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Abstract 

Freshwater ecosystems are vital ecosystems for life, but in reality, they face severe pressure from anthropogenic activities, 

climate change, and land use changes. These conditions cause the environmental degradation process to accelerate, as is the 

case in Lake Temenggor, Malaysia. This study examines environmental degradation in Tasik Temenggor, Malaysia, using 

geospatial techniques to analyze land surface temperature (LST), normalized difference vegetation index (NDVI), land use 

and land cover (LULC), water quality, and air temperature. The aim of this study is to identify factors associated with 

environmental degradation, specifically focusing on climate and meteorological parameters and analyzing their temporal 

changes through spatio-temporal analysis. Data used were obtained from Landsat 8 OLI/TIRS and field observations, 

processed using ArcGIS Pro with Principal Component Analysis (PCA) and Weighted Overlay Analysis (WOA). The 

results show increasing degradation in agricultural and development areas, while forest zones remain relatively stable. 

Consistent LST classification is applied across all years to ensure valid temporal comparisons. The integration of PCA and 

WOA demonstrates a robust methodological framework that supports effective environmental monitoring. These findings 

highlight the practical utility of geospatial techniques in conservation planning and suggest targeted interventions for high-

risk areas. In conclusion, this study demonstrates the application of geospatial technology in monitoring and assessing 

environmental degradation in Tasik Temenggor. 
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1. Introduction  

Freshwater resources are critical to both natural ecosystems and human development. They are necessary 

for industry, agriculture, and human survival in general (Tibebe et al., 2022). In addition, freshwater ecosystems 

provide vital services to both the environment and people (Albert et al., 2021). At local, regional, and global 
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levels, the characteristics and volume of freshwater play a crucial role in shaping biogeochemical processes and 

ecological interactions. These factors ultimately impact biodiversity, the productivity of ecosystems, as well as 

human health and well-being (Albert et al., 2021; Kamaruzzaman et al., 2025). Moreover, freshwater ecosystems 

constitute a vital element within diverse habitats, recognized as pivotal strategic assets for supporting human 

sustenance, fostering economic progress, and preserving the environment (Kamaruzzaman et al., 2025; Razak et 

al., 2020). However, biodiversity in freshwater habitats is diminishing swiftly across all continents and major 

river basins globally, and this decline is occurring at a faster rate compared to terrestrial ecosystems (Albert et 

al., 2021; Pratama et al., 2022).  

Situated in the eastern part of Perak, Malaysia, Temenggor Lake is considered by tropical rainforests and 

holds the distinction of being the second-largest lake on the Peninsular Malaysia (Razak et al., 2020). Positioned 

approximately 45 kilometers away from the district capital, Gerik, Temenggor Lake is a human-made reservoir 

formed during the 1960s and 1970s. Renowned for its breathtakingly natural beauty and diverse ecological 

tapestry, this reservoir serves as a crucial habitat for a myriad of flora and fauna, including numerous endemic 

and rare species. However, this once pristine ecosystem now faces a multitude of environmental challenges that 

threaten its sustainability and the well-being of the species it sustains. The significant ecological threat to Tasik 

Temenggor arises from the rapid increase in invasive aquatic plant species, namely water hyacinth and giant 

salvinia. This aligns with the assertion that water hyacinth, scientifically known as Eichhornia crassipes, 

originated in the Amazon basin and has quickly proliferated globally (Godana et al., 2022). It is an invasive 

aquatic plant with various ecological and economic implications in freshwater ecosystems. 

The challenges are further compounded by various threats posed by human activities, including land 

reclamation, habitat deterioration, and eutrophication (Martinsen & Sand-Jensen, 2022). Furthermore, the 

escalation of population growth, changes in agricultural practices, and increased sewage runoff from urban areas 

have significantly elevated nutrient inputs beyond their natural levels in recent decades, consequently 

accelerating the process of eutrophication (Tibebe et al., 2022). Moreover, the ecological well-being and 

endurance of lakes have faced significant threats since the early 20th century, primarily due to swift urbanization, 

global climate change, and heightened human activities (Ho & Goethals, 2019). Furthermore, human activities 

are changing the patterns and movements of surface, subsurface, and atmospheric waters on a regional scale, 

compromising the resilience of aquatic, riparian, and coastal ecosystems (Rodell et al., 2018). These effects have 

placed Tasik Temenggor ecosystem under immense pressure, raising concerns about its long-term viability and 

the preservation of its unique biodiversity. Additionally, Temenggor Forest Reserve is concerned about heavy 

metal pollution in Tasik Temenggor (Arshad et al., 2022). Elevated Heavy Metal Pollution Index (HPI) and 

Metal Index (MI) readings indicate potential contamination hazards in water samples, showing that heavy metal 

pollution has affected specific locations in Tasik Temenggor. 

Similar cases have been reported in other countries, highlighting a global pattern of freshwater 

degradation. For example, large-scale aquatic vegetation decline has been observed in Ethiopia’s Lake Dambal 

(Godana et al., 2022), habitat fragmentation has intensified in China’s lake basins (Zhou et al., 2022), and cropland 

abandonment around freshwater lakes in Vietnam has exacerbated erosion and nutrient runoff (Karim et al., 

2023). Additionally, India, Brazil, and other biodiversity-rich nations have documented significant impacts from 

unplanned land-use changes and water pollution (Ho & Goethals, 2019; Liu et al., 2020). These international 

parallels underscore the urgency for robust, scalable monitoring techniques that can detect environmental 

change with precision.  

While past research has addressed environmental threats in Tasik Temenggor, most studies focus on 

isolated parameters such as land cover change or water chemistry. There is a lack of integrated, spatio-temporal 

assessments that combine vegetation indices, surface temperatures, land use, and water quality to understand 

the cumulative nature of degradation. Moreover, few studies have systematically quantified these variables across 

multiple time periods using advanced geospatial techniques (Kowe et al., 2023; Kumar et al., 2022; Topp et al., 

2020). This research addresses that gap by employing satellite-derived datasets and in-situ measurements to 

evaluate environmental degradation over the years 2015, 2020, and 2024. 
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Hence, understanding the extent and severity of these threats is paramount to develop effective 

conservation and management strategies to safeguard this valuable natural resource. To effectively address the 

environmental challenges faced by Tasik Temenggor, a comprehensive understanding of its ecological profile is 

essential. Therefore, it is crucial to set up a new baseline that shows how the conditions in the Temenggor Lake 

area have changed over time due to environmental degradation. Producing spatio-temporal maps that depict 

these changes over time will help decision-makers make informed decisions about conservation strategies, 

considering the degree of environmental degradation (Nisar et al., 2023). However, managing and reversing the 

challenges presented including biodiversity decline, degradation of water quality, impact on economic 

development, and implications for human well-being, proves to be a complex task (Razak et al., 2020).  

Therefore, this study will be conducted by using geospatial technologies. Geospatial technology, which 

includes Geographical Information Systems (GIS) and Earth Observation (EO), is an important tool and method 

for quantifying changes over time and space (Kowe et al., 2023; Salleh et al., 2014; Salleh et al., 2015). The use 

of remote sensing technology for its potential to overcome time constraints, accessibility challenges, and cost 

issues associated with traditional water sampling techniques, becomes particularly valuable (Kowe et al., 2023). 

Additionally, remote sensing can complement in-situ measurements, addressing the challenges in monitoring 

water quality (Muchini et al., 2018). Moreover, there is broad utilization of remotely sensed imagery for accurate 

quantification of variations in water quality (Topp et al., 2020). Geospatial technology offers a powerful tool to 

enhance the monitoring and management of environmental degradation in Tasik Temenggor. Satellite imagery 

and Geographic Information Systems (GIS) can provide valuable spatial data such as land use changes within 

the catchment area. A comprehensive understanding of the spatial and temporal dynamics of environmental 

degradation in the lake and its surroundings can be obtained. 

The novelty of this study lies in its methodological integration of Principal Component Analysis (PCA) 

and Weighted Overlay Analysis (WOA) within a GIS framework to produce spatial degradation maps with high 

temporal resolution. By synthesizing variables such as NDVI, LST, LULC, water quality, and air temperature, 

the study provides a comprehensive model to monitor ecological shifts in freshwater ecosystems. The aim of this 

study is to identify factors associated with environmental degradation, specifically focusing on climate and 

meteorological parameters and analyzing their temporal changes through spatio-temporal analysis. The primary 

objectives of the study are to (i) identify significant environmental degradation variables, (ii) quantify their 

influence using spatial and statistical tools, and (iii) generate spatio-temporal degradation maps that can inform 

conservation strategies. This approach not only enhances local environmental assessment but also contributes a 

transferable model for monitoring freshwater ecosystems elsewhere 

2. Data and Methods 

The methodology of this project is divided into four (4) main phases which is i) desk literature ii) data 

collection, iii) data processing, and iv) result and analysis. Figure 1 shows the flow of work for the study that has 

been implemented. Research questions and objectives have been defined during the first phase of the study, 

setting an outline for the entire study. Next, the systematic literature review also has been completed to identify 

the parameters needed for this research. This critical phase includes identifying the study area, which is Tasik 

Temenggor in Perak. Furthermore, the software to be used has been selected. 

The next phase involves the process of data collection. Acquiring satellite imagery took center stage where 

3 satellite images were downloaded which include 2015, 2020 and 2024. Notably, the satellites chosen were 

Landsat 8 OLI/TIRS. The Landsat image was downloaded from the open-source U.S Geological Survey (USGS) 

website. The next step for this research is reproduction of spatial data where LULC, LST, NDVI, air temperature 

and water quality data were produced. Spatial data reproduction starts with the image pre-processing. The image 

pre-processing includes radiometric correction for Landsat satellite imagery. Then, supervised classification was 

carried out. These classifications are pivotal for subsequent analyses, including LULC, LST, NDVI, air 

temperature and water quality, utilizing the acquired images. It is important that images from each year within 

the specified timeframe from 2015, 2020, and 2024 will undergo identical processing steps. 
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Figure 1. Workflow of the Study 

After obtaining the results, all of these will be the parameters to conduct the environmental degradation 

analysis. Prior to proceeding with the further processing, ensure that all the parameters are classified into 

relevant and readable data. Therefore, the Principal Components tools in ArcGIS Pro assigned weights to 

variables' parameters, and after acquiring all weights, the Weighted Overlay Analysis tool is used to allocate 

percentage weighting to each layer. This results in three distinct maps illustrating the environmental condition 

in Tasik Temenggor over the years 2015, 2020, and 2024. The final output then be reclassified into five 

categories to better understand the varying degrees of environmental condition within the study area. The last 

phase involves results and analysis where the final product of this research was map showing the level of 

environmental condition at the study area. Upon analyzing the spatio-temporal map, we will conclusively 

determine the area's degradation status. Hence, this study is conducted to measure and assess the elements 

contributing to environmental degradation. 
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2.1. Desk Literature  

Through this phase, research questions and objectives have been set up, providing a framework for the 

entire study. Hence, the first objective of the study is to quantify the factors of environmental degradation 

followed by the second objective which is to conduct a spatio-temporal analysis of the changes of the 

environmental factors. Additionally, a study area and software used has been determined. Subsequently, a 

systematic review of the existing literature was conducted to identify the parameters essential for inclusion in 

this research. This systematic literature review has been conducted by using VOSviewer tools to construct and 

visualize bibliometric networks. These networks include the keywords from the publications. Finally, to ensure 

the success of this study, the determined software must involve every phase from data collection until result and 

analysis.  

2.2. Study Area 

Tasik Temenggor (see Figure 2) is a man-made lake located in the Hulu Perak district of Perak, Malaysia. 

It was created in 1974 with the construction of the Temenggor Dam, which is a hydroelectric dam that generates 

electricity for the states of Perak and Penang. The lake is home to a variety of flora and fauna, including the 

Temenggor tiger, which is a critically endangered subspecies of tiger. Tasik Temenggor is part of the Royal 

Belum State Park, which is the largest virgin rainforest in Peninsular Malaysia. The park is home to a wide 

variety of plant and animal species, including more than 1,000 species of trees, 600 species of birds, and 100 

species of mammals. However, Tasik Temenggor is facing increasing threats from deforestation, logging, 

agricultural expansion, pollution, and tourism (Albert et al., 2021; Arshad et al., 2022; Razak et al., 2020). These 

pressures are having a significant impact on the ecosystem, leading to declining forest cover, decreasing wildlife 

populations, and deteriorating water quality (Ho & Goethals, 2019; Pratama et al., 2022; Rodell et al., 2018).  

 

Figure 2. Study Area 

2.3. Data Acquisition 

Data acquisition is the process of gathering and organizing information. The data information is chosen 

based on the research needs. Data collection is an important task that serves as the project's pillar. The data 

collected for this study is of various types and sources. Table 1 shows the data acquisition for this study. 
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Table 1. Data Acquisition 

No Data Type Description Source 
1 Satellite Imagery – Landsat 8 OLI/TIRS Year 2015, 2020, and 2024 USGS Explorer 
2 Study Area – Tasik Temenggor Shapefile DIVA-GIS 

3 In-situ measurement (Water Quality) 
Turbidity, pH, Temperature, DO, BOD, 

TSS, NH-3 
Secondary Data 

In this study, data acquisition consisted of several key components, including satellite imagery, spatial 

data processing, and in-situ measurement. Acquiring satellite imagery took centre stage where three (3) satellite 

images has been downloaded which include year 2015, 2020 and 2024. Notably, the satellites chosen were 

Landsat 8 OLI/TIRS. These imageries were acquired from open source United States Geological Survey 

(USGS). These images were used to aid in the identification of land use and land cover (LULC) changes, analysis 

of normalized difference vegetation index (NDVI), analysis of land surface temperature (LST), and evaluation of 

water quality and air temperature in the study area. The objective is to generate spatio-temporal maps that depict 

the changing levels of environmental deterioration during the designated years. Table 2 shows the Landsat 8 

properties for the image used in 2015, 2020 and 2024. 

Table 2. Satellite Image Properties 

Year Landsat ID Cloud (%) 

2015 LC08_L1TP_127056_20150919_20200908_02_T1 6.08 

2020 LC08_L1TP_127056_20200308_20200822_02_T1 3.34 

2024 LC09_L1TP_127056_20240514_20240514_02_T1 19.77 

Subsequently spatial data processing, where in this study it was conducted through a series of integrated 

analytical procedures designed to improve data quality and extract relevant environmental indicators from 

satellite imagery. The procedures encompassed satellite image pre-processing, vegetation analysis, land surface 

temperature analysis, land use classification, and the integration of remotely sensed data with in-situ 

measurements to assess environmental conditions in the study area.  

Prior to initiating data processing, a crucial first phase involved data pre-processing. This procedure was 

essential for maintaining data integrity and improving its practicality. Hence, the pre-processing stage 

encompasses the preparation of data from satellite image which is Landsat 8 OLI/TIRS. Initially, the satellite 

images have been stacked. Following this, corrections which is radiometric corrections, are implemented. This 

method was crucial to guarantee that the data was in its reliable condition, clear of any disturbances caused by 

other atmospheric distortions. The main objective was to ensure the utmost quality of the output derived from 

Landsat data, facilitating precise and significant data analysis. 

After pre-processing the satellite image, it is feasible to compute the Normalized Difference Vegetation 

Index (NDVI) using raster calculator tools in ArcGIS Pro. Equation 1 shows the algorithm utilized for NDVI 

calculation. This index is determined by taking the difference between Band 5 and Band 4 and dividing it by the 

sum of Band 5 and Band 4 For Landsat 8 OLI/TIRS. Band 5 corresponds to the near-infrared band, and band 4 

corresponds to the red band. Study from Nagy et al. (2021) was referred to conduct the NDVI calculation as 

below in Equation 1:  

𝑁𝐷𝑉𝐼 =  
(𝐵𝑎𝑛𝑑 5−𝐵𝑎𝑛𝑑 4)

(𝐵𝑎𝑛𝑑 5+𝐵𝑎𝑛𝑑 4)
  ............................(Equation 1) 

Elevated values in the Normalized Difference Vegetation Index (NDVI) within the 0 to 1 range signify 

the existence of diverse, thriving, and green vegetation cover. The process of extracting and classifying the 

NDVI was categorized into 5 distinct classes which is Dense Vegetation, Moderate Vegetation, Sparse 

Vegetation, Bare soil, and Water. 
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Thereafter, land surface temperature (LST) was estimated to examine the thermal characteristics of the 

Earth's surface, calculated based on measured radiance, is referred to as Land Surface Temperature (LST). It is 

derived from solar radiation, and the surface is defined from a satellite perspective by what is visible when looking 

through the atmosphere to the ground. LST plays an important role in determining the thermal properties of 

the Earth's surface, influencing its effective radiating temperature. Landsat 8 OLI/TIRS images can provide 

critical information about Land Surface Temperature. This data is critical for mapping and monitoring 

temperature-related events on the Earth's surface. The images obtained will then be process using ArcGIS Pro 

software to calculate the LST. Study from Kumar et al. (2022) has been referred to conduct the LST calculation. 

The calculation of LST involve six (6) crucial step which begin with the calculation of Top of Atmosphere (TOA), 

Surface Brightness Temperature (SBT), calculation of NDVI, Land Surface Emissivity (E), and finally, the 

calculation of LST. Raster Calculator tools has been utilized to calculate all LST. After the calculation of LST 

has been obtained, the conversion from Kelvin to Celsius has also be accomplished. 

Furthermore, to vegetation and thermal analysis, land use and land cover (LULC) classification was 

performed using supervised classification techniques in ArcGIS Pro. Initially, satellite imagery is launched into 

the software after it has been pre-processed. At the root of supervised classification is the collection of training 

samples, in which specific areas representing various land cover classes are identified. These samples are used to 

train the classification algorithm, with spectral signatures extracted to represent the reflectance or radiance of 

the pixel in different bands. The Classification toolset in the ArcGIS Pro Toolbox is used to select the preferred 

algorithm, such as Maximum Likelihood or Support Vector Machine. Thus, Support Vector Machine has been 

used in this study due to its credibility for providing more effective classification accuracies in land cover 

classification applications (Xie & Niculescu, 2021). Additionally, previous successful applications of SVM in land 

cover classification problems, as evidenced in papers such as Tran et al. (2015) contribute to its selection for this 

study. Using the collected samples, the algorithm is then trained to learn the spectral characteristics of each land 

cover class. When the trained classifier is applied to the entire image, it produces a classified image in which 

pixels are assigned specific land cover classes. This analysis is conducted using imagery acquired in the years 

2015, 2020, and 2024 earlier. 

In addition, water quality analysis is conducted by integrating Landsat 8 satellite imagery, which enables 

monitoring of water quality parameters by combining remote monitoring with field observations. The study 

utilised Landsat 8/9 OLI/TIRS images to gather reflectance values for each band, which were then correlated 

with field-measured data. Regression analysis was employed to find the best model to predict important water 

quality metrics. The integration of satellite data with on-site measurements facilitated the development of precise 

models for estimating water quality parameters. This study demonstrated the ability of remote sensing in 

offering significant insights for monitoring water quality. Table 3 depicts the locations of field-measured data 

that has been obtained as the secondary data. There are total of six (6) locations (see Table 3). 

Table 3. Location of Sampling Points 

No Station/Location Latitude Longitude 

1 Kg. Sungai Ta’hain 5.747500 101.390833 

2 Kg. Klewang 5.680359 101.409440 

3 Kg. Sungai Tiang 5.695500 101.442400 

4 Houseboat Park Sg. Ko’oi 5.666759 101.399956 

5 Houseboat Park Sg. Papan Luar 5.638055 101.370555 

6 Houseboat Park Sg. Ruok 5.595114 101.377868 

The study involved analyzing water quality by integrating in-situ data with Landsat 8/9 imagery. First, 

in-situ water quality readings from 2020, along with their geographic coordinates, were compiled into a CSV 

and imported into ArcGIS Pro as a point feature class. Landsat imagery for the same period was pre-processed 

using ERDAS Imagine and ArcGIS Pro to correct for atmospheric conditions and remove cloud cover. Due to 

the limited number of sampling points, the Inverse Distance Weighting (IDW) method was used to interpolate 
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the data, creating a raster surface for various water quality parameters. To generate more sampling points, a 

fishnet grid was created using the Create Fishnet tool, and interpolated raster values were extracted to these 

points. Both in-situ and Landsat data were aligned to the same coordinate system, and the Extract Multi Values 

to Points tool was used to combine the data. Finally, multiple linear regression was performed using SPSS 

Statistics to predict water quality based on Landsat bands, with results including Model Summary, ANOVA, and 

Coefficient tables to assess the model's fit and the contribution of each band.  

Furthermore, air temperature analysis was incorporated to complement the assessment of environmental 

degradation. Air temperature is closely associated with vegetation conditions, land use changes, surface 

temperature, and water quality. Air temperature can be closely related to NDVI, land use, LST, and water quality 

to monitor environmental degradation efficiently. Higher air temperatures can stress vegetation, lowering NDVI 

values, and changes in land use, like urbanization, can increase local temperatures, creating urban heat islands. 

LST, reflecting surface heat absorption, can indicate surface changes such as deforestation and urbanization. 

Higher air temperatures also affect water quality by altering water temperatures, decreasing dissolved oxygen, 

and promoting harmful algal blooms. Integrating air temperature data with NDVI, land use, LST, and water 

quality data provides a comprehensive view of environmental changes, revealing patterns and trends over time 

and across regions. Air temperature data were recorded using TinyTag data loggers at Tasik Temenggor on 14 

May 2024 and compiled into a CSV file containing geographic coordinates and temperature values. The data 

were imported into ArcGIS Pro as point features, and a continuous surface was generated using Inverse Distance 

Weighting (IDW) interpolation. The resulting raster was classified into five categories—very low, low, 

moderate, high, and very high. Subsequently, air temperature prediction followed a procedure similar to that 

used for water quality modeling, in which Landsat 8/9 OLI/TIRS reflectance values were correlated with field-

measured data using regression analysis to develop predictive models for the years 2015 and 2020.  

Once the parameter for the environmental degradation monitoring had been derived, the resulting NDVI 

and LST layers were further reclassified to enhance interpretability and facilitate comparative analysis. 

Reclassification was performed using the Manual Interval classification methods in ArcGIS Pro. Both parameter 

for NDVI and LST is divided into five (5) distinct groups. The process of reclassification is performed using the 

"Reclassify" Tool in ArcGIS Pro, which consists of five classifications. For example, classification involving Very 

Low, Low, Moderate, High, and Very High has been applied for LST. Meanwhile, NDVI was categorized into 5 

distinct classes which is Dense Vegetation, Moderate Vegetation, Sparse Vegetation, Bare soil, and Water. This 

multi-class categorization not only contributes to visual clarity but also establishes a nuanced framework for 

understanding the varying degrees of environmental condition within the study area. 

2.4. Data Analysis 

Data Analysis is the third phase in conducting this study. This study undergoes a few processing steps 

before obtaining the results where all the parameters obtained in Phase 2 has been assign the weightage by using 

Principal Component Analysis (PCA) and then Weighted Overlay Analysis was utilized to obtain the final output 

of spatio-temporal map (Kowe et al., 2023; Kumar et al., 2022; Topp et al., 2020). 

Principal Component Analysis (PCA) was utilized to simplify complex datasets and highlight the most 

significant patterns or trends. PCA is a statistical method for dimensionality reduction and data compression. It 

transforms the original variables into a new set of uncorrelated variables known as principal components, which 

capture the data's maximum variance. PCA is commonly used in various fields, such as data analysis, image 

processing, and machine learning. The Principal Components tools in ArcGIS Pro were used to assign weights 

to the parameters of each variable. Therefore, this analytical procedure determines the weights assigned to each 

parameter inside the variables.  

After acquiring all parameter weights through Principal Component Analysis, the Weighted Overlay 

Analysis tool is utilised. The allocation of percentage weighting to each layer is incorporated throughout this 

stage. The outcome comprises three distinct maps corresponding to the years 2015, 2020, and 2024. Therefore, 

a spatio-temporal map illustrating the extent of degradation in Tasik Temenggor has been generated.   
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3. Results and Discussion 

The results of Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST), Land 

Use Land Cover (LULC), Water Quality and Air Temperature were presented in this section. The final output 

for this study was also presented where map showing the level environmental condition in Tasik Temenggor 

after all the parameters has been calculated. After analyzing the map, we will be able to identify the area's 

deterioration condition. Additionally, Principal Component Analysis (PCA) has been utilized to assign weightage 

to each of the parameters before obtaining the final step using Weighted Overlay Analysis. 

3.1. Normalized Difference Vegetation Index (NDVI) 

The output shows a complex and varied environment composition of NDVI in year 2015, 2020 and 2024 

(see Table 4). In 2015, with 2.63% of the land covered by bodies of water, the region is highly significant for 

aquatic ecosystems. However, some of the water bodies area was found to become bare soil. This might be because 

actual water was in a murky condition. Hence, the NDVI results has classified it as a bare soil. The percentage 

of bare soil (0.73%) denotes regions with little to no vegetation, maybe as a result of natural or man-made 

processes including land degradation or deforestation. Additionally, 4.74 percent of the land is covered by sparse 

vegetation, which indicates places with less dense or difficult-to-establish vegetation which could possibly be 

result of low-quality soil or insufficient water availability. With moderate vegetation making up 81.80% of the 

land, the area appears to have a generally stable and healthy vegetation cover that sustains the regional 

biodiversity and maintains the ecological balance of the area. Dense vegetation makes up 10.09% of the total, 

indicating areas with ideal growth circumstances and little disturbance. 

Table 4. Results of NDVI 

Year NDVI Class Area (ha) Percentage (%) 

2015 

Water 13,355.70 2.63 

Bare Soil 3,728.23 0.73 

Sparse Vegetation 24,096.50 4.74 

Moderate Vegetation 415,757.00 81.80 

Dense Vegetation 51,304.80 10.09 

2020 

Water 10,452.10 2.06 

Bare Soil 5,610.59 1.10 

Sparse Vegetation 43,567.60 8.57 

Moderate Vegetation 391,403.00 77.01 

Dense Vegetation 57,184.60 11.25 

2024 

Water 15,414.28 3.03 

Bare Soil 1,162.02 0.23 

Sparse Vegetation 24,488.90 4.82 

Moderate Vegetation 342,966.50 67.48 

Dense Vegetation 124,219.90 24.44 

Additionally, in 2020, water bodies occupy 2.06% of the area, the region's aquatic ecosystems are highly 

significant. Nonetheless, there has been a rise in the number of areas classified as bare soil, most likely as a result 

of water bodies being misclassified by the NDVI because of their murky state. 1.10% of the land is presently 

covered in bare soil, which denotes regions with little to no vegetation, perhaps as a result of human or natural 

processes like degradation of land or deforestation. Compared to 2015, the percentage of sparse vegetation has 

increased to 8.57%, indicating areas with less dense or struggling plants because of things like low soil quality 

or insufficient water. Slightly less than in 2015, moderate vegetation makes up 77.01% of the land, suggesting a 

generally maintained and healthy vegetation cover. 11.25 percent of the land is covered by dense vegetation, 

which denotes regions with ideal growth conditions and little disturbance. 
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Water bodies now cover 3.03% of the region, indicating a higher presence than in previous years, 

underscoring the significance of the aquatic ecosystems. Conversely, the areas classified as bare soil have 

significantly decreased to 0.23%, much lower than in 2015 and 2020. The percentage of sparse vegetation, which 

had declined in 2020, has increased to 4.82% in 2024, compared to 8.6% in 2020. Moderate vegetation covers 

67.48% of the land, less than in 2015, indicating a generally maintained and healthy vegetation cover. Meanwhile, 

dense vegetation now occupies 24.4% of the area, a substantial increase compared to 2020, reflecting improved 

growth conditions and reduced disturbance.  

Figure 3 below offers a detailed depiction of the environmental composition of the study area and displays 
the visualization of these data in 2015, 2020 and 2024. The geographical distribution of the region's water bodies, 
bare soil, sparse, moderate, and dense vegetation is depicted on this map. A better understanding of the 
distribution and temporal evolution of these different land cover categories can be obtained by looking at the 
map. 

 

Figure 3. Results of NDVI for 2015, 2020 and 2024 

3.2. Land Surface Temperatures (LST) 

Notably, 86.85% of the studied area had moderately low temperature levels (see Table 5). The NDVI data 

for 2015 suggested that this region had moderate vegetation. Furthermore, 12.53% of the research area had low 

LST values, and this part of the region had mostly classified as forest for the LULC results in 2015. Further 

analysis reveals that 0.42% of the area experienced moderately high LST values. In 2015, this area corresponded 

to moderate NDVI ranges with some regions showing classification of developed area (residential area) for 

LULC. Moreover, 0.19% of the study area was identified as having very low LST values. This region was 

associated with forest in 2015, however, this result might be due to the presence of clouds too. Lastly, a very 

small portion of the study area, accounting for only 0.01%, exhibited high LST values. This region was 

characterized as bare soil according to the NDVI and LULC data from 2015. These findings underscore the 

intricate relationship between LST and vegetation cover, highlighting how varying degrees of vegetation 

influence temperature distribution across the study area. 

Additionally, in 2020, 56.51% of the research area had very low LST values, and the NDVI suggested 

moderate vegetation while LULC results in 2020 shows it was an area with forest and little bit of cultivated area. 

In addition, 42.90% of the land had low LST values, which corresponded to places with moderate to thick 

vegetation. Furthermore, 0.54% of the study area experienced moderately low LST values, where the NDVI 
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indicated a mix of moderate and some dense vegetation. Finally, a small portion of the area with 0.17%, exhibited 

moderately high LST values and this area comprised a mix of sparse and moderate vegetation as well as classified 

as bare soil for LULC in 2020. 

Specifically, in 2024, 68.49% of the study area exhibited moderately low LST values, with the LULC 

results indicate the regions as forest. Additionally, 24.02% of the study area had moderately high LST values, 

which were associated with planted or cultivated area. Furthermore, 6.29% of the area experienced low LST 

values, where the LULC results in 2024 shows it forest area. A small portion, 1.06%, exhibited high LST values, 

which corresponded to areas with bare soil. Lastly, 0.04% and 0.1% of the study area had very low LST values 

and very high LST value, respectively.  

Table 5. Results of LST 

Year LST Class Area (ha) Percentage (%) 

2015 

Very Low 944.816 0.19 
Low 63,704.00 12.53 
Moderately Low 441,442.00 86.85 
Moderately High 2,153.21 0.42 
High 18.05 0.01 

2020 

Very Low 287,182.00 56.51 
Low 218,283.00 42.90 
Moderately Low 2,761.05 0.54 
Moderately High 8.85 0.15 

2024 

Very Low 189.03 0.04 
Low 31,979.92 6.29 
Moderately Low 348,134.60 68.49 

Moderately High 122,091.10 24.02 
High 5,364.04 1.06 
Very High 504.59 0.10 

Figure 4 below offers an interpretation of the Land Surface Temperature (LST) distribution in the study 

area and visualizes these data effectively.  

 

Figure 4. Results of LST for 2015, 2020 and 2024 
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3.3. Land Use Land Cover (LULC) 

Table 6 shows the overall results for LULC data processing. The data reveals that forested areas 

overwhelmingly dominate the landscape, covering 79.92% of the region. This substantial forest cover indicates 

the presence of extensive natural vegetation. Planted or cultivated lands represent the second largest category, 

occupying 7.87% of the area, reflecting agricultural activities within the region. Barren land accounts for 7.16% 

of the area, indicating regions with minimal vegetation, possibly due to natural or anthropogenic factors such as 

soil degradation or land clearing. Water bodies, essential for local ecosystems, make up 4.41% of the area, 

showcasing the aquatic features within the landscape. Finally, developed areas constitute a mere 0.65% of the 

total land, signifying limited urbanization or infrastructural development in 2015. This detailed analysis of 

LULC provides crucial insights into the spatial distribution and extent of different land cover types, offering a 

baseline for understanding environmental changes. 

Furthermore, according to the table, in 2020 forested areas dominate the landscape, covering 78.62% of 

the region, although this represents a decline from previous years. The second largest land cover is planted or 

cultivated areas, accounting for 11.71% of the total area. Barren land occupies 4.64% of the study area, which 

also marks a decrease compared to earlier analyses. Water bodies and developed areas make up 3.89% and 1.14% 

of the land, respectively. There has been a decline in the percentage of water bodies, likely indicating changes in 

water availability or quality, while the developed areas have shown an increase, reflecting ongoing urbanization 

or infrastructure development. These shifts in land cover categories highlight the dynamic changes occurring in 

the region, emphasizing the need for continuous monitoring to effectively manage and conserve the environment. 

The detailed analysis provides valuable insights into the temporal and spatial patterns of land use and cover, 

aiding in the understanding of the region's ecological health and trends. As indicated in the table, in 2024, the 

forested areas dominate the landscape, covering 78.73% of the region, which shows minimal change from 

previous years, specifically 2020. The second most prevalent land cover is the planted or cultivated areas, 

occupying 14.94% of the land, marking a significant increase compared to both 2015 and 2020. Additionally, 

barren land is categorized as covering 1.21% of the area, which reflects a noticeable decline from earlier years. 

Water bodies and developed areas constitute 3.68% and 1.44% of the land, respectively. While there have been 

slight decreases and increases in these categories, the changes are not substantial. This detailed analysis 

underscores the dynamic nature of the region's land use and cover over the studied period. The data also 

highlights the importance of continuous monitoring to understand and manage the environmental changes 

effectively. 

Table 6. Results of LULC 

Year LULC Class Area (ha) Percentage (%) 

2015 

Water 22,390.84 4.41 

Developed 3,301.54 0.65 

Barren 36,405.31 7.16 

Forest 406,190.50 79.92 

Planted/Cultivated 39,977.30 7.87 

2020 

Water 19,764.94 3.89 

Developed 5,814.69 1.14 

Barren 23,582.83 4.64 

Forest 399,593.50 78.62 

Planted/Cultivated 59,509.19 11.71 

2024 

Water 18,687.30 3.68 

Developed 7,339.11 1.44 

Barren 6,150.84 1.21 

Forest 400,152.00 78.73 

Planted/Cultivated 75,938.20 14.94 
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The visualization of the Land Use Land Cover (LULC) for the year 2015, 2020 and 2024 were illustrated 

in the map below (see Figure 5), providing a clear representation of the study area's diverse landscape. This map 

categorizes the region into five major classes including water bodies, developed areas, barren land, forest, and 

planted/cultivated areas. Water bodies, depicted in blue, while developed areas, shown in red, indicate regions 

of urbanization or infrastructure. The barren land, marked in brown, identifies areas with little to no vegetation. 

The extensive forest cover, illustrated in dark green. Lastly, the planted/cultivated areas, shown in bright green, 

reflect agricultural activities within the region.  

 

Figure 5. Results of LULC for 2015, 2020 and 2024 

From the results of NDVI, LST, and LULC presented in Figure 3, Figure 4, and Figure 5, it can be 

concluded that these findings are consistent with patterns observed in similar tropical freshwater ecosystems. 

For example, land-use changes in the Dongting Lake area significantly influenced surface temperature 

distribution (Tan et al., 2020). Similarly, NDVI shifts caused by the spread of invasive aquatic vegetation were 

documented in Ethiopia’s Lake Dambal (Godana et al., 2022), while land degradation in semi-arid regions of 

India showed strong correlations with both NDVI and LST variations (Kumar et al., 2022).  

3.4. Water Quality 

Water quality is one of the parameters that has been studied. Using Landsat 8 satellite imagery, water 

quality parameters were monitored by combining remote sensing with field observations. Reflectance values 

from Landsat 8/9 OLI/TIRS images were gathered and correlated with field data. Regression analysis identified 

the model to predict key water quality metrics. This integration of satellite and on-site data enabled the creation 

of models for estimating water quality. Relationship between spectral properties of Landsat 8 OLI/TIRS satellite 

bands and water quality parameters which include Ammoniacal Nitrogen (NH3), Biological Oxygen Demand 

(BOD), Total Suspended Solid (TSS), Dissolved Oxygen (DO), Temperature, Potential of Hydrogen (pH) and 

Turbidity has been obtained by applying regression analysis. The results of the regression analysis for the 

satellite band and the water quality parameters show a relationship between the spectral properties. The steps 

involved in doing this analysis were covered in the previous chapter. The resulting models for each parameter 

that were produced through multiple linear regression are displayed in Table 7 below. 

The predictive models for water quality parameters were developed using multiple linear regression, 

incorporating in-situ observations from 2020 and corresponding Landsat satellite imagery data. Upon applying 

these models to the satellite data for the years 2015 and 2024, the predicted values were analyzed for accuracy 
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and relevance. The validation process involved comparing the predicted water quality parameters with available 

observed data to assess the model performance. Among the predicted parameters, three parameters of the water 

quality have demonstrated a strong relationship with the observed data, exhibiting high R-squared values. These 

parameters are Dissolve Oxygen (DO), pH and temperature. 

Table 7. Derived Model for Each Parameter Through Regression Analysis 

Water Quality Derived Model R2 

Ammoniacal Nitrogen = 1.04 + 0.49 (B5) – 7.08 (B1) 0.46 

Bıologıcal Oxygen Demand = 22.18 – 4.25 (B5) – 178.83 (B1) + 57.76 (B4) 0.57 

Total Suspended Solid = -528.07 + 72.57 (B10) + 76.84 (B5) – 1056.13(B2) 0.61 

Dissolve Oxygen = 125.79 -15.11 (B10) + 115.70 (B1) 0.64 

Temperature = 56.23 -3.70 (B10) -807.30(B9) - 4.04 (B5) +84.66 (B1) 0.70 

Potential of Hydrogen (pH) = -14.40 +2.83 (B10)  - 922.98 (B9) -3.59 (B5) 0.68 

Turbidity = -57.00 +10.73 (B11) +43.56 (B4) -213.87 (B1) 0.51 

Figure 6 shows Water Quality Parameters (a) dissolved oxygen (b) pH and (c) Temperature in 2015. To 

conduct PCA in the subsequent step, only these three parameters that have been utilized to get the weightage 

to be assigned for weighted overlay analysis. Dissolved Oxygen (DO) levels ranged from 4.8 mg/L to 13.8 mg/L, 

while pH values varied between 8.1 and 10.6. Additionally, the water temperature during this period ranged 

from 32.7°C to 37.4°C.  

 

Figure 6. Water Quality Parameters (a) Dissolved Oxygen (b) pH and (c) Temperature in 2015 

Figure 7 shows Water Quality Parameters (a) dissolved oxygen (b) pH and (c) Temperature in 2020. 

Among the anticipated parameters, these three water quality parameters showed a substantial relationship with 

the observed data, with high R-squared values. Hence, to conduct PCA in the subsequent step, only these three 

parameters that has been utilized to get the weightage to be assigned for weighted overlay analysis. Dissolved 

Oxygen (DO) levels ranged from 0.1 mg/L to 16.6 mg/L, while pH values varied between 3.6 and 9.7. 

Additionally, the water temperature during this period ranged from 24.4°C to 37.1°C. 
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Figure 7. Water Quality Parameters (a) Dissolved Oxygen (b) pH and (c) Temperature in 2020 

Figure 8 Water Quality Parameters (a) dissolved oxygen (b) pH and (c) Temperature in 2024. Among the 

anticipated parameters, these three water quality parameters showed a substantial relationship with the observed 

data, with high R-squared values. Hence, to conduct PCA in the subsequent step, only these three parameters 

that have been utilized to get the weightage to be assigned for weighted overlay analysis. Dissolved Oxygen 

(DO) levels ranged from 0.2 mg/L to 16.6 mg/L, while pH values varied between 3.6 and 9.7. Additionally, the 

highest water temperature during this period 29.3°C. 

 

Figure 8. Water Quality Parameters (a) Dissolved Oxygen (b) pH and (c) Temperature in 2024 

 

https://doi.org/10.14710/geoplanning.12.2.215-238


Kamaruzzaman et al. / Geoplanning: Journal of Geomatics and Planning, Vol 12, No 2, 2025, 215-238 
DOI: 10.14710/geoplanning.12.2.215-238 
 

230 

3.5. Air Temperature 

Relationship between spectral properties of Landsat 8 OLI/TIRS satellite bands and air temperature has 

been obtained by applying regression analysis. The results of the regression analysis for the satellite band and 

air temperatures show a relationship between the spectral properties. The steps involved in doing this analysis 

have been covered in the previous chapter. The resulting models for air temperature that were produced through 

multiple linear regression are displayed in Table 8 below. Hence, the general form of equation to calculate air 

temperatures using Landsat 8 OLI/TIRS band were as follows: 

Table 8. Derived Model for Air Temperature through Regression 

Derived Model R2 

AT = 45.57-1.36 (B11) -56.26 (B8) 0.32 

The regression coefficients result between predicted and measured values of air temperature are 

(AdjR2=0.32). This output indicates that approximately 32% of the variability in air temperature can be explained 

by the model. This suggests a moderate level of explanatory power, implying that while the model has some 

predictive capability, a significant portion of the variability in air temperature is influenced by factors not 

included in the model.  Air temperature in 2015 has been predicted using the model derived from multiple linear 

regression earlier which the satellite band data involve is Band 8 and Band 11. The results of the multiple linear 

regression analysis are regarded acceptable because the model that was developed has shown effectiveness and 

reliability. This is demonstrated by its successful use in predicting air temperature for the following year. The 

consistency and accuracy of the predictions validate the model's effectiveness, indicating that it is suitable for 

ongoing and future analyses. Subsequently, to enhance the understanding and analysis of the air temperature 

results, the data has been classified using the Natural Breaks (Jenks) method. Given the variations in results, an 

approach was adopted to classify the data according to the appropriate readings for each year.  

Table 9 show the classification ranges for the air temperature final output and Figure 9 depicts the 

visualization of air temperature data for the years 2015, 2020, and 2024 that have been predicted based on the 

model derived, respectively. The maps show a significant trend of very high temperatures across most of the 

region during these three years, with temperature ranges consistently exceeding 33 degrees Celsius. This 

persistent high-temperature pattern suggests a concerning level of thermal stress on the environment. 

 

Figure 9. Results of Air Temperature in 2015, 2020 and 2024 
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Table 9. Classification Ranges for Air Temperatures 

Class Area (Ha) LST Class 
1 <10 °C Very Low 
2 10 – 19 °C Low 
3 19 – 26 °C Moderate 
4 26 – 29 °C High 
5 >33 °C Very High 

3.6. Determination of Environmental Degradation 

Finally, after obtaining all the results of spatial data reproduction, the parameters will be utilized to assess 

environmental damage. Before progressing with subsequent processing, it is critical to classify all parameters in 

a more relevant and readable manner. The study then incorporates diverse environmental datasets, such as land 

use, water quality, and air temperatures, to produce a comprehensive collection. To add weights to the 

parameters of these variables, ArcGIS Pro's Principal Components tools have been used. Once the weights are 

set, the Weighted Overlay Analysis tool assigns a percentage weighting to each layer. A weighted overlay 

approach was used to further integrate the chosen parameters in order to operationalize the assessment of 

environmental degradation. This approach enables a thorough spatial assessment of environmental conditions 

by combining several environmental variables according to their relative importance. Figure 10 illustrates the 

reclassified criterion maps of each environmental parameter used as input layers for the weighted overlay 

analysis. 

 

Figure 10. The Criterion Maps of the Environmental Condition Map of Tasik Temengor 

The following table presents the key parameters utilized in this study to assess environmental 

degradation around Tasik Temenggor in Royal Belum, Perak. Each parameter has been assigned a weightage to 

facilitate the creation of maps through a weighted overlay analysis. The assignment of weightages reflects the 

relative importance of these parameters in influencing environmental conditions and degradation processes in 

the study area. The inclusion of relevant and significant criteria is important for the accuracy of weighted overlay 

analysis (WOA) in measuring environmental degradation. Air temperature was first considered as a criterion. 

However, subsequent analyses found that including it did not enhance the degradation prediction accuracy. This 

might be due to the insufficient number of ground sampling that has been collected in 2024. Since there are only 

38 points, we need to predict them by using spatial interpolation only. Furthermore, Land Surface Temperature 

(LST) sufficiently captured the thermal properties impacting degradation, causing the inclusion of air 

https://doi.org/10.14710/geoplanning.12.2.215-238


Kamaruzzaman et al. / Geoplanning: Journal of Geomatics and Planning, Vol 12, No 2, 2025, 215-238 
DOI: 10.14710/geoplanning.12.2.215-238 
 

232 

temperature redundant. This redundancy not only contributed little benefit, but also increased the chance of 

overlapping influences, which could distort the analysis. As a result, removing the air temperature from the 

WOA produced a more accurate and realistic degradation map. Thus, the PCA was conducted again, and the 

weightage used to generate the map is shown in Table 10.   

Table 10. Weightage Assign for Parameters in 2015, 2020 and 2024 

Year Parameters Weightage (%) 

2015 

Land Use Land Cover (LULC) 68 
Normalized Difference Vegetation Index (NDVI) 13 

Land Surface Temperatures (LST) 11 

Dissolve Oxygen (Water Quality) 7 
Ph (Water Quality) 1 

2020 

Land Use Land Cover (LULC) 57 

Normalized Difference Vegetation Index (NDVI) 15 

Land Surface Temperature (LST) 14 

Dissolve Oxygen (Water Quality) 11 
Ph (Water Quality) 3 

2024 

Land Use Land Cover (LULC) 58 

Normalized Difference Vegetation Index (NDVI) 16 

Land Surface Temperature (LST) 11 

Dissolve Oxygen (Water Quality) 9 

Ph (Water Quality) 4 

The spatial distribution of environmental conditions in the study area was then examined using the 

weighted overlay results obtained from the chosen parameters (see Table 11),  

Table 11. Spatial Distribution of Environmental Condition 

Year Class Area (ha) Percentage (%) 

2015 

Very Good 405297.3 79.77 
Good 40986.03 8.07 

Moderate 23895.76 4.7 

Poor 37906.91 7.46 
Very Poor 11.89399 0 

2020 

Very Good 397712.9 78.29 
Good 61961.02 12.2 
Moderate 31837.53 6.27 
Poor 16509.72 3.25 
Very Poor 0.215574 0 

2024 

Very Good 387141.3 76.25 
Good 88799.18 17.49 
Poor 24996.89 4.92 
Very Poor 6776.05 1.33 

According to Table 11 and Figure 11, 79.77% of the region shows Very Good level of environmental 

condition. Referring to the LULC map from 2015, this area was predominantly forested, which explains its very 

good condition. This is understandable because forested areas are generally less impacted by human activities 

compared to urban or agricultural areas. Moreover, 8% of the total areas depict the area with good level of 

environmental conditions. This area has been identified as a planted/cultivated area from the land use 

classification results in 2015. Agricultural and managed lands often undergo regular maintenance and 

management practices that can mitigate environmental degradation factors such as erosion or habitat loss. 

Therefore, these areas would rationally show good environmental conditions. Furthermore, the water bodies 

area, including Tasik Temenggor, has been identified as having a moderate level of environmental condition, 

accounting for only 4% of the study area. Finally, 7% of the total area exhibits a poor level of environmental 
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condition, classified specifically as barren land. Barren land often refers to areas in which the vegetation or forest 

has been severely depleted or cannot be sustained due to a variety of environmental stresses such as soil 

degradation, desertification, or human activity such as deforestation. These variables contribute to poor levels 

of environmental condition than places with natural vegetation or managed landscapes. 

 

Figure 11. The Environmental Condition of Tasik Temenggor, Perak in 2015, 2020 and 2024 

Based on the data in Table 11, 78.29% of the region exhibits a Very Good environmental condition. 

According to the 2020 LULC map, this area was mostly covered by forests, which accounts for its minimal 

environmental impact. However, the slight decrease in percentage compared to the previous year suggests that 

some degradation has occurred in the area. Furthermore, 12% of the total area is classified as having a good 

environmental condition, identified as planted or cultivated areas according to the 2020 land use classification. 

Compared to the previous year's analysis, the increase from 8% in 2015 to 12% in 2020 suggests an improvement. 

This shift likely indicates that areas previously categorized as 'moderate' have improved to the 'good' category. 

Furthermore, 6.3% of the total area, classified as having a moderate environmental condition, includes water 

bodies and developed areas based on the 2020 LULC map. Compared to the previous year's analysis, it can be 

inferred that this area has experienced degradation, as indicated by the increase in moderate condition areas from 

4.7% in 2015 to 6.3% in 2020. Finally, 3.2% of the total area exhibits a Poor level of environmental condition, 

classified specifically as barren land and developed area. They are classified as poor environmental conditions 

due to their significant transformation from natural ecosystems, associated environmental impacts, and human 

activities. However, this area could be considered improved this year, as the percentage of poor level of 

environmental conditions has decreased from 7% to 3.2%.  

Based on the data in Table 11, 76.25% of the region reveals a Very Good condition of the area. According 

to the 2024 LULC map, this area was mostly covered by forests. However, the slight decrease in percentage 

compared to the previous year suggests that some degradation has occurred in the area. Furthermore, 17.49% of 

the total area represents areas with Good environmental condition, identified as planted or cultivated areas based 

on the 2024 land use classification results. The percentage of areas classified as having a good environmental 

condition increased from 12% in 2020 to 17.49% in 2024. Hence, this improvement suggests that more areas 

have transitioned to a higher quality environmental condition over the years. In addition, 4.92% of the study 

area exhibits a Poor environmental condition. This category includes water bodies, including Tasik Temenggor, 

as well as areas classified as developed based on the LULC map in 2024. By comparing the classification from 

the previous year, we can conclude that water bodies area has been experiencing degradation, same indicator 
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also being used by other studies (Qin et al., 2024; Shi et al., 2024). Finally, 1.33% of the total area exhibits a Very 

Poor condition, specifically classified as barren land and developed area. Barren land and developed areas are 

classified as displaying Very Poor environmental condition due to their significant transformation from natural 

ecosystems, associated environmental impacts, and human activities (Shooshtari & Jahanishakib, 2024; Wei et 

al., 2020). By comparing the percentage of having a very poor condition with the previous year, this year seems 

to experience degradation since the area percentage has been increasing. 

Additionally, Figure 12 illustrates the visible insitu stress signs for four selected sites that shows the most 

significant environmental degradation of the study area since 2015 until 2024.  This figure zooms into several 

key sites, showcasing the evolution of surface conditions within the study area. Visible signs of environmental 

stress, such as land clearing, deforestation, and land conversion, reveal consistent degradation across the region 

over the past decade. When zooming into specific sites, Site A displays extensive deforestation, which aligns with 

the LULC results indicating that the area has shifted from planted/cultivated land to barren land. This 

transformation suggests a significant decline in land productivity, likely due to unsustainable land use practices, 

soil degradation, or abandonment following intensive agricultural activities (Zhou et al., 2022). These situations 

resulted in a large decrease in NDVI over time. Therefore, if forests are destroyed and the land becomes barren, 

the NDVI will decrease, suggesting a loss of biomass and vegetation cover. As vegetation declines, LST is 

anticipated to rise. Vegetation regulates temperature by providing shade and transpiring water, which cools the 

surface. The transition to bare land, with its exposed soil, would raise surface temperatures due to increased sun 

absorption and decreased evapotranspiration.   

 

Figure 12. The In-Situ Visible Sign of Stress of Tasik Temenggor, Perak in 2015, 2020 and 2024 

Additionally, Site B experienced a shift from cultivated land in 2015 to more developed areas by 2020, 

followed by an increase in barren land in 2024, located in the same areas as the developed land. This pattern 

indicates negative land-use changes and is a clear sign of environmental stress. The progression from cultivation 

to development, and ultimately to land degradation, suggests unsustainable land management practices and 

possible overexploitation of resources. The transition from cultivated land to developed areas in 2020 would 

result in a moderate reduction in NDVI since developed areas typically have less vegetation. The further 

https://doi.org/10.14710/geoplanning.12.2.215-238


Kamaruzzaman et al. / Geoplanning: Journal of Geomatics and Planning, Vol 12, No 2, 2025, 215-238 
DOI: 10.14710/geoplanning.12.2.215-238 

 

235 

transition to barren land by 2024 will result in an even sharper reduction in NDVI, reflecting the deterioration 

and lack of vegetation (Karim et al., 2023). Initially, the expansion of built-up regions would result in an increase 

in LST because urban surfaces absorb more heat than vegetated land. By 2024, when the land becomes barren, 

LST may remain high or perhaps rise further due to the lack of vegetation to cool the surface via 

evapotranspiration (Qiu et al., 2013; Yu et al., 2024) 

Furthermore, Site C experienced a shift from cultivated land in 2015 to barren land by 2020, and by 

2024, the area had been developed. This progression suggests that the initial land degradation may have been 

caused by overexploitation or poor soil management, leading to abandonment. The subsequent development 

likely took advantage of the degraded land for urban or infrastructure expansion, indicating a lack of sustainable 

land-use practices and possibly driven by economic or demographic factors. The conversion from cultivated to 

barren land by 2020 would result in a considerable decline in NDVI due to crop and plant loss. By 2024, growth 

in the area may further diminish NDVI values, while certain types of development may balance this slightly. 

Overall, NDVI suggests a long-term deterioration in vegetation health. As the terrain changes from cultivated 

to barren land, the LST rises due to a lack of vegetation. As the area develops, the LST may continue to rise as 

urban surfaces contribute to the urban heat island effect, raising temperatures even higher (Tan et al., 2020). 

Finally, Site D exhibits continuous improvement. In 2015, the area was predominantly barren, and by 

2020, the extent of barren land had increased. By 2024, however, the area had transformed into 

cultivated/planted land. This improvement is likely the result of successful land restoration efforts, such as 

reforestation, soil rehabilitation, or sustainable agricultural practices, indicating a positive shift towards more 

productive land use and effective environmental management strategies. Site D demonstrates ongoing 

improvement, with the region transitioning from barren land between 2015 and 2020 to cultivated land in 2024. 

NDVI values would initially be low due to the empty area, but they would grow dramatically by 2024 as the land 

was cultivated and vegetation increased. The increase in NDVI indicates a healthy trend in vegetation. The lack 

of vegetative cover in this dry climate would have initially resulted in a high LST (Isa et al., 2018). However, as 

the ground is recovered and planted with crops or other vegetation, LST will decrease due to the cooling effects 

of plant evapotranspiration and increased shading. A drop in LST would also suggest an improvement in 

environmental conditions and hence influence of the human anthropogenic activities (Liu et al., 2020). 

To conclude, the reasons for environmental degradation and improvement at Sites A, B, C, and D are 

directly linked to changes in NDVI and LST. Decreased NDVI and increased LST typically imply environmental 

stress, such as deforestation and land degradation, as observed in Sites A, B, and C. In contrast, increases in 

NDVI and decreases in LST, as seen at Site D, indicate good environmental changes such as reforestation, land 

restoration, or sustainable agriculture methods. These indicators give a quantitative framework for assessing the 

land's health and surface conditions throughout time. 

The findings of this study contribute significantly to the growing body of research on environmental 

degradation assessment using geospatial technology. By integrating Principal Component Analysis (PCA) and 

Weighted Overlay Analysis (WOA) within a GIS framework, this research presents a comprehensive, multi-

parameter approach that enables spatially and temporally explicit mapping of environmental degradation. 

Compared to previous studies that analyzed only one or two parameters in isolation such as land use or NDVI 

this study simultaneously examines NDVI, LST, LULC, and water quality, providing a more holistic 

understanding of ecological change. The spatio-temporal degradation trends observed in Tasik Temenggor, 

particularly the correlation between forest conversion and increased surface temperature and vegetation decline, 

are consistent with studies conducted in China (Zhou et al., 2022), Vietnam (Karim et al., 2023), and Ethiopia 

(Godana et al., 2022). However, the integration of remote sensing with in-situ validation and PCA-weighted 

modeling distinguishes this work from previous efforts. The methodological framework demonstrated here not 

only enhances local-level environmental assessments but also contributes theoretically by showcasing how 

geospatial multi-variable synthesis can be operationalized to detect, explain, and visualize degradation patterns 

across time. This level of integration represents a novel and scalable approach for future applications in other 

freshwater ecosystems and protected areas.  
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4. Conclusion 

In summary, this study has provided a comprehensive study of environmental degradation in the Tasik 

Temenggor region, employing a combination of geospatial techniques and statistical analyses to uncover 

significant insights. Through the systematic identification of key variables such as NDVI, LST, LULC, water 

quality, and air temperature, and the application of spatio-temporal analyses, the study has developed a detailed 

understanding of the factors driving environmental change in this ecosystem. The integration of remote sensing 

data with in-situ measurements has proven particularly effective in creating a methodology for assessing 

environmental conditions, concluding in a comprehensive map that visualizes the spatial distribution of 

degradation, which similar condition also exhibited at other regions.  

The approach has highlighted the effectiveness of geospatial technology in environmental monitoring, yet 

several areas for improvement and future research have been identified. Incorporating machine learning 

techniques alongside traditional statistical methods can enhance the ability to handle large datasets and uncover 

complex patterns. Algorithms like Random Forest, Support Vector Machines (SVM), and Neural Networks can 

provide deeper insights and improve predictive accuracy. Additionally, employing advanced geospatial tools such 

as Google Earth Engine for large-scale data processing and ArcGIS Pro for detailed spatial analysis can refine 

monitoring capabilities by managing multi-dimensional data from various sensors more precisely and efficiently. 

Future studies should also expand the temporal scope to include longer time periods, offering a more 

comprehensive view of environmental trends and changes, while more frequent data collection intervals would 

enhance the granularity and reliability of the findings. 

Integrating high-resolution remote sensing platforms like Sentinel, MODIS, and Landsat allows for 

continuous monitoring and detection of subtle environmental changes. When combined with geospatial 

techniques like kriging and hotspot analysis, these tools can significantly enhance the accuracy of mapping 

pollutant concentrations and other critical environmental indicators. Future research should focus on translating 

these findings into actionable environmental policies and targeted conservation strategies, especially in the most 

ecologically vulnerable areas. Despite these methodological strengths, the study does face several limitations. 

The spatial resolution of Landsat imagery (30m) may be insufficient to capture fine-scale variations, and the 

limited number of in-situ water quality sampling points (only six stations) may underrepresent spatial variability 

across the lake. Additionally, masking due to cloud cover in the 2024 imagery may have introduced spatial data 

gaps. Future studies are encouraged to incorporate higher-resolution sensors like Sentinel-2 and to increase both 

the frequency and spatial density of field observation. Overall, this research offers a strong foundation for 

assessing environmental degradation in Tasik Temenggor. However, further refinement particularly through 

the adoption of advanced analytical techniques and closer integration with conservation practice will be essential 

to support the long-term sustainability of this critical ecosystem. 
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