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Abstract 

The goals of this article are to improve classification of land use/land cover information using LIDAR data and RGB 

images, as well as to compare the performance of various supervised machine learning classifiers (random forest and 

neural network) for extracting land use/land cover information. The 3D coordinates are first transferred to a high-

resolution raster via interpolation. Height and intensity raster grids are formed. Second, various raster maps - a 

normalized digital surface model (nDSM), the difference of returns, and the LiDAR intensity image -are combined to 

create a multi-channel image. Five scenarios with different combinations were created. Finally, on the five separate 

datasets, several classifications based on random forest and neural network classifiers were performed. The classification 

findings were subjected to a quantitative accuracy check. A comparison of these five methodologies has been conducted. 

Following that, morphological operations were used to eliminate noise . The results revealed also that the fourth approach 

is the best followed by the third approach then the last approach then the second approach followed by the first approach. 

It was discovered that random forest classification outperforms neural network classification in terms of classification 

accuracy. 
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1. Introduction  

Given the expanded availability of RS image archives, land use, and land cover (LULC) mapping is the 

most prevalent application of RS data for a variety of environmental investigations (Sheykhmousa et al., 2021). 

The LIDAR method is very promising and can be used to detect 3D objects. A laser scanner, a GNSS receiver, 

and an Inertial Navigation System (INS) are the most common components of an airborne LIDAR system 

(Diab et al., 2022; Zeng, 2008; Uzar, 2013). LiDAR is a dependable approach for gathering elevation data at 

many surface levels based on the laser beam's penetration through the ground. The recorded intensity of the 

backscattered laser beam can be used to classify surface items, and the elevation data can be utilized to produce 

a digital elevation Model (DEM). The first returns in vegetated areas often correspond to the upper landscape 

canopy level (e.g., vegetation tops), whereas the last returns correspond to the terrain surface. The first returns 

are utilized to create Digital Surface Model (DSM), while the last returns are used to create Digital Elevation 

Model (DEM) (Azizi et al., 2014). Intensity data, on the other hand, have the disadvantage of being 

undersampled and consequently exceedingly noisy (Rottensteiner et al., 2005). Because of their spectral 

composition and higher resolution than laser scanner data, multispectral images can provide useful information 

(Rottensteiner et al., 2005). 
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Image classification for land use and land cover mapping is also an important component in many 

remote sensing applications. However, due to data limitations, image processing techniques, and the 

complexity of the land use/land cover types, it is difficult to generate a satisfactory result for land use/land 

cover classification from remotely sensed data. Many factors must be considered in order to achieve good 

classification accuracy, including the study area's characteristics, the availability of suitable remotely sensed 

data and ground reference data, the proper use of variables and classification algorithms, the producer's 

experience, and the time constraint (Wong & Sarker, 2014). 

The process of converting Digital Number (DN) values to significant land cover information at each 

pixel location in an image is known as image classification (Akar & Güngör, 2012). There are various 

algorithms in  machine learning (ML ) that can be used for classification and having their pros and cons 

(Sharma et al., 2020). Supervised machine learning has shown great promise in the field of Land Use/ Land 

Cover Mapping. This approach involves training a machine learning model on labeled data, allowing it to learn 

to recognize different features. The model can then be used to classify features in new data, providing quick 

and accurate analysis (Rashdi et al., 2023). Land-cover maps can be obtained efficiently by converting 3D 

airborne multi-spectral LiDAR point cloud into 2D feature images and applying well-known machine learning 

algorithms (e.g., support vector machine, decision tree, and random forest) (Pan et al., 2020). 

Even though a lot of research has been done on LiDAR classification in terms of features, data format, 

and classifier selection or design (Wang et al., 2019), there are still certain issues with the current algorithms 

and selected features, necessitating more work. This paper aims to fill this gap by investigating the benefits of  

utilizing fusion of LiDAR and RGB image as a powerful data source for improving land cover mapping using 

five different features of LiDAR and RGB and exploring the effectiveness of two machine learning  algorithms 

Random-forest (RF) and Artificial Neural Networks (ANNs) for land cover mapping. A number of studies have 

investigated the potential of Random-forest (RF) classification to improve urban object classification from 

airborne LiDAR data (Chehata et al., 2009); Niemeyer et al. (2014), as well as for mapping reforested landslides 

using variables calculated either for each pixel (Chen et al., 2014) or for image objects delineated by 

segmentation (Li et al., 2015; Belgiu & Dra˘gut,2016). 

Artificial Neural Networks (ANNs), on the other hand, could be a useful alternative for mapping land 

cover for such high-dimensional images. The statistical distribution of the input pattern classes is not assumed 

by ANNs (Hugo et al., 2007). An artificial neural network (ANN) is a type of artificial intelligence that mimics 

some of the operations of the human brain. Weighted connections connect all neurons on a given layer to all 

neurons on the preceding and subsequent layers (Foody & G.M., 1999). An ANN is made up of layers, each of 

which has a collection of processing units (neurons). ANNs have two key characteristics: the ability to learn 

from input data and the ability to generalize and predict previously unseen patterns depending on the data 

source rather than any specific a priori model. ANNs learn about the regularities in the training data during 

the training phase and then develop rules based on these regularities that may be applied to unknown data 

(Foody & G.M., 1999). 

A number of studies have investigated the potential of neural network classification to improve land 

cover classification from LiDAR data with other data (Minh & Hien, 2011; Nguyen et al., 2005; Priestnall et al., 

2000), Many recent studies have combined LiDAR with multispectral imagery. One example of integration can 

be found in Hartfield et al. (2011). The authors investigated the feasibility of combining remotely sensed 

multispectral reflectance data and LiDAR-derived height information to improve land use and land cover 

classification and analyzed the data using classification and regression trees. In this study, Antonarakis et al. 

(2008) used elevation and intensity airborne LiDAR data to classify forest and ground types quickly and 

efficiently without the need for manipulating multispectral image files, employing a supervised object-oriented 

approach. 

Traditionally, LiDAR has been used to classify LiDAR into features such as buildings (Axelsson, 1999) 

and vegetation (Mason et al., 2003; Cobby et al., 2003). Until recently, there had been little progress in using 

LiDAR point cloud data with elevations and intensities for land cover classifications. Brennan & Webster 
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(2006) attempted classifications by using derived LiDAR surfaces to differentiate between different layers. 

They used four layers in their research (mean intensity, normalized height, digital surface model, and multiple 

Waveform LiDAR returns). LiDAR has traditionally been used to classify LiDAR into features such as 

buildings (Axelsson, 1999) and vegetation (Mason et al., 2003; Cobby et al., 2003). Until very recently, not 

much had been achieved by using LiDAR point cloud data with elevations and intensity for land cover 

classifications. Classifications have been attempted by Brennan & Webster (2006) who used derived LiDAR 

surfaces to differentiate between different layers. Their study used four layers (mean intensity, normalized 

height, digital surface model, and multiple waveform LiDAR returns).   

Schenk & Csatho (2002) proposed using the complementary properties of LIDAR data and aerial 

imagery to first achieve a more complete surface description through a feature-based fusion process, and then 

extract semantically meaningful information from the aggregated data. They stated that LIDAR data are 

particularly useful for detecting surface patches with specific geometrical properties and deriving other 

properties such as roughness.  Aerial images, on the other hand, can aid in determining surface boundaries and 

the locations of surface discontinuities. Haala & Brenner (1999), combined a normalized DSM from LIDAR 

data with three spectral bands from a scanned color infrared (CIR) image. Because the separation of trees from 

buildings is the most difficult task in this context due to the relatively low resolution of the LIDAR data, the 

near-infrared band must be included in the classification process. Instead of using all bands of multispectral 

images, the normalized difference vegetation index (NDVI) derived from the near-infrared and red portions of 

the spectrum can be used for its potential in vegetation discrimination (Lu & Trinder, 2003). 

Besides LiDAR height and intensity, NDVI, LiDAR point features, there are a few studies exploiting the 

characteristics of multiple returns of LiDAR data to facilitate land cover classification. By investigating the 

first and the last LiDAR data returns, individual (height or intensity) features or the difference among these 

features can be derived to increase the feature spaces (Yan et al., 2017). Wijaya et al. (2023), tested the ability 

of airborne LiDAR data to classify mangrove vegetation structures conducted in Ratai Bay, Pesawaran 

District, Lampung Province. The classification system applied integrates structure attributes of lifeforms, 

canopy height, and canopy cover percentage. Airborne LiDAR data are derived into canopy height models 

(CHM) and canopy cover percentage models, then grouped by examining statistics and the zonation 

distribution of mangroves in the study area. The results of this study show that airborne LiDAR data are able 

to map vegetation structures accurately.  

Given the wide range of input datasets that might be used to improve categorization, it's critical to 

include only the most relevant datasets to reduce computational burden without sacrificing accuracy (Corcoran 

et al., 2013). In this case, an RF classifier was utilized to assess each data source's contribution to the 

classification results (Gislason et al., 2006; Corcoran et al., 2013). The novelty of this study is that we 

investigated improving the classification accuracy of machine learning algorithms by using the integration of 

LIDAR-derived layers and RGB images. Two different classifiers, random forest and artificial neural network 

(ANN), were used in this study to classify the five different datasets. The objectives of this study were to (1) 

Investigate the potential of random forest and neural networks for automatic feature detection from LIDAR 

data and RGB image; (2) Improving Land use/ land cover mapping from LIDAR data and RGB images. In this 

context, RF and neural network classifiers have been used to evaluate the contribution of each data source to 

the classification results. 

2. Data and Methods 

2.1. Study Area and Data Sources  

The airborne LiDAR data and digital aerial photographs used in this study were obtained from flights 

organized by the national authority of Remote Sensing and space sciences on 2017. The airborne LiDAR had 

an average flying height of 1500 m collecting first and last pulse data with an average point density of 0.6/ m, 

and an average spatial resolution of 0.1 µper m. The study area was chosen at Magaga-El-Menia Governorate, 
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Egypt (Figure 1). The study area, comprising 1.92 km2. The following data Sources are used is (1) LIDAR 

point cloud captured with Trimble AX60 scanner contains the first and the last echoes of the laser beam. 

According to the specification of the laser scanner, it delivers very high point densities, 83,000 measurements 

per second; the average measurement density is 0.1 measurements/m2; the vertical accuracy of LIDAR data is 

10 cm; and the horizontal accuracy is 4 cm; and (2) RGB image with a resolution of 6 cm.  

 
Source: Mapsland 

Figure 1. Study Area  

2.2. Methodology 

In this section, the processing chain that has been carried out for improving land cover mapping from 

LIDAR Data and RGB Image data set was discussed. Figure 2. illustrates the methodological flowchart of the 

present investigation. The processing steps as follows: 

 

Figure 2. The Methodological Flowchart of the Present Investigation 
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Initially, LIDAR DSM and DTM were generated; nDSM was calculated; Cloud compare was used for 

derivation of LIDAR metrics (intensity, return difference); Noise filtering of intensity images was performed; 

Subsetting of intensity, nDSM, return difference, and RGB images; Coregistration of different feature sets. 

After that, Random Forest classification and neural networks have been used for feature detection. 

Classification was performed using five different approaches. In the first approach, classification is done using 

intensity image while in the second approach, classification is done using three RGB channels while in the 

third approach, classification is done using three RGB channels and intensity image. In the fourth approach, 

classification is performed using three RGB channels and a normalized digital surface model (nDSM). In the 

last approach, the classification was performed using a combination of three RGB channels and difference 

results; the classification accuracy was assessed using overall accuracy and kappa coefficient. Seventy randomly 

selected points were used for this purpose; morphological operations were performed to remove noise. 

2.3. Point Cloud Filtering 

During the pre-processing stage, the point cloud data were filtered to remove noise and superfluous 

data, and smoothing operations were done. In the processing phase, the point cloud data were processed. 

2.4. LIDAR-derived metrics 

LiDAR derivative layers were generated using cloud compare. 

2.4.1. Digital Surface Model (DSM) 

Airborne Light Detection And Ranging (LiDAR) technology allows for the quick gathering of high-

resolution surface elevation data, which is useful for a variety of applications (Priestnall et al., 2000; Bartels & 

Wei, 2006). The LiDAR data was used to create a DSM that contained both vegetation and buildings. The first 

echo has been used to generate a DSM using cloud compare, this DSM raster was interpolated from ALS point 

cloud data with a grid width of 20 cm. Figure 3.  illustrates LIDAR DSM. 

2.4.2. Digital Elevation Model (DEM) 

The LiDAR data was used to create a DEM that contained the bare earth last returns are used for the 

generation of digital terrain models (DTM). Figure 3.  depicts LIDAR DSM and Figure 4. illustrates LIDAR 

DEM. 

2.4.3. Intensity Image 

The ratio of the strength of the light reflected off an object to the light emitted can be defined as LiDAR 

intensity (Song et al., 2002). Gray-scale-coded objects are better differentiated using the intensity image (Uzar, 

2013). Figure 5. depicts intensity. Figure 6. depicts a swipe of RGB image and intensity. 

2.4.4. Normalized Digital Surface Model (nDSM) 

The nDSM is produced using raster map algebra to subtract the DTM from the DSM (Zhu et al.,2011). 

This feature will help distinguish elevated objects from ground or non-ground objects (Guan et al,2012). 

Figure 7. depicts nDSM. 

2.4.5. Difference of Returns 

The height difference between echoes (FL-Diff= First echo - last echo): This feature will help 

distinguish high-rise penetrable vegetation (Guan et al, 2012). Figure 8. Illustrates the difference of return. 

2.5. Feature Detection using Classification 

There are four types of land covers identified such as urban, vegetation, road, and water. The land cover 

classification was implemented with the existing data sets using five approaches. To evaluate the appropriate 
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classification method for the LiDAR data, two classification methods were used such as random forest and 

neural network classifier. 

   

        Figure 3. LIDAR DSM     Figure 4. LIDAR DEM Figure 5. Intensity 

   

Figure 6. The Swipe of RGB  

Image and Intensity 

         Figure 7. nDSM Figure 8. Difference of Return 

3. Results and Discussion 

Land use/ land cover mapping is important in urban planning, environmental study and resource 

management. The goal of this study is to evaluate if LiDAR and RGB data can be used to improve land cover 

categorization, as well as  investigate which  machine learning classification algorithm is best for the  LIDAR 

data  and RGB image. Random Forests (RF) and Neural Networks (NN) classifiers are experimentally 

compared to examine their performances in the field of land cover classification of airborne LIDAR data and 

RGB image. Despite the fact that LiDAR classification has been extensively researched in terms of features, 

data format, and classifier selection or design. Several problems remain with the present methods and features 

that have been chosen. 

3.1. Land Cover Classification 

3.1.1. Random Forest 

The random forests algorithm is a machine learning technique that is increasingly being used for image 

classification. Random forests is an ensemble model which means that it uses the results from many different 

models to calculate a response. In most cases, the result from an ensemble model will be better than the result 

from any one of the individual models. In the case of random forests, several decision trees are created (grown) 

and the response is calculated based on the outcome of all of the decision trees (Horning,2010; Dahinden 2009). 

The main advantages of the Random Forest Algorithm are (Tokar et al,2018): 

1. Its accuracy is as good as Adaboost's and sometimes better. 

2. It’s relatively robust to outliers and noise. 

3. It’s faster than bagging or boosting. 

4. It gives useful internal estimates of error, strength, correlation, and variable importance. 

5. It’s simple and easily parallelized. 
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The trees number was set to 1000. 

Figure 9 illustrates classification using the random forest classifier (the best scheme number four). 

Figure 10 illustrates the overall classification accuracy and Kappa coefficient for the five approaches of the two 

classifiers. 

 

Figure 9. Classification using the Random Forest Classifier (the best scheme). 

 

Figure 10. Overall Classification Accuracy and Kappa Coefficient for the Five  

Approaches of the two Classifiers 

NNs are computational models inspired by the human brain. The multilayered feedforward NN has an 

input layer to receive inputs from sensors or other sources, an output layer to communicate with the outside 

world, and one or more hidden layers for data processing to transform the inputs into outputs. Each layer is 

made up of processing elements called neurons. Every neuron has a number of inputs, each of which must store 

a connection weight to indicate the strength of the connection. Connections are initially made with random 
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weights. The neuron sums the weighted inputs and computes a single output using an activation function. A 

number of different activation functions can be used. Each neuron in a layer is fully connected to every neuron 

in the subsequent layer, forming a fully connected feedforward NN. In a feedforward NN, information flows 

from the input layer to the output layer without any feedback. Feedforward nets are guaranteed to reach 

stability and are faster than feedback nets (Packianather & Drake, 2005). In the present study, the Logistic 

activation function is used. Optimum parameters were determined as 0.9, 0.2, 0.9and 0.1 for training threshold 

contribution, training rate, training momentum, and training RMS exit criteria, respectively. 

The Kappa coefficient measures the accuracy between classification results and reference data using the 

major diagonal and the chance agreement (Jensen, 2005). Table 1. shows the overall classification accuracy and 

Kappa coefficient for the five approaches of the random forest, Table 2. shows overall classification accuracy 

and Kappa coefficient for the five approaches of the neural network. The RMS plots of the neural network of 

the five cases were satisfied. The worst one was the RMS plot of the first case. 

Table 1. Overall Classification Accuracy and Kappa Coefficient for the Five Approaches of the Random Forest 

Feature Random Forest Overall Accuracy (%) Random Forest Kappa Index  

Intensity image  63.2% 0.61 

Three RGB channels %92.2  0.85 

Three RGB channels+ intensity %94.2  0.89 

Three RGB channels+ nDSM %95.9  0.91 

Three RGB channels+ Difference of 
returns 

93.5% 0.85 

 
Table 2. Overall Classification Accuracy and Kappa Coefficient for the Five Approaches of the Neural Network 

Feature Neural Network Overall Accuracy (%) Neural Network Kappa Index  

Intensity image  %61.6  0.59 

Three RGB channels %91.7  0.83 

Three RGB channels+ intensity %93.5  0.87 

Three RGB channels+ nDSM %94.3  0.90 

Three RGB channels+ Difference of 
returns 

92.1% 0.94 

 

There are many factors that affect classification accuracy, especially with machine learning methods. One 

of the most crucial ones is the amount of training data. But getting enough training data can be very expensive 

or challenging, so finding other ways to increase prediction accuracy is necessary. In order to bridge the 

existing gap, this paper looks at the benefits of using five different LiDAR and RGB features to improve land 

cover mapping. It also evaluates the effectiveness of two machine learning algorithms, Random Forest (RF) 

and Artificial Neural Networks (ANNs), for land cover mapping of LiDAR and RGB images. Combining Lidar 

and RGB data, has overcome challenges related to the limits of active and passive remote sensing systems, 

providing promising results in land cover classification.  

Random Forests (RF)  classification was performed on Snap7 and Neural Networks (NN) classification 

was performed on ENVI5.1 using five different feature sets. Four types of land covers identified (urban, 

vegetation, road, and water) then   the land cover classification was implemented with the existing data sets 

using five approaches.RGB was integrated with other ancillary data for improving the land cover classification 

accuracy. The contribution of the individual metrics has been evaluated. The novelty of this article is in the 

selection of the individual metrics combinations that used to improve land cover classification and evaluation of 

the use of two machine learning algorithms RF (ensample classifier) and  NN. 

The first segmentation was performed using the intensity image, the second segmentation was 

performed using the three RGB channels whereas the third segmentation was performed using the three RGB 
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channels and intensity image. The fourth segmentation was performed using the three RGB channels and 

normalized digital surface model (nDSM). The last segmentation was performed using a combination of three 

RGB image channels and the difference of returns. The use of NN  with LiDAR  and RGB image classification 

appears more complex than statistical classifiers, because of the problems related to their design and 

implementation. The performance of an NN depends on its architecture and on the method of presenting the 

data and carrying out the training. The reason of using neural network classifier in LIDAR classification is 

that neural network use powerful learning algorithm that can give better classification result. Also Neural 

network classifier solves the mixed pixels problem and able to generalize.  

There are many advantages of neural network classifier such as it does not require data that has normal 

distribution as maximum likelihood classifier does. Also neural network can integrate data from different 

sources such as data from geographic information system, which standard parametric classifier cannot work 

with. Neural network can also integrate multi sensor data types and complementary information content 

(object based information, texture and spectral information) in one classification process. However, their 

applicability has been challenged by the complexity of neural networks parameterization. The researchers 

noted that a neural network has great potential as a pattern recognition method for multi-source remotely 

sensed data because of the distribution-free nature of a neural network. 

 In the current research five different scheme were used with different attributes(features) such as 

normalized digital surface model (nDSM), the difference of returns, and the LiDAR intensity image  with RGB  

image which require to modify the architecture of network  to include these attributes in the input layer for 

each of the five classification performed with NN. 

 Quantitative accuracy assessments of the classification results were performed. Based on Table 1-2 and 

figure9   the overall accuracy and kappa statistics of the classification were calculated for the ten classifications 

that were performed with the five datasets. For the random forest, the overall accuracy of the first approach 

was 63.2%, and the kappa coefficient was 0.61, the overall accuracy of the second approach was 92.2%, and the 

kappa coefficient was 0.85, the overall accuracy of the third approach was 94.2%, and kappa coefficient was 

0.89, the overall accuracy of the fourth approach was 95.9%, and kappa coefficient was 0.91, and the overall 

accuracy of the last approach was 97.5%, and kappa coefficient was 0.95. For the neural network, the overall 

accuracy of the first approach was 61.6%, and the kappa coefficient was 0.59, the overall accuracy of the second 

approach was 91.7%, and the kappa coefficient was 0.83, the overall accuracy of the third approach was 93.5%, 

and kappa coefficient was 0.87, the overall accuracy of the fourth approach was 94.3%, and kappa coefficient 

was 0.90, and the overall accuracy of the last approach was 96.7%, and kappa coefficient was 0.93.  

From the results, we can see that the overall accuracies by using the radiometric component of LiDAR 

data, i.e. intensity alone are 63.2% and 61.6% for the random forest and neural network respectively. The 

errors in classification results may be due to the similarity in intensity values between land cover classes and 

intensity data has a certain level of noise, which may degrade the classification performance .While, the overall 

accuracy using three RGB channels 92.2%and 91.7% for the random forest and neural network respectively. 

One can attribute this to the spectral information (multispectral capability of RGB image). Meanwhile, by 

combining both three RGB channels+ intensity as the input images improved the results to %94.2 and %93.5 

for the random forest and neural network respectively. Because of the LiDAR intensity data can contribute to 

the classification of shaded areas in urban environment, which can compensate such drawbacks induced by 

using high resolution digital aerial image. Furthermore, by combining both nDSM (which represents the 

above-ground feature only) and intensity data as the input images improved the results to 95.9% and %94.3 

due to inclusion of height data from Light Detection and Ranging (LIDAR) data as an additional channel 

together with intensity. 

The RMS plots of the neural network of the five cases were satisfied. The worst one was the RMS plot 

of the first case. Nevertheless, combining three RGB channels+ Difference of returns improve the overall 

accuracy of the classification results to 93.5% and 92.1% for the random forest and neural network respectively 

compared to the intensity image alone and three RGB channels alone. It was found that by adding Multi-cue to 
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the three RGB channels, the classification results produced increase accuracy and more features were 

identified.  

The results revealed also that the fourth approach is the best followed by the third approach then the 

last approach then the second approach followed by the first approach. The suggested approach significantly 

improves the accuracy of feature detection over approaches when only images and/or lidar data are used. It 

was found that the: (1) LiDAR intensity data is a very useful attribute for distinguishing between manmade 

and ground features; (2) LiDAR-derived height data is a very useful attribute for distinguishing elevated 

features (such as buildings, and trees) from ground features, where such a process cannot be achieved using 

color aerial photos only. Aerial image and airborne LiDAR data fusion can provide mutual benefits by 

compensating for each other's absence of 3D topography and multispectral information. 

After that morphological operations were performed in order to remove noise. Morphological opening 

with a kernel size of 5×5 followed by morphological closing with a kernel size of 5×5 have been used utilizing 

ENVI 5.1 software intensity image only. According to this result, it can be deduced from the predictions that 

RF outperformed NN in classifying airborne LiDAR data and digital camera image. In addition, RF is more 

computationally effective as compared to NN. It was found  also that random forest classification outperforms 

neural network classification in terms of classification accuracy one can attribute this due to random forest is 

ensample classifier and Neural network classification results mainly depends on the number of training 

samples, limiting the performance and accuracy when the training data set is insufficient for the learning 

algorithm.   

The literature from the past has listed the advantages of the RF classification algorithm. For example, 

RF can process high dimensional data with low computational cost, low sensitivity to noise, small training 

sample sizes (Xie, 2023; Rodriguez-Galiano et al., 2012), and few overfitting or overtraining problems (Xie, 

2023; Gislason et al., 2006). It can also combine high classification accuracy with great efficiency. 

Xie, (2023); Rodriguez-Galiano & Chica-Rivas (2014), operated a land cover classification of a 

heterogeneous area with 14 categories by incorporating a suite of multitemporal Landsat images and digital 

terrain model (DTM) variables and RF algorithm. Results showed the superiority of RF over traditional single 

classifiers such as DT. In addition, RF not only provided a very high classification accuracy (0.92 in kappa), 

successfully generated and classified the most heterogeneous categories (e.g., shrublands) with 30% better 

accuracy, but it also ran efficiently on high-dimensional data and was able to more clearly differentiate between 

the different categories. Using Landsat-8 and Sentinal-2A, Loukika et al. (2021) found that RF is the best 

classifier among SVM, RF, and CART in terms of overall accuracy. 

 Christovam et  al. (2019) made a comparison of three classification algorithms: Spectral Angle Mapper 

(SAM), Support Vector Machine (SVM) and Random Forest (RF) using hyperspectral imagery. The findings 

demonstrate that SVM and RF algorithms outperformed by far the SAM in terms of accuracy, and that the RF 

performing marginally better than the SVM.  Tan et al. (2021), classified Landsat OLI-8 land use and land 

cover by comparing RF, ANN, and other classifiers. They discovered that RF performed better than ANN 

classifiers. Mishra et al. (2017) compared MLC, RF, SVM, and ANN in classifying Dual-polarimetric C-band 

SAR data and found that RF and SVM produced the best results. Yusof et al. (2021) found that ANN yielded 

the worst results in their research for evaluating SVM, SAM, and ANN for classifying Landsat-8 and Sentinel-

2 imageries (Dixit & Agarwal, 2020). Ambinakudige & Intsiful (2022) implemented SVM and ANN using 

hyperspectral data , they found that SVM producing superior outcomes to ANN (Alshari et al.,2022). 

Based on the results of the literature, we were able to confirm the superiority of the RF algorithm. Im et 

al. (2008) conducted a sensitive analysis on eight different LiDAR-derived surfaces for land cover classification 

on three different sites. It was found that the overall accuracy was increased by 10% to 20% when the intensity 

data was included in the feature spaces in their experiment (Yan et al., 2017). Based on the results of the 

literature, we were able to confirm that using different LiDAR-derived feature intended to increase the 

accuracy of land use land cover classification  
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4. Conclusion 

This study aimed to improve land cover mapping from LIDAR data and RGB image using machine 

learning algorithms and multi-cue of LIDAR data and RGB image as input data. Also established a 

performance comparison between two supervised machine learning classifiers random forest (RF) and neural 

network (NN) for land cover classification of LIDAR data and RGB images.  In this study, we sought to 

maximize the power of machine learning classification and LiDAR information by deriving features like the 

normalized surface model (nDSM), a difference of returns, and the LiDAR intensity image. RGB was 

integrated with other ancillary data for improving the land cover classification accuracy. The contribution of 

the individual metrics has been evaluated. 

This paper attempts to fill the current void by examining the advantages of combining LiDAR and RGB 

images as a potent data source for enhancing land cover mapping through the use of five distinct LiDAR and 

RGB features, as well as compare the efficacy of two machine learning algorithms. Random Forest (RF) and 

Artificial Neural Networks (ANNs) for improving land cover mapping of LiDAR and RGB images. The results 

of the land cover classification show that the classification using individual band (Intensity) has an overall 

accuracy of 63.2% and 61.6% for the random forest and neural network respectively.Then the classification 

with a combination of more bands (Multi-cue) improved the results of accuracy by approximately 30% 

compared with using individual band. 

This proposed approach significantly improves the accuracy of feature detection over approaches when 

only images and/or lidar data are used. The results revealed also that the fourth approach is the best followed 

by the third approach then the last approach then the second approach followed by the first approach. It was 

found that the random forest classification gives better classification accuracy than neural network 

classification due to it is ensample classifier.  It is recommended to use algorithms to remove noise in the 

processing of intensity images. Also, it is recommended to do additional research to use object-based 

classification. 

In future  work, we will extend the use of   these algorithms to  include 3D point cloud from LIDAR and 

stereo images , which should prevent loss of data and accuracy during the gridding process. We plan to 

combine  the LIDAR point cloud with hyperspectral data to further improve land cover mapping  accuracy. It 

would be simple to apply the suggested framework to other remote sensing data, such as LIDAR (unmanned 

aerial vehicle )UAV and UAV image data. Also it is suggested to integrate multisource data with additional 

machine learning and deep learning classification algorithms. 
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