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Abstract 

 

The southern waters of Java are suitable to be the largest supplier of Yellowfin tuna exports in Indonesia, but have 

not efficiently produced the expected yield. This research minimizes these constraints by modeling the yellowfin 

tuna fishing grounds in the southern waters of Java based on oceanographic factors such as Sea Surface 

Temperature (SST), chlorophyll-a (CHL_A), Sea Surface Salinity (SSS), Sea Surface Height (SSH) using an integration 

between remote sensing, Geographic Information Systems (GIS), and the Generalized Additive Model (GAM) 

statistical method. This study used oceanographic factor data from Aqua MODIS Level-3 and Copernicus, while 

yellowfin tuna fishery production was obtained from Palabuhanratu Nusantara Fishing Port (NFP), Cilacap Ocean 

Fishing Port (OFP), and Pondokdadap Coastal Fishing Port (CFP). The modeling process used 80% of the data, while 

the remaining 20% was used to validate the model results. The order of influence of oceanographic parameters 

from largest to smallest is SST > SSS > SSH > CHL-A. The best model from the GAM analysis showed that the 

combination of four oceanographic parameters had the greatest influence on yellowfin tuna CPUE. The catch per 

unit effort (CPUE) of yellowfin tuna was predicted to be high in May-October and low in November-April. The 

prediction model had high accuracy because most of the fishing activity was in the HSI 0.4-0.5 range and the 

RMSEP value was 0.63. Yellowfin tuna were suitable in habitats distributed from inshore to offshore in June and 

July, but less suitable in December. 
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Introduction 
 

The waters of the Indian Ocean which are 

south of the island of Java, Bali, the Nusa Tenggara 

Islands, the Sawu Sea, and the Timor Sea are part of 

Indonesian Fisheries Management Area (IFMA) 573 

with high capture fisheries potential because they are 

migratory areas for large pelagic fish such as tuna 

(Ma’mun et al., 2017; Harlyan et al., 2021). Fishery 

commodities in IFMA 573, especially the southern 

waters of Java and Bali, are dominated by large 

pelagic fish of the Scombridae family, such as tuna, 

mackerel tuna, Spanish mackerel, and skipjack fish 

with an estimated average catch of 182,034 tons.y-1 

in the 2005-2014 period (Jayawiguna et al., 2019). 

Yellowfin tuna (Thunnus albacares) is one of the large 

pelagic tuna types that migrate in the southern waters 

of Java. Therefore, it is not surprising that Yellowfin 

tuna is one of the most popular products from 

fisheries. The Indian Ocean waters (IFMA 573 and 

572) are the primary source of Yellowfin tuna for 

export (Nimit et al., 2020). Fishermen's operations, 

however, do not always provide the predicted 

abundance and composition of Yellowfin tuna. The 

information about potential fishing grounds spatially 

is one endeavor that can increase the efficiency of 

Yellowfin tuna fishing activities. According to (Harlyan 

et al., 2021), spatial information on fishing grounds is 

vital for supporting sustainable resource 

management programs. 

 

Palabuhanratu Nusantara Fishing Port (NFP), 

Cilacap Ocean Fishing Port (OFP) and Pondokdadap 

Coastal Fishing Port (CFP) caught 811.80 tons of 

Yellowfin tuna in 2018, 896 tons in 2019, 1,441.26 

tons in 2020, 4,145.52 tons in 2021, and 3,066.442 

tons in 2022. The lowest CPUE values of Yellowfin 

tuna occurred in January 2018, December 2019, 

January 2020, February 2021, January 2022, 

respectively. This suggests that the lowest CPUE was 

recorded during the West Season (December-

February). The Yellowfin tuna production data is then 
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presented in CPUE format to reflect the amount of 

resource utilization by dividing fish catches (kg) by 

fishing effort (trips) (Sartimbul et al., 2018). The CPUE 

of Yellowfin tuna in the southern waters of Java varies 

with the seasons. Seasonal shifts, followed by 

weather changes, affect catch productivity, catch 

composition, and fishing grounds. Seasonal 

fluctuations are also associated with the processes of 

Upwelling and Downwelling, which control the degree 

of water productivity and have an impact on fishery 

production (Nurdin et al., 2012). 

 

The southern waters of Java are a migratory 

area for large pelagic fish because they have 

oceanographic factors that are attractive for fish 

habitat. The first factor is that the composition of the 

water mass south of Java comes from the confluence 

of three high-nutrient seawater masses. The surface 

water mass is supplied by the Bay of Bengal in India, 

while the thermocline layer is fed by Pacific Ocean 

seawater masses through the Indonesian 

Throughflow and Indian Ocean Gyre moving from 

southern Australia (Jayawiguna et al., 2019). Second, 

the southern waters of Java have high primary 

productivity due to the Upwelling process triggered by 

Ekman transport along the coast of Java to Bali. 

Ekman transport in the southern waters of Java is 

generated by the movement of easterly monsoon 

winds that blow from the Australian Continent to the 

Asian Continent (Asia-Australia Monsoon system). 

Third, the oceanographic dynamics of southern Java 

waters are also influenced by the ENSO and IOD 

phenomena which have an impact on the intensity of 

Upwelling in the Indian Ocean south of Java (Novianto 

et al., 2019). 

 

Estimating fishing grounds necessitates 

knowledge of the dynamics of oceanographic factors 

such as sea surface temperature (SST), sea surface 

salinity (SSS), chlorophyll-a (CHL_A), and sea surface 

height (SSH), which correlate with fish quantity and 

distribution (Solanki et al., 2016). In identifying 

fishing grounds, SST serves as an indirect signal of 

biological production and fish prey availability, SSH to 

determine the occurrence of Upwelling and down 

welling processes that cause stirring of seawater 

masses carrying nutrients (Susanto et al., 2001). 

whereas chlorophyll-a determines fish biomass, 

serving as an indicator of Upwelling, water 

productivity, direct fish prey availability, and migration 

routes (Muskananfola et al., 2021; Wirasatriya et al., 

2021). The distribution and migration route of pelagic 

fish is easily impacted by changes in salinity, 

estimating fishing grounds also requires salinity 

parameters (Amri, 2017; Zhou et al., 2023). Spatial 

determination of fishing grounds (mapping) is 

accomplished using remote sensing technology 

combined with a geographic information system since 

it can give important information both spatially and 

temporally (Semedi et al., 2023). Furthermore, the 

use of remote sensing technology enables the 

analysis of extensive geographical areas without the 

need for direct physical contact and in a cost-efficient 

manner (Randin et al., 2020). 

 

The first stage in creating a prediction map of 

fishing ground is identifying the pattern of the 

relationship between the abundance of fishery 

resources and environmental factors. Since the 

relationship between the abundance of fishing 

resources and environmental factors is not linear, it 

is best studied using a semi-parametric statistical 

approach such as the Generalized Additive Model 

(Siregar et al., 2018). GAM is a semi-parametric 

model of multiple regression that is non-linear and 

does not require normally distributed data. It can 

minimize the drawbacks of applying the assumption 

of data normality to the environmental parameters 

under study and when there is no linear relationship 

between variables Studies on fish habitats can be 

appropriately described using GAM statistical 

modeling and geospatial information systems 

(Setiawati et al., 2015; Yusop et al., 2021). 

 

The purpose of this study is to establish the 

suitability of habitat for Yellowfin tuna fishing grounds 

in the southern waters of Java, utilizing data collected 

over five years and GAM statistical analysis. The 

purpose of collecting data for five years is to develop 

a stronger model with more predictive potential. The 

GAM test is designed to identify the best 

oceanographic range for Yellowfin tuna habitat, which 

is subsequently used to estimate fishing grounds 

geographically. The findings of the investigation are 

expected to improve the effectiveness of Yellowfin 

tuna fishing activities in southern waters of Java, 

prioritizing sustainable principles. 

 

Materials and Methods 
 

Study area and data source 

 

The research study encompasses the waters of the 

Indian Ocean south of Java Island, with coordinates 

ranging from 102°57'E-114°60'E and 5°35'S-

13°86'S (see Figure 1). This study utilized data from 

Pelabuhanratu NFP, Cilacap OFP, and Pondokdadap 

CFP on catch weight, number of trips, and fishing site 

coordinates for Yellowfin tuna from 2018 to 2022. 

Oceanographic parameters such as sea surface 

temperature (SST) and chlorophyll-a (CHL-A) were 

derived from Aqua-MODIS Level-3 satellite imagery 

with monthly temporal resolution and 4 km x 4 km 

spatial resolution. The Copernicus Marine Service 

provided sea surface salinity (SSS) and sea surface 

height (SSH) oceanographic factor data, with a 

monthly temporal resolution and a spatial resolution 

of 0.083°×0.083°. 



 

   

ILMU KELAUTAN: Indonesian Journal of Marine Sciences June 2025 Vol 30(2):163-173 
 

 Habitat Suitability Modeling Based on Oceanographic Factors for Yellowfin Tuna (B. Semedi et al.) 165 

 

  

 

 
Figure 1. Map showing the study area (red box) and the flags show the data collection stations 

 

 

 

Catch Per Unit Effort (CPUE) 

 

The CPUE value is calculated by dividing the 

total catch by the total effort, which represents the 

quantity and level of utilization of a captured fishing 

commodity. The following equation is used to express 

data on catch weight and the number of trips for 

Yellowfin tuna from fishing ports in CPUE (Sartimbul 

et al., 2018): 

 

𝐶𝑃𝑈𝐸 =  
𝑐𝑖

𝑓𝑖
    (1) 

 

Note: CPUE= Catch Per Unit Effort (kg.trip-1); ci = 

Catch (kg) fi = Catch Effort (trip) 

 
Oceanographic Factors Data 

 

SeaDAS was used to crop and export mask 

pixels from downloaded SST and CHL-A satellite 

imagery. The cropping of imagery aims to reduce the 

size of the data, focusing on the research study 

region. Meanwhile, the purpose of exporting mask 

pixels is to determine the value of SST and CHL-A in 

each image pixel. Furthermore, SSS and SSH values 

were extracted using the Ocean Data View software. 

The extracted values of the four oceanographic 

parameters were stored in text file format and then 

trimmed in Microsoft Excel to remove empty pixel 

values (NaN). The processing of oceanographic factor 

data proceeds at the Inverse Distance Weighted 

(IDW) interpolation stage, which uses ArcGIS ArcMap 

10.8 to fill in empty image pixels caused by noise. The 

IDW interpolation method was chosen due to its 

capability to generate interpolated values by 

averaging the nearby sample data points (Ajaj et al., 

2018; Maulina et al., 2019). The extraction of SST, 

CHL-A, SSS, and SSH values at each coordinate point 

of the Yellowfin tuna fishing ground using the Extract 

Multi Values to Point (Spatial Analyst) tool represents 

the final stage of processing oceanographic 

parameter satellite imagery data. 

 

Generalized Additive Model (GAM) analysis 

 

This stage began by adding the value 0.1 to the 

CPUE value and then transforming it into a 

logarithmic form to normalize the asymmetric 

distribution. The addition of 0.1 was done to avoid a 

CPUE value of 0 following data transformation (Mugo 

et al., 2010; Wijaya et al., 2021). Furthermore, 

throughout the period 2018-2022 (n= 7,033), CPUE 
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data and oceanographic parameters data at each 

fishing coordinate point were randomly divided into 

training and validation data with an 80:20 split to 

reduce bias (Solanki et al., 2016). 

 

The GAM test implementation using the 

RStudio software consists of two stages, the GAM 

model building stage and the Y variable prediction 

stage based on the best GAM model. The GAM model 

is built using training data, which comprises the CPUE 

value of Yellowfin tuna as the response variable 

(dependent variable) and the values of the 

oceanographic variables as the predictive variables 

(independent variables). The GAM test explains the 

relationship between the dependent and 

independent variables using the MGCV package, 

family Gaussian, and identity link function (Siregar et 

al., 2018; Shen et al., 2022). During the model-

building stage, the GAM equation is as follows: 

 
𝑔(𝑢𝑖)   = 𝑎𝑜 + 𝑠1(𝑆𝑆𝑇) + 𝑠2(𝐶𝐻𝐿 − 𝐴) + 𝑠3(𝑆𝑆𝑆) + 𝑠4(𝑆𝑆𝐻)  (2) 

 

Note: g= Link Function; ui= Dependent Variable; ao = 

Model Constant 

 

The GAM model building stage produced some 

GAM model combinations, with the best model 

formed being used as a reference in the Y variable 

prediction stage. Among the other models 

constructed, the best GAM model presented a high 

level of significance with a P-Value less than alpha, 

the highest percentage of Deviance Explained (DE), 

and the shortest AIC value (Siregar et al., 2018). The 

AIC test was used to assess the model's suitability 

after adding the independent variables; the lower the 

AIC value, the better the model fitting results (Wang 

et al., 2020).  

 

Following the acquisition of the ideal GAM 

equation model, the GAM analysis procedure 

proceeds to the stage of predicting the Y variable. In 

the Y variable prediction step, oceanographic 

parameter values from both the training and 

validation data serve as independent variable inputs, 

while the best GAM equation model is used as a 

reference for predicting the dependent variable, 

CPUE. This prediction process is executed using the 

“predict.gam” function (syntax) from the MGCV 

package, with covariates similar to those used to 

build the model (Setiawati et al., 2015).  

 

Application of Habitat Suitability Index (HSI)  

 

Habitat Suitability Index shows the level of 

suitability of a species for an environmental condition 

(Shaari and Mustapha, 2018). The HSI application in 

this study aims to simplify habitat suitability criteria 

for fishing grounds based on the predicted CPUE 

values of training data, which have too large a range 

using the following equation (Yi et al., 2016; Mondal 

et al., 2021): 

 

𝐻𝑆𝐼 =  
𝑌𝑗𝑘− 𝑌𝑗𝑘𝑚𝑖𝑛

𝑌𝑗𝑘𝑚𝑎𝑥−𝑌𝑗𝑘𝑚𝑖𝑛
      (3) 

 

Note: HIS= Habitat Suitability Index;  Y= Predicted 

CPUE Value (kg.trip-1); Ymin= Lowest Predicted CPUE 

Value (kg.trip-1);  Ymax= Highest Predicted CPUE 

Value (kg.trip-1); j,k= Latitude, Longitude 

 

HSI has a range of 0-1 and is classified as low, 

medium, or high suitability levels (see Table 1). An HSI 

value close to one implies that the location possesses 

fish habitat features and hence has the potential to 

become a fishing ground, and vice versa. The HSI 

calculations from the CPUE prediction of the training 

data, which includes the coordinates of the Yellowfin 

tuna fishing grounds were saved as a text document 

file and then opened in ArcMap. The IDW approach 

was used to interpolate the HSI values, resulting in a 

spatial suitability map for Yellowfin tuna fishing 

grounds. 

 

Result and Discussion 
 

Generalized Additive Model analysis  

 

The objective of the GAM model development 

is to determine the effect of oceanographic 

conditions on the CPUE of Yellowfin tuna in southern 

waters of Java. Table 2 shows the results of GAM tests 

performed on 15 equation models in this study. The 

best GAM equation model will serve as a reference for 

predicting CPUE values once oceanographic 

parameter values are known. 

 

 
Table 1. Habitat Suitability Index (HSI) Category (Vayghan et al., 2020; Mondal et al., 2021; Yu and Chen, 2021) 

 

Suitability Category Value Range 

Low 0.0 - 0.2 

Moderate 0.3 - 0.5 

High 0.6 - 1.0 
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Table 2. The Results of Generalized Additive Model  

 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
The GAM modeling aimed to determine the 

effect of each oceanographic parameter on the CPUE 

of Yellowfin tuna in the southern waters of Java, as 

well as the effect of a combination of many 

oceanographic parameters. Each of the four 

oceanographic parameters in this study individually 

demonstrated a significant effect on the CPUE of 

Yellowfin tunaas indicated by the P-value less than 

alpha (P< 0.001). The order of influence of 

oceanographic parameters from largest to smallest 

was SST > SSS > SSH > CHL-A. The best model 

resulting from the GAM analysis is Model 15 which 

consists of a combination of SST, CHL-A, SSS, and 

SSH variables with the smallest AIC value of 

9,076.230, P-Value less than alpha (P< 0.001), and 

the highest DE percentage of 14.40%. 

 

The dominant influence of sea surface 

temperature on the catch of Yellowfin tuna is also 

demonstrated by similar research findings by (Lan et 

al., 2012) in the tropical Pacific Ocean and (Nurholis 

et al., 2020) in the Eastern Indian Ocean. (Lan et al., 

2012) reported that temperature affects the 

distribution of Yellowfin tuna throughout the waters 

except in the eastern Pacific Ocean. Sea surface 

temperature is a crucial factor determining the 

distribution of Yellowfin tuna because changes in 

temperature outside the optimal range can lead to 

decreased mobility, alterations in feeding activity, 

and reproductive disruptions (Nurholis et al., 2020). 

 

Salinity is the second variable that significantly 

influences the CPUE of Yellowfin tuna in the southern 

waters of Java. According to (Amri, 2017), the 

abundance of pelagic fish is sensitive to changes in 

the spatial distribution of salinity. The occurrence of 

salinity changes causes fish to migrate to places with 

salinity levels that match their body's osmotic 

pressure (Yunus et al., 2019; Puspita et al., 2023).  

 

The sea surface height and chlorophyll-a are 

the last-order variables affecting the catch of 

Model Parameters P-Value CDE AIC 

1 SST <2×10-16 *** 7.35% 9,470.642 

2 CHL-A <2×10-16 *** 2.73% 9,746.551 

3 SSS <2×10-16 *** 6.18% 9,543.825 

4 SSH <2×10-16 *** 2.92% 9,734.917 

5 SST <2×10-16 *** 8.98% 

 

9,386.444 

 CHL-A <2×10-16 *** 

6 SST <2×10-16 *** 10.5% 

 

9,291.315 

 SSS <2×10-16 *** 

7 SST <2×10-16 *** 9.59% 

 

9,349.759 

 SSH <2×10-16 *** 

8 CHL-A <2×10-16 *** 8.40% 

 

9,425.305 

 SSS <2×10-16 *** 

9 CHL-A <2×10-16 *** 6.31% 

 

9,549.978 

 SSH <2×10-16 *** 

10 SSS <2×10-16 *** 7.57% 

 

9,474.825 

 SSH <2×10-16 *** 

11 SST <2×10-16 *** 12.60% 

 

9,176.199 

 CHL-A <2×10-16 *** 

SSS <2×10-16 *** 

12 SST <2×10-16 *** 11.30% 

 

9,254.111 

 CHL-A <2×10-16 *** 

SSH <2×10-16 *** 

13 SST <2×10-16 *** 12.70% 

 

9,172.156 

 SSS <2×10-16 *** 

SSH <2×10-16 *** 

14 CHL-A <2×10-16 *** 10.30% 

 

9,318.597 

 SSS <2×10-16 *** 

SSH <2×10-16 *** 

15 SST <2×10-16 *** 14.40% 9,076.230 

CHL-A <2×10-16 *** 

SSS <2×10-16 *** 

SSH <2×10-16 *** 
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Yellowfin tuna with DE values of 2.92% and 2.73%. 

The influence of sea surface height on pelagic fish 

abundance is less pronounced due to the widely 

varying impacts on fisheries resources (Mugo et al., 

2010). (Nurholis et al., 2020) emphasized that sea 

surface height values, which depict Upwelling 

phenomena, have varying time lags in affecting 

fishing activities. Meanwhile, high chlorophyll-a 

concentrations do not necessarily result in increased 

Yellowfin tuna abundance because the Scombridae 

family consists of carnivorous animals that require a 

time lag (time delay) to utilize the chlorophyll levels in 

the water (Sastra et al., 2018; Yin et al., 2022).. This 

aligns with the explanation provided earlier, which 

indicates that the maximum concentration of 

chlorophyll-a during the Upwelling peak will enhance 

the CPUE of Yellowfin tuna in the southern waters of 

Java within a period of 1-6 months. 

 

Based on Figure 2, the most suitable 

oceanographic parameter values for Yellowfin tuna 

fishing activities were SST 26.5-28.8°C, chlorophyll-a 

concentration 0.2-0.8 mg.m-3, salinity 33.7-34.3 psu, 

and SSH 0.33-0.64 m. The optimal range of SST, 

chlorophyll-a, and SSH values in this study aligns with 

the findings of (Setiawati et al., 2021), which stated 

that Yellowfin tuna are typically found at SST, 

chlorophyll-a, and SSH values ranging from 27.2-29 

°C, 0.08-0.18 mg.m-3, and 0.49-0.64 m. According to 

(Syah et al., 2020), the optimal temperature and 

salinity for Yellowfin tuna range from 17-31°C and 

32-35 psu. The majority of large pelagic fish are 

typically found in waters with low chlorophyll-a 

concentrations of 0.042-0.78 mg.m-3 and SSH values 

of 0.50 m (Tangke, 2014; Harahap et al., 2015). This 

finding affirms the suitability of the oceanographic 

parameters in the southern waters of Java for 

Yellowfin tuna habitat. 

 
Habitat Suitability Modeling  

 

Figure 3 shows the suitability for Yellowfin tuna 

fishing grounds in the southern waters of Java, with 

blue areas representing low HSI and yellow to red 

areas reflecting medium to high HSI. To validate 

estimates of optimal fishing grounds, 20% of fishing 

coordinate points which were not included in the GAM 

model, overlaying with the spatial distribution of 

habitat suitability. The catch of Yellowfin tuna is 

predicted to be high from May to October and low 

from November to April. According to (Sambah et al., 

2023), the lean season for Yellowfin tuna in the 

Indian Ocean south of Java runs from December to 

February. Yellowfin tuna CPUE increases during the 

East Season and Transitional Season II, with a peak 

catch in September (Nurdin and Nugraha, 2008; 

Nurdin et al., 2018). 

 

 

 

  

 

 

Figure 2. Smoothing Curve Generalized Additive Model 
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Table 3. Percentage of HSI Validation Points 

 

Suitability Category Value Range Validation Points Percentage 

Low 0.0 - 0.2 0.15% 

Moderate 0.3 - 0.5 96.21% 

High 0.6 - 1.0 3.64% 

 
 

 

 
Figure 3. Habitat Suitability for Yellowfin Tuna Fishing Grounds in the Southern Waters of Java 

 

 
Figure 3 shows that the values of sea surface 

temperature and sea level height tend to increase in 

the West Season-Transition Season I (December-

May). The values of chlorophyll-a and salinity tend to 

increase in the East Season-Transition Season II 

(June-November). The decrease in sea surface 

temperature and sea level height, as well as the 

increase in chlorophyll-a and salinity simultaneously 

indicate an Upwelling event. Seasonal fluctuations in 

the average values of the four oceanographic factors 

can explain that the dynamics of oceanographic 

parameters in the southern waters of Java are greatly 

influenced by seasonal changes due to monsoon 

winds (Asian-Australian Monsoon system). 

 

Most validation points are in the moderate HSI 

range of 0.4-0.5. The percentage of validation points 

identified in locations with low, medium, and high HSI 
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categories was 0.15%, 96.21%, and 3.64% (Table 3). 

This value moderately aligns with the distribution of 

actual fishing grounds, which supports the fact that 

our best model from the GAM test (Model 15) explains 

only 14.40% of the CPUE of Yellowfin tuna based only 

on environmental variables. As suggested by (Wijaya 

et al., 2021), habitat predictors do not entirely 

influence fishing ground locations because the 

interaction between physical and biological 

processes in the sea, food chains, fish-eating 

behavior, and so on must also be considered.  

 

Based on the model (Figure 3), in January, 

February and March, the area, especially in the 

coastal area, it appears to be less suitable for 

Yellowfin tuna habitat. In April and May, the habitat 

that is relatively more suitable for Yellowfin tuna is in 

the waters of Central Java and is spread in the 

eastern part of the study area. The most suitable 

habitat for Yellowfin tuna occurs in June and July, 

which is spread from the coast to the offshore. This 

means that June and July are the most suitable 

periods for catching Yellowfin. In August, September 

and October, the suitability of Yellowfin tuna habitat 

begins to decline in the western offshore. In 

November, the suitable habitat is located in the 

western offshore. The lowest habitat suitability found 

in December, meaning that Yellowfin tuna will be very 

rarely caught during this period. 

 

Conclusion 
 

This study successfully modeled the Yellowfin 

tuna fishing area in the southern waters of Java 

based on oceanographic factors of sea surface 

temperature, chlorophyll-a, salinity, sea level using 

the integration of remote sensing, GIS, and the 

Generalized Additive Model (GAM) statistical method. 

The results of the GAM test showed that the 

combination of oceanographic parameters of sea 

surface temperature, chlorophyll-a, salinity, and sea 

level, had the most significant effect on the CPUE of 

Yellowfin tuna as evidenced by the P-Value value 

smaller than alpha (P< 0.001), the smallest AIC value 

of the entire model, namely 9,076.230, and the 

highest DE percentage of the entire model, namely 

14.40%. The GAM smoothing curve explains that the 

optimal oceanographic parameter values for 

Yellowfin tuna fishing activities are in the range of sea 

surface temperature of 26.5-28.8°C, chlorophyll-a 

concentration of 0.2-0.8 mg.m-3, salinity of 33.7-34.3 

psu, sea surface height of 0.33-0.64 m. The values of 

sea surface temperature and sea level tend to 

increase in the West Season to Transition Season I 

(December - May). The values of chlorophyll-a and 

salinity tend to increase in the East Season - 

Transition Season II (June - November). The decrease 

in sea surface temperature and sea level 

accompanied by a simultaneous increase in 

chlorophyll-a and salinity indicates an Upwelling 

event. Based on the model, in June and July, the most 

suitable habitat for Yellowfin tuna which is distributed 

from the coast to the offshore. In January, February 

and March, it seems to be less suitable for Yellowfin 

tuna habitat, especially in the coastal areas. The 

lowest suitable habitat occurs in December. 
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