Condition of ^{137}Cs Activity in Karimunjawa Waters and its Distribution When an NPP Jepara is Operated

Muslim1, Heny Suseno2, and Siti Saodah1

1Oceanography Study Program, Diponegoro University, Jl. Prof. H. Soedarto, S.H, Tembalang, Semarang, Jawa Tengah, 50275, Indonesia

2Marine Radioecology Group, Center for Radiation Safety Technology and Metrology National Nuclear Energy Agency Jl. Lebak Bulus Raya No. 49, Kotak Pos 7043JKSKL Jakarta Selatan 12070 Indonesia

Email: muslim.ir@undip.ac.id

Abstract

Karimunjawa islands are located in the middle of the Java Sea, approximately 83 km northwest of Jepara city. These islands have become an Indonesian marine tourism destination and since 2001 had been designated as a national park. The Indonesian government has chosen Muria peninsula in the district of Jepara, Indonesia as a site for a potential nuclear power plant (NPP). The purpose of this study was to determine the current level of radioesium (^{137}Cs) activity and forecast its spread if an NPP is operated at Jepara. To determine the distribution of ^{137}Cs in Karimunjawa waters, a sampling of water was done in six stations. Simulation modeling was used to map the distribution of ^{137}Cs should an NPP be constructed in Jepara. The results showed that ^{137}Cs activity in Karimunjawa waters ranges from 0.12 to 0.39 mBq.L$^{-1}$ with an average of 0.24 mBq.L$^{-1}$. This value is slightly higher than previous studies in the coastal waters of Gresik, which had an average activity of 0.200 mBq.L$^{-1}$ because the waters around Karimunjawa have a lower dilution rate than the coastal waters of Gresik. However, these values were considerably lower than those in the waters of Northeast Japan before the Fukushima nuclear power plant accident which registered ^{137}Cs activity at 2-3 mBq.L$^{-1}$. This indicates that ^{137}Cs in Karimunjawa is not entirely from Fukushima rather from the global fallout. The ^{137}Cs distribution model suggests that after 15 days, a leakage in the Muria Peninsula nuclear plant will not contaminate Karimunjawa waters because the current in the Java Sea is relatively weak and dominant in the westward direction. Thus, when an NPP leak only runs for 15 days, Karimunjawa waters remain safe.

Keyword: ^{137}Cs, Karimunjawa, NPP, modeling, Muria Peninsula

Introduction

The electrical energy needs of Indonesia increases every year. The level of electrical energy consumption per capita is still relatively low, even when compared to other ASEAN countries (Ardisasmita, 2006), but people still fear to build an NPP (Nuclear Power Plants), especially after NPP Chernobyl accident in April 26, 1986, which claimed many victims, despite the benefits of NPP as a cheap, clean and safe source of electrical energy.

Indonesian’s government already had the idea to build and operate nuclear power plants since 1956 (Utomo, 2011). A feasibility study on the construction of nuclear power plants have been conducted in 1976. Setiabudi, (2010) revealed that there are two best locations for proposed nuclear power plant site are Ujung Watu, Keling in Muria Peninsula (Jepara) and Sluke in Lasem (Suntoko, 2010).

Forty-five miles (83 km) north of Jepara is the Karimunjawa Islands, which is a national marine park and has become a tourism destination for both Indonesian and foreign tourists (Rahman and Sugianti, 2011). The relatively short distance between Karimunjawa Islands and Jepara may allow waste radionuclides released from the proposed Jepara Muria Peninsula nuclear power plant (NPP) site to be carried by sea currents into Karimunjawa's waters. Some study of marine radioecological has been a performance at Jepara NPP candidate site (Suseno and Umbara, 2003; Umbara et al., 2006; Suseno and Umbara, 2006; Suseno, 2013; Suseno and Wisnubroto, 2014). These studies reported the status concentration of anthropogenic and natural radionuclides that showed in background level of global fallout.

It is necessary to study the activity of the radionuclides present post-Fukushima Daiichi nuclear power accident in Karimunjawa waters and
to model the 137Cs distribution when the Muria Peninsula nuclear power plant is operational. Radioactive material released from nuclear installations operating under normal circumstances is not harmful to people and the environment, as it can be kept below the exposure limit (Yuliasutji and Nurulalia, 2007). It is evident that the radionuclide activity in coastal areas near nuclear power plants is lower than the activity offshore from global fallout (Muslim, 2007). However, in the event of an accident; nuclear installations will release fission radionuclides, which are very dangerous. According to Tsumune et al., (2012); Windriani et al., (2014); and Zhao et al., (2015), one of the radioactive products of fission nuclear reactors fueled by Uranium and Plutonium is the radionuclide cesium-137 (137Cs). This element is radioactive, emitting gamma and beta rays and has a relatively long half-life (30.17 years). 137Cs radiotoxicity level is quite high (Nareh and Warsona, 1999) and can increase the risk of cancer (Windriani et al., 2014), so it is often used as an indicator for the presence of radionuclides in the environment from fallout fission.

The Fukushima Daichi nuclear power plant accident in Japan on March 11, 2011, has shocked the world, including in Indonesia. In Japan itself is causing a nuclear crisis (Qiao et al., 2011). This incident was a result of the largest documented earthquake (mega-earthquake) in Japan and was unanticipated by experts in Japan (Matsuzawa and Iio, 2012). Tsunami waves swept the east coast of Japan and distributed radionuclides including large quantities of 137Cs to the Pacific Ocean; the greatest nuclear accident leaking radionuclides into the ocean (Buesseler et al., 2011). Radionuclides released into the sea rapidly contaminate fish including the Pacific Bluefin tuna and Thunnus oriental (Madigan et al., 2012). The release and distribution of radionuclides from Fukushima has created a model to study the long-term horizontal and vertical transport of 137Cs in the ocean (Zhao et al., 2015). The simulation results showed that the distribution of 137Cs to the sea in accordance with the direction of flow of the Kuroshio current and its extension. After 4 to 5 years, the 137Cs has spread up the west coast of North America with a concentration of 2 mBq.L$^{-1}$. The 137Cs that enters the Indian Ocean and the South Pacific through the branches of ocean currents is only found in very low concentrations. After the Fukushima Daichi incident in Japan, some studies of the leakage distribution from the nuclear power plants have been conducted on a relatively short timescale (Qiao et al., 2011; Dietze and Kriest, 2012; Tsumune et al., 2012, 2013; Miyazawa et al., 2013) using forecasting models of climate and ocean circulation in a short time with a few assumptions. Furthermore, Nakano and Poviniec (2012) added support for modeling the distribution of radionuclides climatology. Therefore, the purpose of this study to make a simulation of the distribution of 137Cs within 15 days after the NPP’s leak in Muria Peninsula, Jepara. Some study of the possible impact of Fukushima accident in Indonesia marine water have been conducted (Suseno, 2012; Suseno and Prihatiningsih, 2014; Suseno et al., 2015; Muslim et al., 2015). The result of these study was not possible to impact of Fukushima in areas of investigation. The on another hand, still limited data in Indonesia marine water.

Materials and Methods

Primary and secondary data used in this study. Primary data includes data of radionuclide (137Cs) activity and ocean currents in Jepara measured when sampling; Secondary data used are the bathymetric map of Jepara regency in 2004 obtained from DISHIDROS (Indonesian Hydro-Oceanography Office) Navy, data of Jepara’s tidal waters in 2014 which were obtained from the harbormaster in the Kartini Port, Jepara, a stream flow of the Balong River which was obtained from the Jepara district office and the average temperature of the sea water in situ.

Seawater sampling for analysis of 137Cs was carried out on August 31 and September 1, 2014. Sixty-five liters of seawater was collected from surface and poured into an 80-liter PVC container. Ten grams of K$_4$[Fe(CN)$_6$] and 10 grams of CuSO$_4$ were added to each container to bind 137Cs in the water, stirred for 30 minutes, then let stand until the precipitate formed. The clear water above the precipitate was removed using a plastic tube and the precipitate was transferred to 1.5 L plastic bottle and stored for further processing in the marine radioecology laboratory.

The research location is shown in Figure 1. The six research station locations, both coordinates, and depth of each station, is shown in Table 1. Stations 1, 2, 4 and 6 are located in the eastern, southern, northern and western part of Karimunjawa Island, respectively. Station 3 is located in the sheltered island and station 5 is located between Parang Island and Nyamuk Island.

Analysis of 137Cs activity in the Laboratory

Water samples (stored in the 1.5 L bottle) were filtered to separate water that remains from the precipitate. 137Cs deposited on the filter paper was dried in an oven at 100 °C for approximately 3
days. The dried samples were transferred to a Marinelli beaker and 137Cs activity was counted using a Gamma Spectrometer with Genie-2000 software. The data was recorded for 3 days to determine the activity of 137Cs in the samples.

Current measurement and verification

Current speed was measured in the field and modeled using RMA2 module (Resource Management Associate-2) in the SMS software (Surface Water Modeling System). Current data model and current data from the field were then verified by finding the MRE (Mean Relative Error) using the formula:

$$RE = \frac{|x - c|}{x} \times 100\%$$

$$MRE = \frac{1}{n} \sum_{i=1}^{n} \frac{|x - c|}{x} \times 100\%$$

Note:

- RE = Relative error;
- x = Field data;
- MRE = Mean Relative Error;
- c = Simulation results data;
- n = Amount of data

Software modeling with SMS is acceptable if the calculation verification of the model states MRE value is within the limit of 40%.

Table 1. Station site location

<table>
<thead>
<tr>
<th>Station</th>
<th>Coordinate Longitude</th>
<th>Coordinate Latitude</th>
<th>Depth (meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5° 48' 6.41"</td>
<td>110° 33' 0.34"</td>
<td>39.8</td>
</tr>
<tr>
<td>2</td>
<td>6° 00' 33.7"</td>
<td>110° 25' 23.4"</td>
<td>51.0</td>
</tr>
<tr>
<td>3</td>
<td>5° 49' 20.5"</td>
<td>110° 26' 58.2"</td>
<td>20.8</td>
</tr>
<tr>
<td>4</td>
<td>5° 43' 23.6"</td>
<td>110° 25' 55.3"</td>
<td>41.0</td>
</tr>
<tr>
<td>5</td>
<td>5° 48' 08.2"</td>
<td>110° 16' 58.2"</td>
<td>43.0</td>
</tr>
<tr>
<td>6</td>
<td>5° 46' 40.3"</td>
<td>110° 10' 23.8"</td>
<td>39.3</td>
</tr>
</tbody>
</table>

137Cs Distribution Model

The 137Cs distribution model was created using the Software Surface Water Modeling System (SMS) module RMA4 (Resource Management Associate - 4). 137Cs distribution can be analyzed if the current pattern is known. In addition to the speed and direction of currents, radionuclide release is also used to process RMA4. In this study, the radionuclide 137Cs detached from the prospective nuclear power plant site in Muria peninsula that enters the coastal water in the simulated scenario is 0.729 mBq/L, with a decay value of 0.0000633 mBq/L (IAEA, 2001; Lambers and Williams, 2008). Those values are average daily detachment and decay of 137Cs of AP1000 types of nuclear installations that common using in many countries.
Result and Discussion

Temperature and 137Cs activity in Sea Water

The average seawater temperature in Karimunjawa during the study was 26.6 °C (Table 2). This value is used as a secondary data in addition to the tidal current, the water flow of the river and bathymetry.

The results of the 137Cs activity analysis in the waters of Karimunjawa Islands ranged from 0.12 to 0.39 mBq.L$^{-1}$ with an average of 0.24 mBq.L$^{-1}$. The highest concentration was 0.39 mBq.L$^{-1}$, which occurred at station 5 and the lowest, was 0.12 mBq.L$^{-1}$ at station 4. This value is slightly higher than previous research in the area of coastal waters Gresik, where the average activity was 0.200 mBq.L$^{-1}$ (Muslim et al., 2015), therefore the dilution rate in Karimunjawa is still less than that in coastal Gresik.

Table 2. Temperature and 137Cs activity in each station

<table>
<thead>
<tr>
<th>Station</th>
<th>Temperature (°C)</th>
<th>137Cs Activity (mBq.L$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.1</td>
<td>0.283 ± 0.03</td>
</tr>
<tr>
<td>2</td>
<td>28.2</td>
<td>0.166 ± 0.02</td>
</tr>
<tr>
<td>3</td>
<td>28.3</td>
<td>0.295 ± 0.03</td>
</tr>
<tr>
<td>4</td>
<td>25.2</td>
<td>0.120 ± 0.01</td>
</tr>
<tr>
<td>5</td>
<td>25.0</td>
<td>0.397 ± 0.04</td>
</tr>
<tr>
<td>6</td>
<td>28.1</td>
<td>0.180 ± 0.02</td>
</tr>
<tr>
<td>Mean</td>
<td>26.6</td>
<td>0.24</td>
</tr>
</tbody>
</table>

This value is still much lower than 137Cs activity in the waters of Northeast Japan even before the Fukushima nuclear power plant accident, where 137Cs activity was measured at 2.3 mBq.L$^{-1}$ (Inoue et al., 2012). This indicates that 137Cs contained in Karimunjawa is not from Fukushima but from global fallout and it due to Indonesia’s lack of nuclear reactor that released 137Cs.

137Cs activity values and seawater temperature at each station is presented in Table 2. The average value also is still much lower than the average value in the South China Sea, East China Sea and the Yellow Sea where 137Cs was measured at 1.12 ± 0.08 mBq.L$^{-1}$ from April to June 2011 (Wu et al., 2013). According to Tsumune et al., (2012), although 137Cs is a radionuclide of which the highest quantity discharged from the Fukushima plant accident, its distribution is not very wide, and only spread to the North Pacific from March 26 until the end of May 2011. This range is still lower than past global fallout, even that which reached the bottom of the ocean (ocean basin) because its value is very small as a result of the diffusion and advection in the ocean.

Surface current simulation and its verification

Modeling the current pattern is shown under two conditions, at high tide (Figure 2a) and at low tide (Figure 2b). The MRE (Mean Relative Error) of the data was 31.99 %, and current speed direction was 28.53 %. The verification results are presented in Table 3.
Figure 3. Distribution of 137Cs on the first day (a, b), after 8 days (c, d) and after 15 days (e, f) both at the high and low tide.

Note: Land, Sea, Sampling station, High : 0.701646 Low : 0
Modeling of 137Cs distribution when NPP Muria Peninsula Jepara is operational

Figure 3 shows the results from modeling the distribution of 137Cs of the site of the proposed nuclear power plant on Muria Peninsula is displayed for three different periods of time, from the moment the radionuclides enter the body of water, until the end of the first day, (t = 1 day), eighth day (t = 8 days) and fifteenth day (t = 15 days) at both high and low tide.

Figures 3a and 3b show the condition of 137Cs released into the body of water the first day (t = 1 day). Figure 3a also shows that the distribution of 137Cs at high tide reached a radius of 2.35 km, whereas, at low tide (Figure 3b), the distribution reaches a radius of 6.84 km. Broad distribution at high tide is smaller than at low tide because at high tide the water moves in the opposite direction of the direction of current flow from the river, so the flow from the river carrying radionuclides is stalled. At the time of low tide, the water from the river moves in the direction of tidal flow, so the spread of radionuclides into the sea is much broader as the current moves toward the northwest (Surbakti, 2012).

Figure 3c and 3d shows the distribution of 137Cs after eight days (t = 8 days), at high tide and low tide. Similarly, the low tide distribution area (33.13 Km) is larger than at high tide (32.11 Km). However, the difference in distribution size between low tide and high tide on the eighth day is only 1.02 km, relatively small when compared with the difference in distribution area on the first day (4.49 km). This is presumably due to the river current direction towards the sea and the relatively weak and uniform speed of the tidal current. According to Duxbury et al., (2002) and Ariffin et al., (2012), the tidal current is more dominant in the mass circulation of coastal waters. The 137Cs distribution is generally westward during the east season when the current moves from the east towards the west. Wyrtki (1961) states that from May to September the Java Sea surface current moves from east to west.

Table 3. Current speed and Current direction verification

<table>
<thead>
<tr>
<th>Station</th>
<th>Field</th>
<th>Model</th>
<th>RE (%)</th>
<th>Field</th>
<th>Model</th>
<th>RE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.03</td>
<td>0.02</td>
<td>20.0</td>
<td>227</td>
<td>49.4</td>
<td>78.23</td>
</tr>
<tr>
<td>2</td>
<td>0.29</td>
<td>0.16</td>
<td>45.2</td>
<td>187</td>
<td>181.27</td>
<td>3.06</td>
</tr>
<tr>
<td>3</td>
<td>0.06</td>
<td>0.08</td>
<td>33.33</td>
<td>134</td>
<td>146.87</td>
<td>9.6</td>
</tr>
<tr>
<td>4</td>
<td>0.11</td>
<td>0.05</td>
<td>49.09</td>
<td>73</td>
<td>76.44</td>
<td>4.71</td>
</tr>
<tr>
<td>5</td>
<td>0.14</td>
<td>0.09</td>
<td>32.71</td>
<td>348</td>
<td>345.49</td>
<td>0.72</td>
</tr>
<tr>
<td>6</td>
<td>0.24</td>
<td>0.22</td>
<td>11.64</td>
<td>146</td>
<td>36.66</td>
<td>74.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MRE = 31.99%</td>
<td></td>
<td>MRE = 28.53%</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3e and 3f, the end of the simulation model, describe the distribution of 137Cs after 15 days (t = 15 days). The figure presented is an affirmation of the radius ratio spread of 137Cs at high tide and low tide; at high tide (Figure 3e) the distribution has a smaller radius (44.85 km) than at low tide (45.75 km) (Figure 3f) and the direction of distribution remains toward the southwest in accordance with the direction of current movement in East season.

The results of the model simulation showed that the distribution of the radionuclide 137Cs from the prospective nuclear power plant site Muria Peninsula on the sea surface for 15 days, shows that contamination would not reach the water around Karimunjawa Islands. This occurs because the current is relatively small (Table 3), and flows to the west due during the East season. Zhao et al., (2015) also found that the current strength across the Pacific Ocean that would spread 137Cs is weak. Haryanto (2008) notes that the spread of pollutants in nature involves advection, meaning that pollutant materials are transported by current or fluid flow, where the propagation velocity equals the velocity of fluid flow. Tsumune et al., (2012) added that diffusion also influences the spread of pollutants, so 137Cs concentration rapidly decreases with distance.

Conclusion

The results of the analysis of 137Cs in the waters of Karimunjawa Islands show the average value of the activity 137Cs is 0.24 mBq.L$^{-1}$. The low level of 137Cs activity is due to Indonesia’s lack of nuclear reactors that releases radionuclides. 137Cs activity detected in Karimunjawa water dominantly come from global fallout from before the Japanese Daichi Fukushima nuclear power plant accident. The 137Cs distribution model simulation shows that radionuclides from the prospective nuclear power plant on the Muria Peninsula do not reach Karimunjawa Islands waters after 15 days leaked because the currents are relatively small and move towards the west during the East season.
Acknowledgement

The author would like to thank the staff of Marine Radioecology laboratory BATAN for the provision of chemicals, and sampling equipment and marine Radioecology laboratory use for radionuclide analysis. We are also sincerely grateful to Susie Vulpas from America for comments this paper and correcting the English. Thank you also to Adrian for confirming the accurateness of our map.

References

Ardisasmita, M.S. 2006. Preservation and Enhancement of Nuclear Knowledge Towards Indonesia’s Plan to Operate First Nuclear Power Plant By 2016. IAEA-CN-123/04/O/06

