⁹⁰Sr Activity in the High Seas and Coastal Regions of Korea-Japan-Russia-China Compared with Exponential Decay of ⁹⁰Sr Global Fallout

Muslim

Department of Marine Science Diponegoro University, Semarang-Indonesia Telp. 62.24.7474698. e-mail: muslim_muslim@yahoo.com

Abstrak

Konsentrasi dan aktivitas ⁹⁰Sr saat radioaktif buatan jatuh secara global di bumi pada tahun 1964 dibandingkan dengan konsentrasi dan aktivitas ⁹⁰Sr di lepas pantai dan daerah pantai Korea-Japan-Russia-China secara tahunan dari tahun 1964 sampai tahun 2000. Konsentrasi ⁹⁰Sr menunjukkan penurunan secara terus menurus bahkan jauh di bawah exponential decay, hal ini dikarenakan oleh effektifnya lingkungan terhadap waktu paruh. Dari analisa tersebut disimpulkan bahwa konsentrasi dan aktivitas ⁹⁰Sr di lepas pantai dan daerah pantai Korea-Japan-Russia-China secara original lebih banyak berasal dari radioaktif buatan yang jatuh secara global dari pada dari sumber hasil buangan lokal.

Kata kunci: ⁹⁰Sr, perairan lepas pantai, daerah pantai, exponential decay, global

Abstract

Concentration and activity of ⁹⁰Sr in the high seas and coastal regions of Korea-Japan-Russia-China from the global fallout to 2000 were studied. The variation of ⁹⁰Sr in these study areas decreased continuously from 1964 when global fallout radioactive was started to 2000. Suggesting that from 1964 to present the ⁹⁰Sr activity from any local resources at Korea-Japan-Russia-China doesn't significant, because the ⁹⁰Sr activities nuch lower compared with the exponential decay, it caused by effective environmental half-lives. In conclusion, the activity of ⁹⁰Sr in the high seas and coastal regions of Korea-Japan-Russia-China originated entirely from the global fallout rather than from any local point sources.

Key words: ⁹⁰Sr, high seas, coastal regions, exponential decay, global fallout

Introduction

The health hazards of radionuclide are well known. The radioisotope of strontium is among the most studied in the sea. It exists both as an anthropogenic radionuclide and as an artificially-produced isotope in natural aquatic systems. This isotope is frequently considered conservative and is often used as tracer for ocean currents (Hansen *et al.*, 1998). Naturally, this nuclei spontaneously undergo radioactive decay (Figure 1). This decay causes radionuclide numbers to decrease exponentially over time (Libes, 1992) with the decays rate is constant (Knatko *et al.*, 1996).

The sources of 90 Sr are identified from global fallout from atmospheric nuclear weapon testing and probability local influences from underwater and also global discharge from nuclear facilities (Salbu *et al.*, 1997). According to Hong *et al.* (1999a) and Ikeuchi *et al.* (1999) that their concentrations in surface and bottom waters at dumping areas do not significantly differ from the values observed in background areas and from historical value, because their dispersion at surrounding dumpsite very fast, so high level concentrations are not long resident in dumping areas. It due to ⁹⁰Sr is adsorbed on solid particles or precipitate with carbonate minerals. Base on those characteristics, the ⁹⁰Sr concentration in the sea necessary to be understood especially in the high seas and coastal regions of Korea-Japan-Russia-China that potential to become a dump site area.

The Korean, Japan and Russia seas located along the North Pacific (Figure 2), were chosen for this study because they present many potential sources of radionuclide. East Sea (Sea of Japan) is one of the most highly radioactive waste dumping areas in the world (Hong *et al.*, 1999a), although the total activity dumped in the NW Pacific Ocean is still lower by factor of about 6 in comparison to dumping sites in

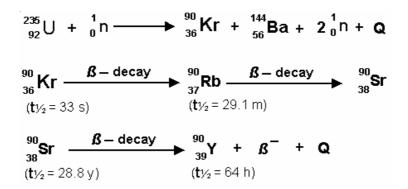


Figure 1. The ⁹⁰Sr decay process from her parent (t_k = half life, Q= energy)

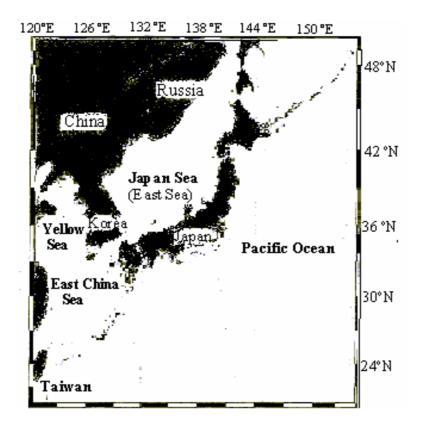
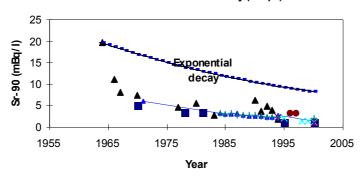


Figure 2. Study site area. The seawater sampling position could be seen in each reference.


the Arctic Ocean. There are a few nuclear plants along the eastern coast of the Korean Peninsula and the western coast of Japanese islands also at Great Bay (Russia) such as at Vladivostok or Peter the Great bay, the largest port and city in the Russian Far East. The main sources of radionuclide in Peter the Great bay are as follows: (1) global atmospheric fallout; (2) river input; (3) discharge from naval facilities situated around Peter the Great bay (Tkalin and Chaykovskaya, 2000).

One of these facilities, the "Zvezda" shipyard, is located in Bolshoy Kamen as repair and decommissioning of nuclear submarines are carried out at this shipyard (Handler, 1995). Eastern Asia, especially mainland China also very effective to contribute mineral particles and pollutants to the western North Pacific Ocean through long-range atmospheric transport (Duce *et al.*, 1983; Gao *et al.*, 1992). So very interesting to investigate radionuclide

 Table 1.
 Annual of ⁹⁰Sr activity in the surface seawater of North Pacific Ocean, Japan Sea, East China Sea, Yellow Sea and Eastern Pacific

Location	Year	Range	Mean	n	Reference
North Pacific					
Open sea	1970	3.33-9.36	5.01 <u>+</u> 0.06	35	Nagaya & Nakamura, 1976
	1977	3.55	3.55 <u>+</u> 0.26	1	Nagaya & Nakamura, 1981
	1978	4.18-4.63	4.36 <u>+</u> 0.15	3	Nagaya & Nakamura, 1981
	1979	4.03	4.03+0.33	1	Nagaya & Nakamura, 1981
	1980-1982	1.59-4.59	3.5 <u>+</u> 1.99	18	Nagaya & Nakamura, 1984
	1995	1.1-1.2	1.15	4	
					Ikeuchi, <i>et al.</i> ,1999
Taman Goa	2000	0.71-2.01	1.19 <u>+</u> 0.05	5	Muslim, 2006b
Japan Sea	1964		19.6		Chumichev, 1966
	1966		11.1		@
	1966-1968		8.1		Chumichev, 1972
<u>_</u>	1970	4 10 4 05	7.4	2	Q
Open sea	1977	4.12-4.85	4.47 <u>+</u> 0.15	3	Nagaya & Nakamura, 1981
Open sea	1979	4.33-5.12	4.66 <u>+</u> 0.18	3	Nagaya & Nakamura, 1981
	1980		5.5		Q
	1980-1986	2.0-3.5			Nagaya & Nakamura,1987
	1990		6.3		SPA Typhoon@
	1991		3.7		SPA Typhoon@
	1992		4.8		SPA Typhoon@
	1993		3.9		SPA Typhoon@
	1994		2.4		SPA Typhoon@
Open sea	1994	1.6-2.0	1.8	9	Hirose <i>et al.</i> , 1999
Open sea	2000	1.05-1.93	1.386	4	Muslim, 2006a
-		1.7-6.6	2.7	24	•
Peter Great bay	1994				Tkalin&Chaykouskaya, 200
Rusiacoast	1995	1.2	1.2	3	Ikeuchi <i>et al.</i> , 1999
Rusia open sea	1995	1.1-1.2	1.15	4	Ikeuchi <i>et al.</i> , 1999
Japan (east) coastal		5.4-5.7	5.55 <u>+</u> 0.19	2	Nagaya & Nakamura, 1976
	1970	6.85	6.85 <u>+</u> 0.44	1	Nagaya & Nakamura, 1976
	1972	5.85	5.85 <u>+</u> 0.22	1	Nagaya & Nakamura, 1976
	1973	5.81	5.81 <u>+</u> 0.44	1	Nagaya & Nakamura, 1976
	1984	3.1-3.3	3.26 <u>+</u> 0.15	5	Kasamatsu&Inatomi, 1998
	1985	3.0-3.2	3.04 <u>+</u> 0.09	5	Kasamatsu&Inatomi, 1998
	1986	2.9-3.2	3.0+0.12	5	Kasamatsu&Inatomi, 1998
	1987	3.0-3.3	3.15+0.14	2	Kasamatsu <i>et al.</i> , 1994
	1987	2.8-3.1	2.98±0.1	5	Kasamatsu&Inatomi, 1998
	1988	2.5-3.0	2.72 <u>+</u> 0.08	5	Kasamatsu&Inatomi, 1998
	1989				
		2.5-2.9	2.66 <u>+</u> 0.1	5	Kasamatsu&Inatomi, 1998
	1990	2.5-2.6	2.54 <u>+</u> 0.09	5	Kasamatsu&Inatomi, 1998
	1991	2.3-2.9	2.47 <u>+</u> 0.08	7	Kasamatsu&Inatomi, 1998
	1992	2.2-2.6	2.36 <u>+</u> 0.09	7	Kasamatsu&Inatomi, 1998
	1993	2.1-2.4	2.26 <u>+</u> 0.07	7	Kasamatsu&Inatomi, 1998
	1994	1.3-2.3	2.0 <u>+</u> 0.07	8	Kasamatsu&Inatomi, 1998
	2000	2.3	2.03 <u>+</u> 0.28	1	Muslim, 2006b
Korea Coast	1995	2.0-2.0	2	2	Ikeuchi <i>et al.</i> , 1999
	1998	1.3-1.9	1.4 <u>+</u> 0.2	16	Yang <i>et al.</i> , 2001
	1999	0.9-1.5	1.3 <u>+</u> 0.1	29	Yang <i>et al.</i> , 2001
	2000	1.06 -1.18	1.12 <u>+</u> 0.20	3	Muslim, 2006b
East China Sea			0.20	-	
Open Sea	2000	0.44-1.32	0.89 <u>+</u> 0.09	4	Muslim, 2006c
-				-	Rho, 1998
Coastal Yellow Sea	1994	2.2-2.3	2.2		1990 JUIN
	1006	30_37	2.2		Pho 1999
Open Sea	1996	3.0-3.7	3.3		Rho, 1998
Coastal	1997	0 05 1 50	3.3 <u>+</u> 0.5	2	Rho, 1998
Eastern Pacific	1961	0.95-1.53	1.16 <u>+</u> 0.07	3	Rocco and Broecker 1963

0: from Hong et al, 1999a.

Annual variation of Sr-90 activity (mBq/I)

Figure 3. Distribution of ⁹⁰Sr activity at Japan Sea (²%), Yellow Sea (Ï%), Korean coastal (x), North Pacific (%) Japanese eastcoastal (²%), Japanese west-coastal (+), were compared with exponential decay of global fallout (-)

story in those areas and then are compared with exponential decay of global fallout.

The objective of this study is to identify the story data of ⁹⁰Sr concentration level in separate locations (East China Sea, Japan Sea and NW Pacific Ocean) compared with global fallout that decays exponentially.

Material and Methods

The data of 90 Sr activity in the study areas from 1964 to 2000 were found from references who had studied in those areas. Subsequently, the data were compared with exponential decay of 90 Sr global fallout that occurred in 1964. The concentration of 90 Sr in 1964 was 19.60 MBq/L. Base on the half life (t₁) of 90 Sr (=28.8 years), the annual decreasing of 90 Sr concentration can be calculated exponentially.

Results and Discussion

When the global fallout radionuclide occurred in 1964 the ⁹⁰Sr concentration detected in the open sea of Japan Sea was 19.6 mBg/L (Chumichev, 1966), subsequently, the ⁹⁰Sr activity decreased continuously. Actually, before that time the ⁹⁰Sr concentration in the Eastern Pacific in 1961 only ranged 0.95-1.53 mBq/L (Rocco and Broecker 1963). The decreasing of ⁹⁰Sr activity also occurred in the surface seawater of North Pacific Ocean, Japan Sea, East China Sea, Yellow Sea and Eastern Pacific after 1964 to 2000 both in the open sea and close sea (Table 1). For example in the open sea of North Pacific the concentrations of ⁹⁰Sr detected 5.01 mBq/L in 1970 became 1.19 mBq/L in 2000. In 1970, the concentrations of ⁹⁰Sr in the North Pacific lower than in the Japan Sea with concentration 5.01 and 7.4 mBq/L respectively. In the coastal Japan, however, lower than in the open Japan Sea. Considering the fact that all data than have been studied show that the ⁹⁰Sr concentration in the

study areas lower than exponential decay of global fallout (Table 1 and Figure 2). Nevertheless, the mean concentration of ⁹⁰Sr in the open sea Japan Sea in 1990, 1991, 1992, 1993 and 1994 were 6.3, 3.7, 4.8, 3.9 and 2.4 mBq/L respectively rather than in coastal regions with concentration 2.54, 2.47, 2.36, 2.26 and 2 mBq/L respectively.

The result shows that concentration of ⁹⁰Sr in the Japan Sea was higher than in the North Pacific in the same year 1970. The Japan Sea is isolated from the North Pacific Ocean and its marginal sea except for the shallow channels (<150 m depth). Hirose et al. (1999b) have shown that high level of ⁹⁰Sr occur in the water column of the Japan Sea, especially north central Japan Sea. It may be also related with the Tsushima current, a branch of the Kuroshio's current, flowing from the western north Pacific to the Japan Sea, transports surface waters with ⁹⁰Sr contend. Beside that the East Sea (Japan Sea) may be regarded as a part of the North Pacific Ocean, where the radioactive contents of the surface seawater is controlled primarily by the atmospheric input (Kang et al., 1997). When the open sea and coastal area were compared in ⁹⁰Sr concentration show that in coastal area less than in open sea it may be caused by radioactive decay and environmental half-lives in coastal such as sedimentation and biological removal processes in the Japan Sea. Lee and Lee (2000) said that many radionuclide can be caught by clay mineral soil particles adsorption, ion exchange and precipitation as hydroxide or sulfide. Usually in coastal area are higher of that are factors than in open seas. Beside that the East Sea (Japan Sea) may be regarded as a part of the North Pacific Ocean, where radioactive contents of the surface seawater are controlled primarily by atmospheric input (Kang et al., 1997). Based on the data which had been analyzed in the study areas from 1964 to 2000 by some researchers

showed that concentration of 90 Sr activity after 1964 to 2000 lower compared with global fallout exponential decay, it may be caused by removed of 90 Sr from seawater by adsorption on solid particle or onto sinking particles and precipitate with carbonate mineral. Kasamatsu and Inatomi (1998) stated that during 1984-1994 the environmental half-lives in coastal of Japanese was effective for reducing concentration of 90 Sr in the surface seawater.

Conclusion

This study has shown that concentration level of 90 Sr activity in study areas decreases continuously as effect of decay. But, the environmental effect also influenced decreasing 90 Sr level, as a consequence it become much lower than exponential decay of global fallout. Environmental in coastal of Japanese is also effective in reducing 90 Sr concentration, so concentration in the coastal area lower than in the open area. Conversely, in the open Japan Sea slightly higher compared with North Pacific in the same year as effect of atmospheric input and Tsushima current. In conclusion, that the distribution of 90 Sr activity from 1964 to 2000 in study areas were lower than exponential decay of 90 Sr global fallout.

Acknowledgments

I would like to specially thank to the members of Geochemistry Oceanography laboratory of Pukyong National University (PKNU)-Busan, Korea for facilities analysis data. I also wish to thank library staff of PKNU for getting journal which related with this study.

References

- Chumichev., V.B. 1966. Strontium-90 content in the waters of the Pacific Ocean in 1962 and in 1964. *Transactions of the Institute of Oceanology*, *Academy of Sciences of the USSR*, 82. 20-23.
- Chumichev, V.B. 1972. Strontium-90 in the northwestern parts of the Pacific Ocean in 1966-1968. *Transactions of the Institute of Experimental Meteorology, Hydrameterological Service of the* USSR, 1 (32), 45-50.
- Duce, R.A., Arimoto; R., Ray; B.J., Unni, C.K and Harder, P.J. 1983. Atmospheric trace elements at Enewetak. *Journal of Geophysical Research*, 88, 5321-5342.
- Gao, Y.,. Arimoto; R., Zhou, M.Y., Merril, J.T and Duce, R. A. 1992. Relationships between the dust concentrations over eastern Asia and the remote North Pacific. *Journal of Geophysical Research*, 97,

9867-9872.

- Handler, J. 1995. The radioactive waste crisis in the Pacific area. Arctic Research of the United States, 9, 295-306.
- Hansen A.M., Roman; A.C and Lara, V.O. 1998. Interactions of cesium with sediment from Mexican aquatic environments. Aquatic Ecosystem Health & Management, 1, 221-235.
- Hirose, K., Amano; H., Baxter; M.S., Chaykovskaya,
 E., Chumichev, V.B., Hong, G.H., Isogai, K., Kim;
 C.K., Kim, S.H., Miyao, T., Morimoto, T., Nikitin,
 A., Oda, K., Pettersson, H.B.L., Povinec, P.P.,
 Seto, Y., Tkalin, A., Togawa, O and Veletova,
 N.K. 1999. Anthropogenic radionuclides in
 seawater in the East Sea/Japan Sea: Result of the
 first-stage Japanese-Korean-Russian expedition.
 Journal of Environmental Radioactivity, 43, 1-13.
- Hong G.H., Lee, S.H., Kim, S.H., Chung, C.S and Baskaran, M. 1999a. Sedimentary fluxes of ⁹⁰Sr, ¹³⁷Cs, ^{239,240}Pu and ²¹⁰Pb in the East Sea (Sea of Japan). The Science of the Total Environment, 237/ 238, 225-240.
- Hong, G.H., Kim, S.H., Lee, S.H., Chung, C.S., Tkalin, A.V., Chaykovkay, E.L and. Hamilton, T.F. 1999b. Artifical radionuclides in the East Sea (Sea of Japan) Proper and Peter the Great Bay. *Marine Pollution*, 38 (10), 933–943.
- Ikeuchi Y., Amono, H., Aoyama, M., Berezhnov, V.I., Chaykovskaya, E., Chumichev; V.B., Chung, C.S., Gastaud, J., Hirose, K., Hong, G.H., Kim, C.K., Kim, S.H., Miyao, T., Morimoto, T., Nikitin, A., Oda, K., Petterson, H.B.L., Povinec, P.P., Tkalin, A., Togowa, O and Veletova, N.K. 1999. Anthropogenic radionuclides in seawater of the Far Eastern Seas. The Science of the Total Environment. 237/238, 203-212.
- Kang, D.J., Chung, C.S., Kim, S.H., Kim, K.R and Hong, G.H. 1997. Distribution of ¹³⁷Cs and ^{239,240}Pu in the surface waters of the East Sea (Sea of Japan). *Marine Pollution Bulletin*
- Kasamatsu, F., Ueda, Y., Tomizawa, T., Nonaka, N and Nagaya, Y. 1994. Preliminary report on radionuclide concentrations in the bottom waters at the entrance of Wakasa Bay with special reference to the Japan Sea Proper Water. Journal of Oceanography, 50, 589–598.
- Kasamatsu, F and Inatomi, N. 1998. Effective environmental half lives of ⁹⁰Sr and ¹³⁷Cs in the coastal seawater of Japan. *Journal of Geophysical*

⁹⁰Sr Activity in the High Seas and Coastal Regions of Korea-Japan Russia-China Compared (Muslim)

Research. 103, 1209-1217.

- Knatko, V.A., Skomorokhov, A.G., Asimova, V.D., Strakh, L.I., Bogdanov, A.P and Mironov, V.P. 1996. Characteristics of ⁹⁰Sr, ¹³⁷Cs and ^{239,240}Pu migration in undisturbed soils of southern Belarus after the Chernobyl accident. *Journal of Environmental Radioactivity*.30 (2), 185–196.
- Lee, M.H and Lee, C.W. 2000. Association of falloutderived ¹³⁷Cs, ⁹⁰Sr and ^{239,240}Pu with natural organic substances in soils. *Journal of Environmental Radioactivity* 47, 253-262.
- Libes, S.M. 1992. Isotope geochemistry, In S.M. Libes (Ed.), An introduction to marine biogeochemistry (pp.515-593). John Wiley & Sons, Inc. New York
- Muslim, 2006a. The ⁹⁰Sr concentration in surface seawaters of Japan Sea. *Journal of Coastal Development*, 9 (3), 137-143.
- Muslim. 2006b. Distribution of ⁹⁰Sr in the high seas and coastal regions of Korea-Japan-Russia-China. *Indonesian Journal of Marine Sciences*, 11(3), 140-145.
- Muslim. 2006c. ⁹⁰Sr condition in the East China Sea and North Pacific. *Journal of Coastal Development*, 10 (1), 1-8..
- Nagaya, Y and Nakamura, K. 1976. ⁹⁰Sr and ¹³⁷Cs contents in the surface waters of the adjacent seas of Japan and the North Pacific during 1969 to 1973. *Journal of the Oceanographical Society of Japan*, 32, 228-235.
- Nagaya, Y and Nakamura, K. 1981. Artificial radionuclides in the western north Pacific(I) ⁹⁰Sr and ¹³⁷Cs in the deep waters. *Journal of the Oceanographical Society of Japan*, 37, 135–144.
- Nagaya, Y and Nakamura, K. 1984. ^{239, 240}Pu, ¹³⁷Cs and ⁹⁰Sr in the central North Pacific. *Journal of the Oceanographical Society of Japan*, 40, 416– 424.

Nagaya Y and Nakamura, K 1987. Artificial

radionuclides in the western north Pacific (II) 137 Cs and 239,240 Pu inventories in water and sediment column observed from 1980 to 1986. *Journal of the Oceanographical Society of Japan*, 43, 345-355.

- Rho, B.H. 1998. Environmental radioactivity survey data in Korea. Korea Institute of Nuclear Safety (KINS), Technical Report, KINS/AR-409 (in Korea).
- Rocco, G.G and Broeker, W.S. 1963. The vertical distribution of Cesium-137 and Strontium-90 in the oceans. *Journal of Geophysical Research*, 68 (13), 4501-4512
- Salbu, B., Nikitin, A.I., Strand, P., Christensen, G.C., Chumichev, V.B., Lind, B., Fjelldal, H., Bergan, T.D.S., Rudjord, A.L., Sickel, M., Valetova, N.K and Foyn, L. 1997. Radioactive contamination from dumped nuclear waste in the Kara Sea – result from the joint Russian-Norwegian expeditions in 1992-1994. The Science of the Total Environment, 202, 185-198.
- Tkalin, A.V and Chaykovskaya, E.L. 2000. Anthropogenic radionuclides in Peter the Great bay. *Journal of Environmental Radioactivity*, 51, 229-238.
- Wong, G.T.F., Pai; S.C., Liu, K.K., Liu, C.T and Chen, C.T.A. 1991. Variability of the chemical hydrography at the frontal region between the East China Sea and the Kuroshio north-east of Taiwan. *Estuarine, Coastal and Shelf Science*, 33,105-120.
- Yang, H.S., Hwang, D.W., Lee H.P and Kim, G.B. 2001. Distribution of ⁹⁰Sr in coastal seawater, sediments, and organisms arising from two atomic power stations in Korea. *Journal of Environmental Radioactivity*, 1–8
- Zhao, D and Sun, B. 1986. Atmospheric pollution from coal combustion in China. *Journal of Air Pollution Control Association*, 36, 371-374.