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Abstract 

Mapping and inventory of the distribution and composition of mangrove vegetation structures are crucial in managing 

mangrove ecosystems. The availability of airborne LiDAR remote sensing technology provides capability of mapping 

vegetation structures in three dimensions. It provides an alternative data source for mapping and inventory of the 

distribution of mangrove ecosystems. This study aims to test the ability of airborne LiDAR data to classify mangrove 

vegetation structures conducted in Ratai Bay, Pesawaran District, Lampung Province. The classification system applied 

integrates structure attributes of lifeforms, canopy height, and canopy cover percentage. Airborne LiDAR data are derived 

into canopy height models (CHM) and canopy cover percentage models, then grouped by examining statistics and the 

zonation distribution of mangroves in the study area. The results of this study show that airborne LiDAR data are able to 

map vegetation structures accurately. The canopy height model derived using a pit-free algorithm can represent the 

maximum tree height with an error range of 3.17 meters and 82.3-88.6% accuracy. On the other hand, the canopy cover 

percentage model using LiDAR Fraction Cover (LFC) tends to be overestimate, with an error range of 16.6% and an 

accuracy of 79.6-94.7%. Meanwhile, the classification results of vegetation structures show an overall accuracy of 77%. 
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1. Introduction 

Mangrove is a type of vegetation characterized by its ability to grow in tidal areas, and its presence plays 

an important role in human life in coastal regions (Murray et al., 2019). Well-established mangroves can 

provide various environmental services in coastal areas. For example, as carbon storage, protecting coastlines, 

serving as habitats for marine biota, and potentially becoming tourist attractions that provide significant 

economic benefits to coastal communities (Alongi, 2009; Duke et al., 1998; Saenger, 2002). On the other hand, 

Indonesia is an archipelagic country with the largest mangrove ecosystem in the world (FAO, 2007; Spalding 

et al., 1997). In 2021, the area of mangrove forests in Indonesia was estimated to be around 3.31 million 

hectares (Ministry of Environment and Forestry, 2021). Therefore, information regarding the distribution and 

condition of mangroves is crucial to support various sustainable mangrove management policies in Indonesia.  

A functional relationship between components in the mangrove ecosystem results in a complex forest 

structure with tall trees and a dense layer of vegetation vertically and horizontally (Ehbrecht et al., 2021). A 

mapping classification scheme has been developed to facilitate understanding the distribution of mangrove 

vegetation structures. It groups mangroves based on their structural similarities. Specht (1970, in Saenger, 
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2002) developed a classification scheme that groups vegetation structures based on lifeforms attributes, tree 

height, and leaf coverage. Kamal et al. (2015) also conducted a similar classification model, where vegetation 

composition and canopy coverage were important parameters in classifying mangrove zones. Even the 

classification scheme of vegetation structures can be combined with species zoning to map more detailed 

typologies of mangrove vegetation (Almeida et al., 2020). 

The utilization of remote sensing data provides advantages in vegetation studies, particularly in 

presenting spatial information and conducting research at local to global scales (Xie et al., 2008). One remote 

sensing technology developed for vegetation studies is Light Detection and Ranging (LiDAR), which can 

represent forest vegetation structure attributes in three dimensions (Bakx et al., 2019; Coops et al., 2021; 

Lefsky et al., 2002). LiDAR data can be extracted into vegetation structure information at the community 

level, and in some cases, detailed studies can be conducted at the individual level (Bakx et al., 2019; Yin & 

Wang, 2019).  

Based on previous research, the most frequently derived vegetation structure parameters from LiDAR 

data include volume, height, surface biomass, basal area, canopy cover, and height complexity, providing 

accurate results (Almeida et al., 2019; Armston, 2009; Bakx et al., 2019; Coops et al., 2021; Guo et al., 2017; 

Hopkinson & Chasmer, 2009; Khosravipour et al., 2014; Lefsky et al., 2002; Mahoney et al., 2018; Yin & Wang, 

2019). Vegetation structure attributes derived from LiDAR can be used as variables in classifying mangrove 

species zonation, enabling an accurate inventory of mangrove ecosystem conditions (Barenblitt et al., 2023; 

Kamal et al., 2015; Li et al., 2019, 2021; Ou et al., 2023; Wang et al., 2018, 2022; Zhang et al., 2006). However, 

there haven't been many studies examining the utilization of LiDAR data for the classification of mangrove 

vegetation structures. Mangrove zonation, nevertheless, is not only associated with species differences but also 

with the diversity of vegetation structures (Lucas et al., 2017). 

Despite its potential for data utilization in vegetation studies, there have been relatively few studies on 

mangrove mapping using LiDAR data in Indonesia. This study aims to investigate the classification of 

mangrove vegetation structures using airborne LiDAR data in the mangrove forest of Ratai Bay, Pasawaran 

District, Lampung Province. The main focus of this research is to test the ability of airborne LiDAR data to 

classify the structure of mangrove vegetation in the study area. An accuracy assessment will be conducted on 

vegetation structure variables extracted from LiDAR data and their classification results.  

The choice of research location was based on the fact that the mangrove forest in Ratai Bay is part of the 

mangrove ecosystem in Lampung Bay which grows naturally and has a high variation in species composition 

and vegetation structure (Dwiputra & Mustofa, 2021; Juniansah et al., 2018; Nabilah et al., 2021; Wijaya et al., 

2023). 

2. Data and Methods 

2.1. Study Site 

The study site is located in Ratai Bay, Pesawaran Regency, Lampung Province, situated between 105º 

09’ 40” - 105º 10’ 55” East and 05º 34’ 45” - 05º 36’ 04” South (Figure 1). The research site is a natural habitat 

of mangroves which is located at the estuary of the Ratai River. It is a relatively protected area of Lampung 

Bay that making it an excellent location for this type of study. There have been few studies on the distribution 

and composition of mangroves in this location. Research on mangroves in Teluk Ratai was conducted by 

Juniansah et al. (2018), indicating that this location has high potential for primary productivity of mangrove 

vegetation, as demonstrated by its high Leaf Area Index (LAI) values. Additionally, Wijaya et al. (2023) also 

mention that Teluk Ratai has a high biodiversity of mangrove species. The research site is also part of the 

mangrove conservation zone outlined in the coastal and small islands zone plan issued by the Province of 

Lampung. Therefore, an inventory of its structure and vegetation composition are crucial to support the 

management and conservation of mangroves. 
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Figure 1. Study site in Ratai Bay and the Fieldwork Plots Distribution; the Background Image is a Pan-

Sharpened Standard False Color Pléiades Image Acquired in 2020.  

2.2. Research Data 

The primary data used in this study is airborne LiDAR data. Airborne LiDAR is a laser system installed 

on an aircraft that provides three-dimensional position information of vegetation objects (Coops et al., 2021). 

The laser pulses emitted by the LiDAR sensor can penetrate through the gaps between leaves in the canopy to 

the ground surface, enabling the LiDAR data to produce several attributes of vegetation structure, such as 

mean canopy height, canopy cover percentage, high canopy complexity, basal area, and stand volume (Coops et 

al., 2021; Luther et al., 2019; Mahoney et al., 2018). The specifications of the airborne LiDAR data used in this 

study can be seen in Table 1. In addition to using airborne LiDAR data, this study employs the Indonesian 

National Mangrove Map to discriminate between mangrove and non-mangrove vegetation areas. The airborne 

LiDAR data used in this study were acquired in December 2020 to model the coastline and were not 

specifically intended for mapping mangroves. Therefore, there is mangrove vegetation in the study area that is 

not covered by the airborne LiDAR data. The extent of the mangrove area covered by the airborne LiDAR 

data can be seen in Figure 1. 

Table 1. Data Source and Specification 

No Data Type Data Source Specification 
1 Airborne LiDAR Geospatial Information Agency 20 points per square meter, 

acquired in December 2020 
2 Indonesian National 

Mangrove Map 
Ministry of Environment and Forestry of the 
Republic of Indonesia  

The map scale is 1: 25,000 

3 Field survey data Ground check data Data acquired in October 2022 
Source: Research Data Specification, 2023 

2.3. Fieldwork Data 

Fieldwork was conducted to collect data about mangrove forest characteristics, tree height, canopy cover 

percentage, and dominant species. The fieldwork plot distribution is presented in Figure 1, and the field plot 

data scheme implemented in this study can be seen in Figure 2a. We conducted visual observations for lifeform 

and tree height measurements for all identified mangrove vegetation within 10 x 10-meter plots. The 

hemispherical photography procedures were carried out using a camera lens with a 180-degree field of view 

that could represent the size of the 10 x 10-meter plots (Figure 2b). The photo capture location was precisely 
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at the midpoint of the sample plot or the same as the Global Navigation Satellite System (GNSS) receiver 

measurement location. It is intended to determine the photo's absolute coordinates and ensure that the 

coverage could represent the canopy closure condition throughout the plot. The canopy closure percentage 

was estimated on hemispherical photos by examining the ratio of light gap fraction to leaves throughout the 

photo coverage (Chianucci, 2019; Jennings et al., 1999; Korhonen et al., 2006) (Figure 2c). The canopy cover 

percentage estimation was carried out with the help of the Gap Light Analyzer software (Frazer et al., 1999). 

 
Source: Field Documentation, 2023 

Figure 2. Fieldwork Activity: (a) Field Plot Data Scheme, (b) Documentation of Tree Height and 

Hemispherical photo Collection, (c) hemispherical Photo Result and canopy Cover Percentage Estimation. 

2.4. Mangrove Vegetation Structure Mapping 

Before analysis, the LiDAR point cloud data had to be processed through a height normalization for the 

z-value to represent the height of the tree canopy. It is because the z-value in the point cloud data was 

calculated based on the ellipsoid height reference, not the height of the ground beneath it (Poorazimy et al., 

2022). In height normalization, the z-value of the point cloud will be subtract by the height value of the ground 

surface, which has been formed previously using a triangulated irregular network (TIN). Figure 3 shows the 

research flowchart conducted in this study. 

 
Source: Research Component Identification, 2023 

Figure 3. The Research Flow Chart Conducted in this Study. 
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The canopy cover percentage was extracted using the LiDAR fractional cover (LFC) algorithm developed by 

(Armston, 2009). The LFC works by using the concept of gap fraction on the first return pulse of LiDAR data 

that hits vegetation objects. As shown in Eq (1), the number of first returns that hit vegetation canopies is 

compared to the total number of first returns that reach the ground surface on a specific grid unit area 

(Armston, 2009; Hopkinson & Chasmer, 2009). Considering the density of point cloud data, the grid size for 

the canopy cover percentage map was set at 2 x 2 meters. 

………………… . (Eq.1) 

The vegetation height parameter was extracted using the canopy height model (CHM) algorithm based 

on the pit-free method developed by Khosravipour et al. (2014). The pit-free algorithm works by finding the 

highest value of the first return and processing it layer by layer to avoid data holes in the resulting canopy 

height (Khosravipour et al., 2014; Arjasakusuma et al., 2020; Poorazimy et al., 2022). The grid size of the 

canopy height model was set to 2 x 2 meters, the same as the canopy percentage cover map. In further 

applications, the CHM generated from LiDAR data can be used to identify the canopy boundaries of each 

mangrove tree (Yin & Wang, 2019). After vegetation height parameters and canopy cover percentage 

extracted, both data were classified into a vegetation structure map using an object-based approach. The 

segmentation process was conducted using a multi-resolution algorithm to separate mangrove community 

zones in the study area. This algorithm was chosen because of its ability to divide object boundaries in high-

spatial-resolution images based on scale, shape, and compactness parameters (Kamal et al., 2015; Kamal, Phinn, 

et al., 2016; Pasaribu et al., 2021). The segmentation parameter values were determined through several trials 

to ensure that the mangrove objects' homogeneity, based on height and canopy cover percentage values, could 

be separated. The resulting segmentation with parameter values of scale (11), shape (0.2), and compactness 

(0.6) can be seen in Figure 4. 

 
Source: Image Analysis, 2023 

Figure 4. An example of Segmentation Results of Airborne LiDAR Data. 

The classification of vegetation structure was carried out using a knowledge-based classification system 

formed through a decision tree rule-set classification. The classification system used was based on the modified 

vegetation structure classification developed by Specth (1970, in Saenger (2002)). This classification system 

divides vegetation structure based on attributes of lifeform, height, and canopy cover percentage. In addition to 

species similarity, the equivalence of vegetation structure classes can form the mangrove zonation (Kamal et 

al., 2016). 

2.5. Accuracy Assessment of the Mapping Results 

An accuracy assessment was conducted to evaluate the quality of the vegetation structure classification 

map against the data from mangrove plot surveys in October 2022. The sample plot survey method used 

modified procedures from the National Indonesian Standard No. 7717-2020 on Mangrove Geospatial 
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Information Specifications issued by the National Standardization Agency in 2020. Information collection 

included lifeforms, tree height, and canopy cover percentage to describe field vegetation structure classes. The 

lifeform was visually observed, canopy closure percentage was measured using hemispherical photography 

techniques, and tree canopy height was measured using a laser range finder on each tree within the plot. The 

accuracy of the classification results for vegetation structure is calculated using a error matrix, a technique 

commonly employed in assessing the outcomes of remote sensing data classification (Congalton, 1991). In 

addition, the canopy height model and canopy cover percentage were also validated by calculating the root 

mean square error (RMSE). Both of these data have ratio information, so their accuracy can be estimated by 

converting the RMSE value to a 95% Confidence Level (95 CL) (Kamal et al., 2021; Wicaksono et al., 2011). 

3. Result and Discussion 

3.1. Canopy Height Model Results 

The results of the CHM based on LiDAR data show that the mangroves in Teluk Ratai have a maximum 

canopy height of 35 meters, which is nearly the height of the tallest mangrove in the world at 39 meters based 

on a global (Aslan & Aljahdali, 2022). The canopy height model also reveals that the average height of the 

mangroves in the study area is 18 meters. The high canopy of the mangroves in the study area indicates the 

potential for high surface carbon stocks, as previous studies have shown a strong correlation between canopy 

height models and aboveground carbon stocks in mangroves (Aslan & Aljahdali, 2022; Simard et al., 2006). 

Furthermore, the height of mangrove vegetation in the research area indicates that the mangrove habitat in 

the Teluk Ratai region has geographical physical conditions that strongly support mangrove growth, 

especially in terms of salinity levels (Kodikara et al., 2018). 

The validation data used in this study consists of 10x10 meter survey plots, which might contain more 

than one individual tree. The pit-free algorithm used in the CHM tends to overestimate the maximum canopy 

height of trees compared to the average tree height in the field. The spatial distribution of CHM can be seen in 

Figure 5a; most of the high mangrove tree are located in the middle of the study site with the maximum tree 

height of 35 meters. Plot 1:1 in Figure 5b shows that the CHM tends to give estimates that are too high 

compared to the average tree height in the field. It is because the pit-free algorithm searches for the highest z-

value in each grid/pixel of the LiDAR point cloud data (Khosravipour et al., 2014). In addition, field checks 

indicate that the tallest tree canopy in the survey plot tends to overshadow the canopy of the trees below. 

 
Source: data analysis, 2023 

Figure 5.  The CHM Results: (a) LiDAR-based CHM, and  

(b) 1:1 Plot of CHM Compared to the Maximum Tree Height in the Field. 
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The performance of the CHM using airborne LiDAR data in this study shows good results. The 

accuracy test calculations show that the canopy height model has an error of 3.1 meters and an accuracy range 

of 82.6-88.3% (minimum-maximum accuracy) compared to the maximum height in the field. On the other hand, 

the performance of the canopy height model will be worse, with an RMSE of 6 meters and an accuracy range of 

65.5-88.3% if compared to the average height in the field. The use of a laser range finder instrument in the field 

is indicated as one of the factors that may have contributed to the less optimal validation test results. The use 

of a laser range finder instrument has difficulties in targeting the top point of trees due to the dense 

mangroves. Therefore, it is highly recommended in future research to test the CHM model with Terrestrial 

LiDAR data to get more representative accuracy results. 

3.2. Percent Canopy Cover Estimation 

Based on the analysis of LiDAR data, the study area showed a relative percent canopy cover with an 

average density of 94%. The percentage of canopy cover is considered highly reasonable, as mentioned by 

Juniansah et al. (2018), who stated that the Teluk Ratai region possesses a complex mangrove vegetation 

structure. It indicates that the study area is a natural mangrove ecosystem with suitable habitat conditions. 

The high canopy cover percentage also indicates minimal human activities in the mangrove ecosystem (Kamal, 

et al., 2016). This result is consistent with findings that high canopy cover levels can indicate a healthy 

mangrove ecosystem (Nurdiansah & Dharmawan, 2021; Nicolas et al., 2004). However, field checks showed 

disturbances caused by natural factors such as lightning strikes, resulting in some locations in the study area 

with open canopy conditions. 

Research on LFC models for estimating mangrove canopy cover is still very limited. In terms of 

performance, the LFC model using airborne LiDAR tends to overestimate canopy cover (Figure 6a). It can be 

observed in the 1:1 plot presented in Figure 6b, where the point distribution is above the diagonal line. 

However, the validation test results showed good accuracy, with an RMS error of 16.6% and an accuracy range 

of 79.6% - 94.8%. Nevertheless, the sample distribution in the validation test was sub-optimal due to the low 

number of samples at low canopy cover percentages caused by the dominance of dense mangroves in the study 

area. Future studies may require developing an empirical modeling approach that links LFC values with 

canopy cover percentage in the field. Therefore, a more comprehensive scientific study is necessary to optimize 

the canopy cover percentage modeling using LiDAR data for mangrove vegetation. 

 
Source: data analysis, 2023 

Figure 6.  (a) Canopy Cover Percentage Model of LFC, and 

 (b) 1:1 plot of LFC Model Compared to the Average Canopy Percentage Cover. 
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3.3. Mangrove Vegetation Structure Classification 

A classification system adapted from the scheme developed by Specht (1970, in Saenger, 2002) was used 

to classify mangrove vegetation structure. It organizes vegetation structure classes based on attributes of 

lifeform, canopy height, and vegetation cover. Therefore, this study employs a multi-level scheme that divides 

classes at level 1 based on lifeform zoning patterns and tree height variations into four classes, namely 

shrublands (<3 m), low forests (3-10 meters), and tall forests (>10 meters). The height class division is based 

on the fact that mangrove shrub communities have an average height of fewer than 4 meters, while forest 

classes have an average tree height of more than 4 meters. At second level, mangrove vegetation zoning classes 

are divided based on the percentage of canopy cover into two classes, closed (>70%) and open (<30%). It is 

intended to facilitate the understanding and grouping of mangrove vegetation structures (Figure 7a). 

Figure 7b shows that open shrublands are usually found in flat estuary mudflats. These open shrublands 

have low elevation, indicating high soil salinity due to the high intensity of tides. Ahmed et al. (2022) state that 

high soil salinity is a major factor causing stunted mangrove growth. The closed shrublands class is rarely 

found in flat estuary mudflats. This class is usually found in the back zone of mangroves with higher elevation 

and very sheltered from the beach, and it is dominated by the Nypa fruticans species. On the other hand, the 

closed forests class is an old mangrove community that is characterized by the dominance of Rhizophora 

apiculata and Sonneratia alba species growing tall in the study area. The closed forests have high surface 

carbon reserves, indicating that mangroves grow in suitable habitats with minimal human disturbance. 

However, some open canopy areas can be found within the forest community due to lightning strikes. In 

addition to the mentioned species, several other species were found in the study area, such as Rhizophora 

mucronata, Avicennia marina, Acrostichum aureum, Xylocarpus moluccensis, and Xylocarpus granatum 

(Wijaya et al., 2023). 

 
Source: data analysis, 2023 

Figure 7.  A multi-level Scheme of Mangrove Vegetation Structure classification. 

The accuracy assessment results show that the classification of vegetation structures using airborne 

LiDAR technology has an overall accuracy of 77%. As shown in Table 2, the lowest producer accuracy is found 

in the low-closed forests, which is dominated by vegetation lifeforms of shrubs. This is due to the many 

mangroves with shrub lifeforms that can grow to heights of >4 meters. To avoid this error, other variables 

may be needed in addition to the canopy height model to separate mangrove vegetation lifeforms. On the other 

hand, the closed forests class found to be open during fieldwork was due to the distance between the airborne 

LiDAR acquisition and the field check time, which was separated by almost two years, resulting in changes in 

the canopy cover conditions in some locations. 
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Table 2. An Error Matrix of the Mangrove Vegetation Structure Mapping Result 
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Low-open 
Forest 

1     1 1 50% 

Low-closed 
Forest 

 4  2 2 1 4 44% 

Open Forests 1  3    4 75% 

Closed Forests  1 1 36   38 95% 
Open 

Shrublands 
1 1   2 1 6 40% 

Closed 
Shrublands 

1    1 1 8 33% 

Total 4 6 4 38 5 4 61   

 

Producer’s 
Accuracy 

25% 67% 75% 95% 40% 25% 
Overall Accuracy 

 77 % 

Source: Analysis, 2023 

4. Conclusion 

Airborne LiDAR data produced an accurate and effective mangrove vegetation structure map. The CHM 

derived using the pit-free algorithm is able to represent the maximum tree height with an error range of 3.17 

meters and an accuracy of 82.3 - 88.6%. The high RMSE is due to the use of a laser range finder for field 

measurements, which resulted in less accurate measurement results. The use of a laser range finder has 

limitations in measuring the height of the tallest tree canopy due to the dense mangrove vegetation. The dense 

mangrove canopy limits the visual observation of the tallest tree point from the laser range finder. Hence, it 

result in a consistent overestimation of the mangrove canopy height from field observation when being 

compared to LiDAR data. On the other hand, the canopy percentage model using LFC tends to overestimate 

with an error range of 16.6% and an accuracy of 79.6 - 94.7%.  Developing a more accurate empirical equation 

to model LFC is strongly recommended for future research. The classification results using vegetation 

structure data show a total accuracy of 77%. The most significant classification error is due to the inability to 

distinguish between mangrove shrubs and tree lifeforms based on height. In the study site, there are 

mangroves with shrub lifeforms with a height of more than 4 meters. 
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