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Abstract 

This study examined the relationship between groundwater quality and land use in Tehran. For this purpose, the possible 

relationship between the types of land uses and the concentration of nitrate in groundwater parameters was modelled using 

a Multi-Layer Perceptron (MLP) artificial neural network in geographic information system (GIS). The optimal network 

model was selected based on the mean root mean square error (RMSE) and correlation coefficient. Interpolation through 

Kriging was also performed to compare its results with those of the predicted model derived from an artificial neural 

network. The results showed that the neural network has a high capability for predicting and modelling groundwater nitrate 

concentration compared to the Kriging method. The high accuracy (RMSE: 0.003) of the neural network makes it a useful 

tool in relevant management issues. Our results of network sensitivity analysis were similar to scientific findings regarding 

the factors influencing the formation of nitrate in groundwater. Model outputs in the form of maps, tables, and graphs 

allowed the study of the role of each variable and the extent of its impact on groundwater quality. Performing various 

simulations and modelling of groundwater pollution provides an effective benchmark towards optimizing the management, 

control, planning, and decision-making in urban areas and can lead to economic and environmental savings. 
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1.  

1. Introduction  

Groundwater provides about half of the world's drinking water and more than a third of the water used 

for irrigation (Smith et al., 2020). Groundwater quality is crucial in its protection and sustainability (Pandey et 

al., 2020). Public concern about groundwater quality has increased significantly in recent years due to inadequate 

surface water. In general, changes in land use patterns, climate, urbanisation, and population have led to a serious 

threat to groundwater quality (Kumar et al., 2017; Sharma et al., 2003; Wagh et al., 2018). Nitrate is one of the 

most common chemical contaminants in groundwater (Yu et al., 2020). Nitrate is an environmental pollutant 

that not only exists naturally but is also released by human activities, such as the production and use of fertilisers, 

combustion of fossil fuels, leakage and discharge of industrial and domestic wastewater systems, and change of 

natural vegetation by nitrogen fixation of crops (Gutiérrez et al., 2018; Torres-Martínez et al., 2021; Ward et 

al., 2018).  

Nitrate is highly soluble in water and can gradually accumulate in groundwater systems (Gardner et al., 

2020; Zhai et al., 2017). Therefore, increasing nitrate is a serious problem that affects the quality of groundwater 

in the region (Zhang et al., 2021). Various studies have been conducted on the factors that influence the level of 
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nitrate in groundwater. Wang et al. (2020) investigated the parameters influencing nitrogen and nitrate levels 

in groundwater due to wastewater reuse. Natural elements such as land shape, soil type, and soil structure were 

examined, as well as human factors such as nitrogen fertiliser application, wastewater, land use, and land planting 

methods. Their findings revealed that the levels of nitrogen-nitrate in groundwater of different land uses varied 

depending on the type of human usage.  

Similarly, Wu et al. (2021) discovered that groundwater in urban areas had much greater nitrate-nitrogen 

levels than in agricultural areas. According to Ransom et al. (2022), agricultural activities are a major contributor 

to elevated nitrate concentrations. El Amri et al. (2022) emphasised a substantial relationship between land usage 

and groundwater nitrate levels. They discovered that some land practices, such as forest maintenance, helped 

lower nitrate levels, but others, such as horticulture crop cultivation, tended to raise them (Cameron et al., 2013).  

Kim et al. (2021) also point out that groundwater quality will decline over the next few decades based on the age 

of the groundwater, the increase in nitrogen production from livestock activity, and the effect of nitrogen 

damping. Therefore, livestock land use can affect the amount of nitrogen in groundwater. The results of the 

study by Wang et al. (2020) also showed that nitrogen pollution is high in cities and agricultural areas, which 

indicates that nitrogen inflow from artificial sources is the main cause of groundwater pollution to nitrogen in 

their study area. 

    Based on previous research, there appears to be a direct relationship between nitrate concentrations and 

land use types. Consequently, this study investigates the relationship between groundwater nitrate levels and 

environmental parameters, aiming to draw a nitrate prediction map for the study area's metropolitan 

groundwater.To achieve this, nitrate modelling will be employed to illustrate how natural groundwater systems 

are affected by nitrate pollution. Since the performance of the neural networks in spatial prediction of pollution 

rate is weaker than the kriging method, they remain a strong competitor. Thus, this study will compare the 

effectiveness of two metropolis-scale approaches—artificial neural networks and kriging—in modelling 

groundwater nitrate levels. 

2. Data and Methods 

2.1. Study Area  

The study area encompasses the Tehran Plain aquifer and the city of Tehran. Geographically, it is located 

approximately between latitude 35.715298°N and longitude 51.404343°E and covers an area of around 614 

square kilometres. Tehran, the capital of Iran with a population of more than 12 million, began using its 

subsurface resources in 1963 (Karimi et al., 2019). With increasing population and rapid developments in 

agriculture and industry, groundwater exploitation has also increased significantly. Today, a significant part of 

the city depends on groundwater as the main source of water for irrigation of green spaces, gardens, and farms, 

which are supplied from wells dug inside and outside the city (Karimi et al., 2019). 

According to the reports of Iran Water Resources Management Company, as a result of pressure on the 

city's groundwater resources, the annual water level has decreased by approximately 1.5 meters. In addition to 

the uncontrolled discharge of groundwater, the use of septic tanks in most areas of the city for wastewater 

disposal, development of agricultural lands and landfills, and the establishment of various industries, such as 

Tehran Oil Refinery in southern Tehran, have had major effects on groundwater quality. In terms of 

groundwater quality, due to the north-south slope in Tehran, in case of rain events, the final destination of all 

pollutants washed from the ground will be south of the city (Ghahremanzadeh et al., 2018). Figure 1 illustrates 

the geographical location of the study area. 
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Figure 1. Location of the Study Area and Sampling Wells 

2.2. Methodology and Data Sources 

In this study, climatic, hydrological, and land use factors were used to achieve the effects of surface land 

uses in Tehran on groundwater quality. First, the factors affecting groundwater pollution were identified and 

selected. In the second stage, by collecting statistics, data, and information about the quality of wells and 

analysing them using the neural network, the effects of land use on groundwater quality were evaluated and 

simulated. Figure 2 explains the research flow 

 

Figure 2. Methodology Framework  

2.2.1. Preparation of Input and Output Data to the Neural Network9 

All data used in GIS must be geometrically consistent and must also follow a single coordinate system 
(ESRI, 2021). Therefore, in order to unify all the data in the studies of this research, a system of geographical 
coordinates and a single cell size was defined for all data so that the data are geometrically compatible. Therefore, 
to equalize the cell size of all raster layers, it was selected according to Table 1. 

Iran 
Tehran 
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Table 1. Geographical Characteristics of Spatial Data used in Neural Network 

Variables affecting groundwater quality when using Multi-Layer Perceptron (MLP) Neural Network and 

output are known as model nodes. In the MLP model, each input layer node is associated with all hidden layer 

nodes and each hidden layer node is associated with only the output layer node. The nodes and variables of each 

node are listed in Table 2. 

Table 2. Data used in MLP neural network 

Layer type Variable Name (Node) 

Input 

Distance from vegetation 
Distance from permanent and seasonal rivers 
Distance from main streets and highways 
Digital elevation model 
Slope 
Geology 
population density 
Water table 
Precipitation data 

Output Nitrate 

 

2.2.2. Data Preparation in Artificial Neural Network Modeling in GIS 

The data used in artificial neural network modeling can be divided into two types, namely independent 
variables and dependent variables. for more details can be seen in the following explanation: 

A. Independent Variables 

Land Use Layer - For land use, the map prepared from the satellite imagery of Tehran (Available through 
Tehran Municipality based on 1 meter Ikonos images) in 1984 was used. Various derivative layers from the 
original land use map including pasture, agriculture, arboriculture, vineyards, parks, gardens, forests and 
grasses, permanent and seasonal rivers (canals), main streets and highways, as independent variables were 
derived in Shape format in the GIS environment. All vector layers were transformed into raster and then the 
distance on relevant layers was created using the DISTANCE module  (Mihi & Benaradj, 2022) for later use in 
the model. Distance analysis was applied to vegetation, permanent and seasonal rivers and the main streets and 
highways.  

Digital Elevation Model and Slope - From the topographic map with a scale of 1.25000 of the National 
Cartographic Center of Iran, using digital curve lines, a digital elevation model with a pixel size of 30 meters 
was prepared. The digital elevation model can be considered as a simple digital map that contains the altitude of 
all parts of the area covered. Also, the slope layer of the study area was prepared using the interpolated digital 
elevation model. 

Geology - Using the 1: 100000 geological map of the Geological Survey and Mineral Exploration of Iran, 
a geological vector layer comprising sevenlayers (alluvium, young alluvial sediments, fine-grained sediments, 
bedrock, Kahrizak Formation, Hezar Dareh Formation) was prepared in the GIS environment.  

Description Type 
509456.75 Min X 
554796.75 Max X 
3936167 Min Y 
3964872 Max Y 
1511 Number of columns 
957 Number of rows 
30 m Resolution 
UTM –ZONE 39 N Coordinate system 
Meter Reference unit 
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Population Density - The population density variable was generated in the GIS environment using 
demographic data from Tehran, obtained separately from statistical blocks, and then the population density in 
each statistical block was calculated in terms of people per hectare. 

Precipitation and water table data - In order to study the changes and the amount of rainfall in the region, 
monthly precipitation data of five synoptic stations including Tajrish, Mehrabad, Abali, Chitgar, Karaj and two 
climatological stations of Aminabad and Mamazan were prepared from the Iran Meteorological Organization 
(Table 3). Data was in Excel software format which was then spatialized in the GIS environment. In the next 
step, using precipitation data, interpolation was performed by Kriging method with a pixel size of 30 meters. 

Table 3. Location of meteorological stations in Tehran 

Source: Iran Meteorological Organization 

All the above steps were performed for the water table level of piezometric wells obtained from the 

Regional Water Company of Tehran. 

B. Dependent Variable 

Nitrate - In this study, statistical information on the amount of nitrate related to 30 piezometric wells of 
the 2006 statistical year of the regional water company of Tehran was used for calculations. First, in Excel 
software environment, all data were classified separately for different years, and then in the GIS, the location of 
piezometric wells on the map was determined using the geographical coordinates of the wells and the location 
map of the piezometric wells was prepared. A 100-meter buffer was created around each point of the piezometric 
well. 

2.3. Implementation of Artificial Neural Network 

The initial raster data layers that were prepared in the raster format were changed to the desired format 

using the Export module and entered. In the next step, after determining nine input parameters and one output 

parameter to construct and determine the optimal architecture of the model, the input data was divided into three 

parts: the first part contains 60% of the data for training, the second part contains 20% of the data for 

authentication and the third part contained 20% of the data for the test.  

During the artificial neural network training process, with increasing the number of iterations, the model 

error in predicting the training stage data is reduced to the point that in high iterations, the network is trained 

in such a way that it can only estimate the training stage data well and unable to predict data outside this range. 

In order to control this problem, a percentage of the data at the beginning of the work is considered for the 

authentication stage. By doing this, in each iteration, the amount of error related to the authentication stage is 

calculated simultaneously with the training stage. When the downward trend of this error rate is stopped, the 

model automatically completes the training phase and uses the previous iteration weights as the optimal model 

weights.  

According to research, 90% of artificial neural networks used in hydrological problems are multilayer 

perceptron networks with post-diffusion algorithm. Therefore, to predict the concentration of nitrate in 

groundwater, a multilayer perceptron network was implemented with post-diffusion algorithm and hyperbolic 

and sigmoid tangent stimulation functions. One of the most important parts in the design of an artificial neural 

network is its architecture, or in other words, the number of hidden layers and the number of neurons in it, which 

Station name Station type Latitude Longitude Height 
Tajrish Synoptic 35° 47´ 51° 37´ 1548 
Mehrabad Synoptic 35° 41´ 51° 19´ 1190 
Abali Synoptic 35° 45´ 51° 53´ 2465 
Karaj Synoptic 35° 55´ 50° 54´ 1312 
Chitgar Synoptic 35° 44´ 51° 10´ 1305 
Aminabad Climatology 35° 35´ 51° 28´ 1000 
Mamazan Climatology 35° 28´ 51° 41´ 1021 
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is done by trial and error. Based on this, networks with different number of hidden layers and number of neurons 

in each layer were designed and their results were investigated and compared. 

The network selected in the previous steps is used for training in this step. At the end of each training, the 

RMS and R2 error rates are determined and corrected by the BP training function among the distribution 

network nodes and network weights that were randomly selected at the beginning of the work. This is done as 

long as the RMS error is kept to a minimum. In the MLP model, it is possible to perform network training with 

long cycles. Of course, due to the time consuming performance of this number of cycles, it is practically not 

possible. Therefore, the network is trained to an acceptable number for modeling where the RMS error is kept 

constant at a low level. It should be noted that first, to train the network, the data of each factor was selected in 

a 100-meter buffer and the network was trained with this data. After performing this step and applying the 

required tests to validate the training output, the optimal model was selected. Considering that in the previous 

stage, the best possible network for the aquifer of Tehran was trained to predict nitrate concentration and its 

accuracy was measured based on the minimum root size of its RMSE and correlation coefficient, the sensitivity 

of the model outputs to the amount of nitrate is investigated.  

To determine the effect of each of the independent variables on the model and finally on the amount of 

groundwater nitrate studied in the region, a sensitivity analysis was applied. At this stage, the data of the entire 

study space were entered into the network for prediction and were implemented using the optimal model selected 

from the training stage for the entire network area. This means that the network was implemented using the 

previous step training. All these steps for the amount of nitrate in groundwater were performed separately and 

the prediction results of each parameter were imported into Idrisi.  

2.4. The Reason for Choosing the Multilayer Perceptron Neural Network 

The multilayer perceptron neural networks developed by Rumelhart et al. (1986) and Shinde & Shah 

(2018) are among the most widely used neural networks (Taud & Mas, 2018). MLP consists of three layers: 

input, hidden and output. Due to the three-layer nature of this type of network, it is possible to identify nonlinear 

connections in nature.  

2.5. Kriging interpolation method 

The use of interpolation methods requires the existence of spatial architecture among the data, which is 

examined by variogram analysis. The condition for using this analysis is the normality of the studied data. The 

normal distribution of the sampled points results in better kriging performance in producing the predicted 

surface. The cations, anions and bicarbonate ions used in this study were first normalized using a geo-statistical 

analyst in the GIS environment through the histogram module and the Normal QQ Plot. In the next step, in 

order to create a model of groundwater nitrate parameter in Tehran, according to the sampled data of nitrate 

parameter, interpolation by kriging method was performed with a cell size of 30 meters in GIS environment and 

zoning map of each parameter was prepared for the desired year. 

2.6. Comparison of Models 

All interpolation maps generated to calculate the average in ASCII format were entered into the GIS. 

Using the Extract module, the average of prediction maps of the kriging model was drawn and the neural 

network prediction was calculated according to the 22 zoning of Tehran. Then, t-student-test was used to 

compare the two models. The second comparison using the VALIDATE statistical analysis module was used to 

compare the proximity of the prediction maps with the kriging model and the artificial neural network in the 

GIS. To perform statistical analysis of VALIDATE, the format of each of the above variables is converted to the 

format used in VALIDATE, which is the same as Byte Binary, using the linear expansion method, and its value 

range changes to the range of 0-255. This change of format is to unify the different data used in the model, which 

have different value ranges due to differences in their nature. Therefore, using the linear expansion method 

causes all the values in the independent variables to be expanded to the range of 0-255 and ready to perform the 

analysis. Then, using VALIDATE statistical analysis, the relationship between the two models was calculated. 
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3. Result and Discussion 

3.1 Predicting the Relationship between Independent and Dependent Variables 

At this stage, an artificial neural network was implemented to study the effects of the status of independent 

input parameters including rainfall, population density, digital elevation model, geology, water level of 

piezometric wells, distance from vegetation, distance from main streets, distance from river and slope on the 

nitrate dependent parameter and the following results were obtained. Areas where the concentration of the 

dependent parameter is most predicted are shown more prominently in the map (Figure 3).  

 

Figure 3. Map of Nitrate Ion Concentration Predicted by Neural Network Model 

The artificial neural network MLP was implemented with nine input layers and one output layer for 

nitrate content. The criterion for selecting the optimal network model was the minimum root mean square error 

(RMSE) and the correlation coefficient and the model with the lowest error in comparing these two values was 

selected as the optimal model. The criteria for evaluating and selecting the optimal model are given in Table 4. 

Table 4. Evaluation Criteria and Model Selection in Nitrate Ion 

Network 
layout 

Stimulus functions of hidden 
layer 

Stimulus functions of output 
layer 

R2 RMSE 
Network 
type 

9-7-1 Hyperbolic tangent Hyperbolic tangent 0.99 0.0033 Perceptron 

 

 
Figure 4. (a) North-South Profile and (b) West-East Profile of Nitrate Ion Prediction 

a) b) 

https://doi.org/10.14710/geoplanning.11.2.177-188


Nickbeen and Salmanmahiny / Geoplanning: Journal of Geomatics and Planning, Vol 11, No 2, 2024, 177-188 
DOI: 10.14710/geoplanning.11.2.177-188 

 

184 

Figure 3 shows that the amount of nitrate in the south and southeast of Tehran in the regions of 19-16-

12-11-17 and also in the eastern end of Tehran located in region 4 is higher than other regions and the study of 

the north-south profile (Figure 4). It indicates an increase in ion concentration from north to south and the west-

east profile indicates an increase in ion concentration in the central part of the city. The results obtained from 

the network sensitivity analysis show the greatest effect of the water table level and population density parameter 

on increasing the nitrate concentration. This means that southern regions with higher water levels and 

population densities have shown higher levels of nitrate. The north-south profile indicates an increase in ion 

concentration from north to south and the west-east profile indicates an increase in ion concentration in the 

central part of the city. The results obtained from the network sensitivity analysis show the greatest effect of the 

water table level and population density on increasing the nitrate concentration. This means that southern 

regions with higher water table levels and population densities have shown higher levels of nitrate.  

3.2 Kriging interpolation method 

By examining and comparing the mean standard error in different kriging methods and different 

Semivariogram models, the best level of prediction for the available data was obtained by choosing Ordinary 

kriging method and Spherical model. According to the mentioned method and model, the distribution of nitrate 

in the groundwater level is shown in Figure 5. Since the kriging method is based on interpolation using 

neighborhood points, the predicted maps are based on the values of the adjacent piezometric wells. Therefore, 

the predicted values of the nitrate parameter are affected by their measurements. Therefore, interpolation means 

the conversion of point data into area data. The accuracy of the selected models was assessed by trial and error 

through cross validation and RMSE comparison.  

 
Figure 5. Nitrate ion prediction map by Kriging method 

 

3.3 Comparison of Models 

3.3.1. Comparison using Statistical Method of T-Student Test 

After performing the above steps to compare the two prediction methods with each other, t-student test 

at 95% confidence level was used. The results of the two predictions have a non-significant relationship with 

each other. The results are as shown in Table 5: 
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Table 5. Comparison of Two Methods with T Test 

Comparison of two methods of t-student test Type of relationship Parameter name 
0.918 insignificant Nitrate 

 
3.3.2. Comparison using VALIDATE statistical method in GIS environment 

VALIDATE is a statistical method by which the degree of agreement between two maps with IMAGE 

architecture and integer or byte format is examined. After performing the test, if there is more disagreement, 

then it can be concluded that the two models under study are different in prediction. Otherwise, if the two models 

have more agreement than disagreement, then the predicted results are similar. The desired results in the present 

research are given in Table 6. 

Table 6. Comparison of two methods using VALIDATE test 

Comparison of two validate methods Type of relationship Parameter name 
0.0105 Disagreement Nitrate 

 
4. Discussion 

The purpose of this study was to investigate the possible relationship between the types of land uses and 

the amount of groundwater nitrate using artificial neural network in the aquifer of Tehran. The type of neural 

network used in this study was a multilayer perceptron (MLP) network. In general, several layers with different 

numbers of neurons were used to evaluate the function of the perceptron network. After training the network, 

the RMSE of the training network was calculated and based on it, the most appropriate optimal model was 

selected. Among all the activation functions, the application of the hyperbolic tangent threshold function showed 

better performance. The network with 1000 training cycles, the hyperbolic tangent threshold function with post-

diffusion algorithm s produced the lowest training error compared to other network architectures. This 

architecture predicted changes in groundwater nitrate with acceptable coefficients of determination. Application 

of multilayer perceptron neural network provided better results than the kriging interpolation. The results show 

the potential of the neural network as a tool to predict changes in groundwater nitrate. In several stages, data 

preparation and necessary corrections were made on the inputs and outputs. These modifications included 

selection of the appropriate resolution for modeling and the most important factors affecting groundwater nitrate 

concentration. Several rounds of trial and error showed 30 meters as the best resolution for the maps that were 

going to be used in the neural network model. 

The results of sensitivity analysis showed that the effect of independent variables on the dependent 

variable is different. In general, the independent variables including geology, water table level, population 

density and digital elevation model had the highest effect on ground water nitrate concentration while 

precipitation and distance from river variables had moderate effect and distance from vegetation, slope and 

distance from main streets showed the least effect on nitrate. Elimination of high-effect variables had a significant 

reduction in the model accuracy. Moderate-effect variables and low-effect variables had a decreasing effect on 

model selection at the time of removal. We found that water table, geology, population density and elevation had 

great effect on groundwater nitrate in the study area. 

To examine the similarity of the two models, their predictions were compared using two statistical tests. 

The results of t-student test showed that a significant difference between the estimated data of the two models. 

Also, VALIDATE module in Idrisi was used to compare the similarity of the prediction maps of the two models 

and the results showed that disagreement is higher than agreement between the two maps. That is, the two 

models are significantly different in terms of forecasting. In the present neural network, significant correlations 

were observed between the observed and predicted parameters, which are mentioned in above tables indicating 

that the network has predicted the parameter with high accuracy. The RMSE in neural network predictions was 

much smaller than that of the kriging method. The same issue was confirmed in the study of Tavassoli et al. 

(2022). 
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According to the results of the study of  Tavassoli et al. (2022), it was determined that the performance of 

the Kriging method in spatial prediction is stronger than that of the neural network, but it is still a significant 

method. Therefore, it can be concluded that the neural network model is more accurate in prediction, which has 

been confirmed by Secci et al. (2015) and Bowers et al. (2022).The results of their study showed that the artificial 

artificial network estimates the depth of the layer better than the kriging method. However, the greater 

advantage of kriging over artificial neural network methods is that it can simulate spatial diversity and show it 

quickly on a map. The main reason that the neural network model is more accurate than the kriging method is 

that the network is trained based on the value of the parameter and responds in the end on the same basis. In 

addition, the ability to influence the factors that cause a phenomenon in predicting it in the neural network 

model, instead of using the phenomenon itself to predict, makes understanding the relationships between factors, 

the effect of factors weight on the values of the phenomenon, causation and plotting the spatial distribution from 

a zonal shape to a point shape (Secci et al., 2015). As a result, it increases the ability to analyze and predict 

compared to the kriging method. This study has shown that artificial neural networks superior to the Kriging 

model in estimating the groundwater quality parameter prediction. On the other hand, according to Şişman & 

Kizilöz (2020), the results of the kriging model are much better for estimation than the artificial neural network 

models. Tavassoli et al. (2022) also concluded that neural network performance in spatial prediction is weaker 

than the kriging method, but can still be a good competitor to kriging. Sen et al. (2008) compared the accuracy 

of artificial neural networks and kriging. Artificial neural networks provide sufficient accuracy for spatial 

interpolation, but Kriging interpolation predictions are more accurate.  

In interpreting these results, it can be said that in artificial neural network models, evaluation through 

predictions is difficult. In these models, it is not possible to directly obtain information about why and how the 

results of the model. On the other hand, the development of innovative models that allow expert evaluation and 

interpretation is possible using the new kriging technique. In addition to the capabilities of the artificial neural 

network model versus the kriging interpolation model, there are limitations, which are the limitations of the 

neural network method in retraining (updating) to include new changes and re-predict with high accuracy. This 

is one of the main limitations of these methods. Also, this method has more error when using extrapolation 

because the data is in the range outside the trained data. This doubles the need to update data and models. Mijwel 

(2018) also stated the limitations of using an artificial neural network. 

According to their study, artificial neural networks in accordance with their architecture need processors 

with parallel processing power. Unexplained network behavior is the most important problem of artificial neural 

network. When an artificial neural network offers a solution, it does not specify why, which is consistent with 

the results of the Şişman & Kizilöz (2020) study. This reduces trust in the network. There are no specific rules 

for determining the architecture of artificial neural networks. Proper network architecture is achieved through 

trial and error and experience.  

5. Conclusion 

The present study was conducted to predict the possible relationship between the types of land uses and 

the amount of groundwater nitrate in Tehran Metropolis using artificial neural network. In the process, the 

effects of land uses and the relationship between changes in the level of groundwater nitrate were also studied. 

The results of this study showed that the type of land uses in the study area affects the amount of nitrate in 

groundwater. Among these, we can cite the strong influence of the population density. Our results of network 

sensitivity analysis were similar to scientific findings regarding the factors influencing the formation of the 

nitrate in groundwater. Model outputs in the form of maps, tables and graphs allowed the study of the role of 

each variable and the extent of its impact on groundwater quality. This capability can lead to its use before the 

implementation of management policies by relevant organizations and water resources planners. On the other 

hand, one of the barriers to decision making is shortage of information. Predictive models help managers to make 

appropriate decisions by removing these barriers. On the other hand, creating multiple scenarios for the future 

or in unknown places is another capability of these kinds of modeling for decision makers and managers. 

According to the presented materials, performing various simulations and modeling of groundwater pollution 
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provides an effective benchmark towards optimizing management, control, planning and decision-making 

leading to economic and environmental saving. 

This research is limited by time, so to improve the research in this study there are several suggestions for 

future research such as (1) Using the network model output map as a tool to manage areas with low groundwater 

quality potential; (2) Implementing Tehran's urban sewage system in the medium term to prevent domestic 

wastewater from entering infiltration wells, which has led to an increase in groundwater levels in the southern 

region; (3) Managing variables that have a high impact on groundwater quality and controlling their intensity 

in areas of high concentration to prevent problems arising from an increase in these parameters, especially in the 

southern areas of the city; and (4) Reducing population density in areas where this factor is influential. 
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