Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Published: 17-10-2017
Section: Articles
Fulltext PDF Tell your colleagues Email the author

The level of urbanization in the developing world indicates that more people live in cities nowadays than before. As urbanization increases, road usage also proportionately increases which sometimes introduce some strains to the existing road. As a consequence, it constitutes some impediments to free traffic flow. The situation described above is located on Chanchaga Local Government Area of Niger State, an urban center in North central, Nigeria. In order to investigate the probable causes and degree of severity of this menace, attempt has been made in this research to investigate and map out the nature of traffic congestion frequently experienced on some selected roads within Chanchaga LGA. These road networks include: Kpakungu-Gidan Kwano road, Bosso-Mobil route, Bosso–Mekunkele route, Kpakungu–city gate road and Book roundabout–Mobil Route. Using a 1m Pan-Sharpened spatial resolution IKONOS Image, handheld GPS receivers, and manual traffic count, the traffic patterns of the selected road networks within the study area were assessed and mapped out. A Geo-Database was also designed for the routes which provide information about the road pavement condition, average traffic volume, adjacent land use, etc. Analysis of results and other performed queries revealed that the most probable causes of traffic congestion in Chanchaga LGA were due to narrow road width, bad road pavement and indiscriminate parking of vehicles along the road corridors, especially by commercial cab drivers. Conclusively, it was observed that the Kpakungu axis of Minna – Bida road is the most congested route of the entire road networks considered, closely followed by the Bosso-Mobil Road. The traffic gridlock along these routes is most prominent on Mondays and Wednesdays (around 8am and 4pm) and correspondingly on Fridays (around 1-4pm). Furthermore, a free traffic flow is frequently experienced on Saturdays by 8am which gradually builds a synchronized flow around the evening time on all the considered road networks. 


Urbanization, Traffic Mapping, Geospatial modeling, dynamic road segmentation, land use, Traffic Information System

  1. Oluibukun Gbenga Ajayi  Orcid
    Federal University of Technology, Minna, Nigeria
    Surveying and Geoinformatics Department
  2. Ayodeji Timothy Oluwunmi  Orcid
    Federal University of Technology Minna, Nigeria
    Surveying and Geoinformatics Department
  3. Joseph Olayemi Odumosu 
    Federal University of Technology, Minna, Nigeria
    Department of Surveying and Geoinformatics
  4. Taiwo James Adewale 
    Moshood Abiola Polytechnic, Ogun State, Nigeria
    Surveying and Geoinformatics Department
  1. Ajala, D. O. (2011). Challenges of Traffic Management in Osogbo as an Emergent State Capital. In PhD Research Thesis submitted to the Department of Urban and Regional Planning, Federal University of Technology, Akure, Nigeria.

  2. Ajayi, O. G., Odumosu, J. O., Samaila-Ija, H. A., Zitta, N., Adesina, E. A., & Olanrewaju, O. J. (2015). Dynamic Road Segmentation of Part of Bosso Local Government Area, Niger State. American Journal of Geographic Information System, 4(2), 64–75.

  3. Ajayi, O. G., Onuigbo, I. C., Odumosu, J. O., Adewale, T. J., & Gbedu, A. M. (2015). Mapping Road Traffic Accident Hotspots and evaluating the causative factors of their probable causes in Minna, Niger State. In 6th International Conference on HealthGIS- 2015. GeoICT for Epidemic Control and HealthCare, 19 -21 November, 2015, Mysore, India.

  4. Aworemi, J. R., Abdul-Azeez, I. A., Oyedokun, A. J., & Adewoye, J. O. (2009). A study of the causes, effects and Ameliorative Measures of Road Traffic Congestion in Lagos Metropolis. European Journal of Social Sciences, 11(1), 119–128.

  5. Kimathi, M. E. M. (2012). Mathematical models for 3-phase traffic flow theory.

  6. Lindsey, R., & Verhoef, E. (2009). Traffic Congestion and Congestion Pricing. Tinbergen Institute Discussion Papers 00-101/3, Tinbergen Institute, 2000.

  7. Ogunbodede, E. F. (2007). Assessment of traffic congestions in Akure (Nigeria) using GIS approach: lessons and challenges for urban sustenance. In Proc. Conf. on Whole Life Urban Sustainability (pp. 1–25).

  8. Ogunbodede, E. F., & Aribigbola, A. (2003). Traffic Management Practices and Problems in Akure, Nigeria. Indian Journal of Transport Management, 27(3), 305–322.

  9. Okagbue, H. I., et al. (2015). On the Motivations and Challenges Faced by Commuters Using Bus Rapid Transit in Lagos, Nigeria. The Social Sciences, 10(6), 696–701.

  10. Olatunji, A., & Diugwu, I. A. (2013). A Project Management Perspective to the Management of Federal Roads in Nigeria: A Case Study of Minna-Bida Road. Journal of Finance and Economics, 1(4), 54–61. [Crossref]

  11. Olusina, J. O., & Olaleye, J. B. (2013). Transaction-Based Intelligent Transportation System (TBITS) Using Stochastic User Utility Model. Transactions in GIS, 17(1), 109–123. [Crossref]

  12. Onasanya, A., & Akanmu, J. O. (2002). Quantitative Estimates of Traffic Congestion on Lagos--Abeokuta Road, Lagos, Nigeria. Journal of Civil Engineering, Nigeria Institution of Civil Engineering.

  13. Park, M. J. (2012). Three phase traffic theory.

  14. Pike, E. (2010). Congestion charging: challenges and opportunities.

  15. Rao, A. M., & Rao, K. R. (2012). Measuring urban traffic congestion – A Review. International Journal for Traffic and Transport Engineering, 2(4), 286–305. [Crossref]

  16. Willett, K. (2006). Stuck in traffic and stuck for solutions: Brisbane’s congestion crisis’. In Australian institute of Transport Planning and Management (Qld) Seminar.