in vegetation cover, which converted 

by 90.12 hectares, followed by open land with a conversion of 56.05 hectares. 

 
 Source: Analysis, 2022 

Figure 5. Land Cover Change Prediction with ANN Model 

Then, using the LR transition potential model, the predicted land cover changes in Kedungkandang 

District are described in Figure 6. The prediction results indicate a built-up land growth of 93.16 hectares from 

2016 to 2036. This increase in built-up areas tends to be smaller compared to the prediction results obtained 

using the ANN model. The largest conversion of land cover classes into other land cover classes with the LR 

model is vegetation, totalling 80.65 hectares. 

 
 Source: Analysis, 2022 

Figure 6. Land Cover Change Prediction with LR Model 

The prediction results in Figure 7.  from the MCE model indicate a built-up land growth of 975.85 hectares 

from 2016 to 2036. This area represents the largest increase in built-up land among the three models. The largest 

conversion of land cover classes into other land cover classes in the MCE model is vegetation, totalling 687.73 

hectares. 

 
 Source: Analysis, 2022 

Figure 7. Land Cover Change Prediction with MCE Model 

The land cover changes per period are shown in Table 9. It can be observed that generally, across all three 
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models, the largest growth in land occurs in the neighbourhoods of Buring and Cemorokandang. This is 

attributed to the development of the Kedungkandang square around these neighbourhoods, as well as their 

proximity to main road networks such as arterial roads connecting Malang City area with the city centre, the 

Malang Regency, and the exit toll gate of Malang City. Consequently, this directly contributes to a significant 

increase in the construction of new formal housing. 

Table 7. Prediction Map of Land Cover Change and Direction of Development of Built-up Land 

Model Prediction Map 

Y2020 Y2028 Y2036 

ANN 

  
 

 

LR 

 
 

  

MCE 

   
 

Source: Analysis, 2022 
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The simulation of prediction of land cover change results that the MCE model predicts a very high increase 

in built-up land according to the development of built-up land in actual conditions, while ANN and MCE predict 

a development of built-up land, but not too significantly. The MCE model is the only model that can predict the 

development of large built-up land around the Malang – Pasuruan toll gate, especially in 2020 which is in line 

with developments in the existing conditions in 2020. 

To validate the prediction results, a comparison is made between the actual 2020 land cover map and the 

2020 land cover prediction simulation map. Kappa statistics are used in the validation process with the results 

in the form of Kappa Histogram, Kappa Location and Kappa Overall (Table 10). Judging from the overall value 

of Kappa, the highest model accuracy is generated by the ANN and MCE models. Then the highest Kappa 

location value is generated by the ANN and LR models. It indicates that the ANN and LR models have the 

simulation ability to determine the location of the development of built-up land very well compared to the MCE 

model. Based on the validation results, it is known that ANN is the best predictive model of land cover change 

in Kedungkandang District, because it has the highest Kappa overall and Kappa location values.  

Table 8. Validation of Land Cover Prediction Simulation Results from Three Types of Models 

Model % of Correctness Kappa (Overall) Kappa (Histo) Kappa (Loc) 

ANN 90.77% 0.85 0.91 0.93 

LR 90.10% 0.84 0.91 0.93 

MCE 90.33% 0.85 0.94 0.90 

Source: Analysis, 2022 

3.4. Discussion 

Previously, Nugroho et al. (2018)  conducted a study using ANN models to predict land cover changes in 

Malang City, achieving a Kappa accuracy rate of 86% for each district in the area. However, the Kappa coefficient 

varied among different districts, with certain districts like Lowokwaru, Blimbing, and Kedungkandang showing 

coefficients above 0.6, indicating substantial prediction levels. This study employs a similar approach, utilizing 

the MOLUSCE plugin in the QGIS application but with the evaluation of 20 spatial factors. Pearson correlation 

analysis is employed to explore the relationships among these spatial factors more deeply. Positive correlation 

results indicate that the closer existing settlements are to the studied spatial factors, the greater the likelihood 

of land cover changes in the surrounding areas. This underscores the significant influence of these spatial factors 

on urban development, with the Pearson correlation approach aiding in a more comprehensive understanding of 

this dynamic. In contrast to previous research that did not involve prior evaluations of the spatial factors used, 

this study achieves a district-level accuracy of 0.85 or 85% using ANN models. 

The statement by  Shafizadeh-Moghadam et al. (2017) regarding the weakness of MCE, indicating that 

the transition potential model may undergo linear changes and produce predictions with a linear trend, can be 

reinforced by the findings of this study. Predictions of land cover changes using the MCE model show a tendency 

towards a linear trend, possibly resulting from researchers' intervention in the transition potential modeling 

process. In contrast, the ANN and LR models in this study are entirely managed by machine learning, thus 

eliminating subjective interference from researchers in setting boundaries or assessments. Furthermore, the 

Kappa Location results of the MCE model show the lowest Kappa value compared to other models in this study, 

although the Overall Kappa of the MCE model reaches the highest value equivalent to the ANN model. This 

suggests that, despite having good overall accuracy, the MCE model may be less suitable for depicting more 

complex spatial variations in land cover changes. In the end, this research confirms the viewpoint of Gharaibeh 

et al. (2020) that ANN is considered the optimal model relying on artificial intelligence. 
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The strength of this research lies in its utilization of advanced modeling approaches to address the 

challenges of predicting land cover changes in rapidly developing urban areas. Additionally, this study introduces 

an integrated approach using a combination of Big Data and the CA modeling approach with various transition 

potential techniques to generate more accurate predictions. Without conducting time-consuming primary 

surveys, this research effectively gathered data using renewable technologies such as remote sensing and Big 

Data mining. Validation and accuracy testing were performed using various machine learning-based efficient 

techniques.  

4. Conclusion 

This study proposes a modelling approach using Cellular Automata (CA) to predict land cover changes in 

the Kedungkandang District, Malang City. This approach has been the focus of previous research in modelling 

the dynamics of land cover changes due to its ability to capture complex spatial and temporal dynamics. Various 

transition potential modelling techniques, such as Artificial Neural Network (ANN), Logistic Regression (LR), 

and Multi-Criteria Evaluation (MCE), have been used to model the potential land cover changes. This study 

makes a significant contribution by comparing these three techniques in the context of the Kedungkandang 

District. Overall, the ANN transition potential model emerged as the best model for predicting land cover 

changes in the Kedungkandang District. Based on this, it can be concluded that machine learning models are 

more accurate, especially in predicting land growth in the Kedungkandang District, compared to models with 

human intervention. 

Overall, this study provides a significant contribution to understanding the dynamics of land cover 

changes in the urban area of the Kedungkandang District and highlights the importance of using integrated and 

advanced approaches in land growth modelling. The results can also provide valuable insights for decision-

makers in future urban management planning. Furthermore, these prediction results can serve as crucial input 

for the government in formulating spatial planning, particularly zoning spatial patterns in the Kedungkandang 

District as a basis for future control. However, some weaknesses need to be considered. For example, this study 

focuses on using CA to observe the behaviour (local or spatial rules) underlying the emergence of development 

patterns within land areas. Future research suggestions include modelling land cover change processes based on 

agents, thereby gaining an understanding of human actions in decision-making processes regarding future land 

cover changes. Additionally, this study predicts land cover changes based on previous land cover change trends, 

thus requiring similar target-based research (according to population projections and other objects). This study 

also does not incorporate future government development plans for the Kedungkandang District. Suggestions 

for future research could include incorporating these factors to understand the impact of government 

development plans on future land cover changes. 
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