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Abstract 

 

The aim of this research are to assess the feasibility of water and soil quality in silvofishery cultivation areas and to 

determine the environmental carrying capacity of the cultivation. The methods employed include Water Quality 

Index (WQI), Soil Quality Index (SQI), carrying capacity, and correlation analysis of parameters. The concentration 

of COD in the silvofishery pond water ranges from 705.34-749.50 mg.L-1, and the total nitrogen content in the soil 

ranges from 7-8 mg.L-1. The COD parameter in water shows a strong correlation with dissolved oxygen. The soil type 

parameter silt is correlated with redox potential, while the clay soil type is correlated with sand soil. The variance in 

data for water and soil quality variables is considered significant as per cluster analysis. The WQI values range from 

0.47-0.85, categorized as poor, good, and excellent. The SQI values range from 0.52-0.77, falling into the good and 

excellent categories. The carrying capacity of dissolved oxygen ranges from 0.7-1.99 kg.ha-1, indicating that if the 

DO concentration is below this range, oxygen depletion may occur in the silvofishery pond. The research results 

indicate that the water and soil quality in the silvofishery pond is still sufficiently suitable for silvofishery activities. 

The carrying capacity of dissolved oxygen in the silvofishery pond is deemed adequate for operational silvofishery 

activities, ranging from 14.26-15.87 kg.ha-1. This implies that the silvofishery cultivation system is capable of 

enhancing aquaculture productivity while minimizing environmental pollution in the surrounding aquatic areas 

resulting from the waste generated during aquaculture operations. 
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Introduction 
 

Silvofishery is an integrated aquaculture 

activity with the mangrove ecosystem (Rahman and 

Mahmud, 2018; Musa et al., 2020). Silvofishery is 

considered as an option for coastal area 

management based on an ecological approach 

(Lukman et al., 2021). This practice can be 

implemented in coastal regions as a means of 

managing the mangrove ecosystem. Various 

commodities utilized in silvofishery cultivation include 

Oreochromis sp, Chanos chanos, Portunus pelagicus, 

Scylla sp., and Epinephelus sp. (Musa et al., 2020; He 

et al., 2020; Ji et al., 2021). Mangrove commodities 

commonly cultivated include Avicenia sp., Rhizopora 

sp., and other species (Wulandari et al., 2022). 
 

Silvofishery demonstrates a higher level of 

ecological utilization compared to aquaculture 

systems (Ariadi et al., 2019). This practice adds value 

to its aquaculture management (Perwitasari et al., 

2020). Silvofishery can be calculated as a form of 

resource utilization value. The presence of resource 

utilization value (economic valuation) provides 

development options for future activities (Ariadi et al., 

2019). The existence of mangrove ecosystems and 

fisheries cultivation will have a real impact in the 

fields of biodiversity, livelihoods and conservation for 

coastal areas (Come et al., 2023). 

 

The important parameter in silvofishery 

activities is the water and soil quality parameters 

(Musa et al., 2020). The success of cultivation is 

heavily influenced by the quality of water and soil 

(Ariadi et al., 2023; Soeprapto et al., 2023). As 

ecological parameters, water and soil quality in 

cultivation ponds are essential for assessing land 

status (Soeprapto et al., 2023). Furthermore, the 

carrying capacity of cultivation is highly determined by 

the land's productivity level (He et al., 2020; 

Mardiana et al., 2023). In other words, the correlation 

between cultivation productivity and the carrying 

capacity along with the ecological parameters of the 

water is significant (Lukman et al., 2021; Dong et al., 
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2021). The objectives of this research are to assess 

the feasibility of water and soil quality in silvofishery 

cultivation areas, and to determine the environmental 

carrying capacity of the cultivation. This research is 

expected to provide empirical insights into the 

assessment of land feasibility and carrying capacity in 

silvofishery cultivation activities. It is hoped that the 

silvofishery research mapping can provide a model 

for environmentally friendly aquaculture concepts 

(Soeprobowati et al., 2024). 

 
Materials and Methods 
 
Research location 

 

The research data was collected in the coastal 

waters of Pekalongan City (6⁰51’17,5’’ LS 

109⁰42’42,8’’BT.) (Figure 1.). Data collection took 

place in four silvofishery ponds. The silvofishery 

ecosystem at the research site consists of mangroves 

(60%) and fish ponds (40%). The cultivated 

commodities include tilapia (Oreochromis niloticus), 

milkfish (Chanos chanos), and crab (Scylla serrata). 

The mangrove trees present at the silvofishery site 

belong to the Avicennia sp. species. 

 
Sampling parameters 

The sample data were obtained from 4 

silvofishery cultivation ponds. In each pond, sampling 

was conducted during both the rainy and dry seasons 

to collect water and soil samples. Soil quality 

parameters observed included soil type and texture, 

measured using a hydrometer (Gao and Li, 2023). 

Additionally, soil pH, potential redox, organic carbon 

(OC), organic matter (OM), and cation exchange 

capacity (CEC) were measured using the formula by 

FAO (1980). Total nitrogen (N Total), C/N ratio, and 

nitrate (NO3
-) parameters were measured by Jilkova 

et al, (2020). 

 

Water quality parameters observed included 

pH, measured using a Eutech EC-pHTest30 pH tester, 

salinity measured with an ATAGO Master IP65 

refractometer, and dissolved oxygen and water 

temperature measured with a YSI550i DO Meter. 

Carbon dioxide (CO2), nitrate (NO3
-), orthophosphate 

(PO4
3-), ammonia (NH3), Chemical Oxygen Demand 

(COD), Total Organic Matter (TOM), alkalinity, and 

nitrite (NO2
-) parameters were measured using water 

quality assessment methods (APHA, 2005; Wafi et al., 

2021). Data for soil and water quality were collected 

both insitu and exsitu. Parameters measured insitu 

include: pH water, soil texture, salinity, dissolved 

oxygen, and temperature. Parameters of Carbon 

dioxide (CO2), nitrate (NO3
-), orthophosphate (PO4

3-), 

ammonia (NH3), Chemical Oxygen Demand (COD), 

Total Organic Matter (TOM), alkalinity, nitrite (NO2
-), 

soil pH, potential redox, organic carbon (OC), organic 

matter (OM), cation exchange capacity (CEC), Total 

nitrogen (N Total), C/N ratio, and soil nitrate (NO3
-) 

parameters were measured exsitu. 

 

 

 

 

Figure 1. Study area of research 
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Data analysis 

 

The analysis of water and soil quality data is 

descriptively analysis. The research findings are 

tested using non-parametric correlation tests to 

understand the correlation structure among 

variables. Subsequently, Principal Component 

Analysis (PCA) is applied to determine the correlation 

matrix weights for the entire dataset. Statistical data 

analysis in this study is facilitated using Microsoft 

Excel 2013 and SPSS software ver 19.2. 

 

WQI and SQI analysis 

 

To estimate the value of Water Quality Index 

(WQI) and Soil Quality Index (SQI) it is calculated 

based on the equation by Ma et al. (2023): 

 

WQI/SQI = ∑ (𝑊𝑘𝑉𝐹𝑘)𝑛
𝑖=1  

VFk = ∑ (𝐴𝑘𝑖𝑃𝑖𝑗)𝑛
𝑖=1  

 

Note: WQI/SQI is water/soil quality index; Wk is the 

value factor in k; VFk is principal component score; Aki 

is the value score; Pij is coefficient standard; “i” is a 

variable and “j” is the maximum standard variable. 

 

Furthermore, the scores on the WQI and SQI 

values are classified based on class using the Sturges 

formula used by Hoaglin et al, (1983) as follows: 

 

Sturges formula : nc = 1+3.3 Log10(N) 

Class range : h = A/nc 

 

Note: nc is the number of classes; N is the value of 

the observation result; A is the data range; and h is 

the class range. Furthermore, the calculation results 

from the formula are classified into ranks I to IV, 

where rank "I" is the excellent category. 

 

Pond carrying capacity 

 

The carrying capacity level and pond potential 

is estimated by comparing the DO value and the water 

volume average following equation by Mardiana et al., 

(2023): 

 

D = ([Vh-Vi]/t x Vh 

 

Note: D is the pond volume (m3); (Vh-Vi) is the water 

exchange volume; Vh is the initial water volume (m3); 

and t is the duration of the water exchange. After the 

pond water volume has been estimated, the next step 

is to determine of oxygen carrying capacity based on 

the inflow of water and the minimum DO 

concentration in the pond using formula by Mardiana 

et al. (2023): 

 

{Qom3 x (Oin – Ooutt) 𝑔𝑂2
𝑚3

 } + A = X kgO2 

Note: A is the average solubility of DO from other 

sources; Qo is the pond volume (m3); Oin is the 

solubility of DO (mg.L-1); Oout is the DO minimum 

concentration for fish (mg.L-1). 

 

Result and Discussion 
 

Water and soil quality parameters in silvofishery pond 

 

The condition of water quality parameters in 

the silvofishery ponds tends to be good and stable 

(Table 1.). Notably, the profile of water quality in the 

silvofishery ponds indicates a relatively high 

concentration of COD (Chemical Oxygen Demand). 

The COD concentration in the ponds ranges from 

705.34-749.50 mg.L-1 (Table 1.). A similar trend is 

observed in the soil quality profile of the silvofishery 

ponds, where overall soil quality parameters tend to 

be dynamic stable (Table 2.). An abnormality is noted 

in the total nitrogen (N Total) parameter, with 

concentrations ranging between 7-8 mg.L-1 (Table 2.). 

Overall, the water and soil quality conditions in the 

silvofishery ponds appear to be suitable for 

cultivation. The suitability of land and water in the 

silvofishery ecosystem is influenced by the scientific 

symbiosis between the aquaculture and silviculture 

ecosystems (Alder et al., 2023). 

 

The high concentration of COD suggests 

intense decomposition processes, likely stemming 

from organic waste from fish feed and feces (Junior 

et al., 2021; Colette et al., 2022). The low 

concentration of total nitrogen indicates that the level 

of nitrogen uptake by mangrove roots is very high 

(Alder et al., 2023). The silt soil texture significantly 

influences nutrient solubility at the cultivation site. 

While nutrient-poor soil may not be fertile for 

agriculture, it does not significantly impact 

aquaculture activities (Liu et al., 2023). 

 

In terms of water quality parameters, a strong 

correlation is observed between COD and dissolved 

oxygen (DO) at the 0.05 significance level, as well as 

between nitrite (NO2
-) and nitrate (NO3

-) (Table 3.). 

The COD value is related to the level of oxygen 

demand used by microorganisms for the 

decomposition process (Nguyen et al., 2022). 

Intensive decomposition of organic matter requires 

high oxygen consumption, affecting the solubility of 

nitrite (NO2
-) and nitrate (NO3

-) in the nitrification cycle 

(Medriano et al., 2023). Other parameters such as 

salinity, dissolved oxygen, phosphate, COD, alkalinity 

show low correlation coefficients (Table 3.). The study 

reveals weak correlations between physical and 

chemical water parameters. Water quality in 

aquaculture ecosystems tends to fluctuate 

dynamically over time (Li et al., 2021; Ariadi et al., 

2023). 
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Strong correlation is found in soil parameters, 

particularly between silt soil type and redox potential, 

and clay soil type with sand soil (Table 4.). Silt soil 

types tend to have a high cation exchange capacity 

(Huang et al., 2023), as indicated by the high 

oxidation values in silt soils (Wang et al., 2023). Clay 

soil types share similarities with sand soils due to 

particle size, influencing soil porosity and stability 

(Zhang et al., 2023). Coastal areas commonly feature 

clay and sand soils, and soil classification affects soil 

characteristics and productivity for aquaculture 

activities (Yuan et al., 2023). Other parameters such 

as C/N ratio, soil organic carbon (OC), and total 

nitrogen show strong correlations on a smaller scale. 

The presence of carbon elements in the soil is needed 

to balance the C:N Ratio levels and to stabilize the 

nutrient decomposition process by detritus 

(Stevenson et al., 2024).  

 

Based on correlation results, nutrient 

parameters in water exhibit very strong correlations 

due to the high solubility of nutrients from feed, feces, 

leaf litter, and organic materials (McKercher et al., 

2022). Silvofishery ponds, integrating mangrove 

ecosystems and multi-species aquaculture, 

experience elevated nutrient outputs (Harefa et al., 

2022). In soil quality parameters, soil type shows 

strong correlations, influenced by the diverse 

composition of mangrove ecosystem soils, and 

affected by run-off and ongoing sedimentation 

processes (Junior et al., 2021; Harefa et al., 2022). 

Mangrove trees adapt to soil type characteristics 

(Musa et al., 2020). 

 

The results of PCA Cluster analysis are 

described in Table 5. for water quality parameters 

and Table 6. for soil quality parameters. The data are 

derived from clustering data in 9 silvofishery ponds. 

The factor analysis results show eigenvalues >1, 

indicating the significance of the two water and soil 

data sets. The water quality parameter data (Table 5.) 

indicates that for VF1, parameters such as 

temperature, pH, CO2, NO3
-, PO4

3-, NH3, and TOM 

contribute significantly with loadings >0.80. VF1 

accounts for 55.381% of the total variance. VF2 

indicates that parameters like salinity, DO, COD, 

alkalinity, and NO2
- contribute significantly with 

loadings >0.80. VF2 accounts for 31.187% of the 

total variance. The variance in water quality variables 

is strong and significant for cluster analysis. Soil 

parameters show a factor analysis with eigenvalues 

>1, signifying their significance. VF1 contributes 

54.892% to the total variance, where parameters like 

pH, redox, OC, and OM have strong loadings (>0.80). 

VF2 indicates that parameters like total nitrogen, 

%sand, %silt, and %clay have strong loadings (>0.80) 

compared to other parameters. VF2 accounts for 

27.495% of the total variance. 

 

 
Table 1. Water quality parameters on silvofishery pond 

 

Pond 

Tempe

rature 

(0C) 

pH 
Salinity 

(g.L-1) 

DO 

(mg.L-1) 

CO₂ 
(mg.L-1) 

NO₃- 

(mg.L-1) 

PO₄3- 

(mg.L-1) 

NH₃ 
(mg.L-1) 

COD 

(mg.L-1) 

TOM 

(mg.L-1) 

Alkalinity 

(mg.L-1) 

NO₂- 

(mg.L-1) 

1 
31.5 ± 

1.88 

8.3 ± 

0.61 

7 ± 

2.37 

6.4 ± 

0.14 

0.006 

±0.11 

0.322 

±0.45 

0.117 

±0.15 

0.021 

±0.19 

726.25 

±25.12 

71.50 

± 8.22 

115 ± 

9.49 

0.212 

±0.68 

2 
30.8 ± 

1.87 

8.5 ± 

0.69 

8 ± 

2.38 

5.7 ± 

0.19 

0.008 

±0.13 

0.374 

±0.40 

0.188 

±0.17 

0.037 

±0.18 

705.34 

±24.25 

83.25 

± 8.36 

117 ± 

9.50 

0.237 

±0.64 

3 
31.1 ± 

1.80 

8.5 ± 

0.62 

7 ± 

2.37 

6.1 ± 

0.19 

0.008 

±0.15 

0.341 

±0.47 

0.137 

±0.19 

0.042 

±0.19 

733.22 

±25.25 

75.50 

± 8.25 

112 ± 

9.35 

0.225 

±0.62 

4 
29.8 ± 

1.81 

8.3 ± 

0.66 

7 ± 

2.37 

6.3 ± 

0.18 

0.002 

±0.09 

0.366 

±0.43 

0.153 

±0.16 

0.047 

±0.19 

749.50 

±25.12 

78.50 

± 8.25 

115 ± 

9.45 

0.219 

±0.67 

 

  

Table 2. Soil quality parameters on silvofishery pond 

 

Pond pH 
Redox 

(Eh) 

OC 

(mg.L-1) 
N Total C/N 

OM 

(mg.L-1) 
CEC 

NO₃- 

(mg.L-1) 
% sand % silt % clay 

1 
7.7 ± 

0.11 

13.58 ± 

6.33 

0.65 ± 

0.19 

0.10 ± 

0.04 

7 ± 

4.36 

0.85 ± 

0.21 

25.85 ± 

14.12 

4.22 ± 

2.12 

23 ± 

18.43 

43 ± 

12.24 

18 ± 

7.41 

2 
7.8 ± 

0.12 

21.73 ± 

6.89 

0.75 ± 

0.25 

0.09 ± 

0.08 

7 ± 

4.84 

0.78 ± 

0.21 

24.25 ± 

15.10 

5.21 ± 

2.22 

27 ± 

19.21 

41 ± 

12.27 

21 ± 

7.47 

3 
7.7 ± 

0.12 

23.05 ± 

7.11 

0.77 ± 

0.20 

0.06 ± 

0.08 

7 ± 

4.72 

0.88 ± 

0.25 

38.99 ± 

14.45 

5.40 ± 

2.37 

25 ± 

18.25 

48 ± 

12.30 

20 ± 

7.56 

4 
7.7 ± 

0.13 

19.21 ± 

6.74 

0.69 ± 

0.20 

0.09 ± 

0.07 

8 ± 

4.55 

0.72 ± 

0.21 

42.10 ± 

14.25 

5.37 ± 

2.25 

28 ± 

17.19 

42 ± 

12.25 

20 ± 

7.51 
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Table 3. Correlation coefficient between water quality variables (Spearman) as non-parametric 

 

 Temperature pH Salinity DO CO₂ NO₃ PO₄ NH₃ COD TOM Alkalinity NO₂ 

Temperature 1            

pH .219 1           

Salinity .553* .391 1          

DO .466* .225 .872* 1         

CO₂ .109 .529 .246 .595 1        

NO₃ .333 .520* .105 .377* .555 1       

PO₄ .218 .302* .656 .405* .392 .445* 1      

NH₃ -.693 -.833 .704 .249 .593 .205 .439 1     

COD .670 .205 .573 .101** .629 .360 .228 .592 1    

TOM -.458 -.105 -.437 -.333 -.659 .552 .793 .139 -.068 1   

Alkalinity .818 .549* .693 .452 .208* .837 .280 .418 -.490 .463 1  

NO₂ -.118 .752* .339 .538 .39 .688** .027 .885 -.749 -.753 -.892 1 

 

 

Table 4. Correlation coefficient between soil quality variables (Spearman) as non-parametric 

 

 pH Redox OC N Total C/N OM CEC NO₃ % sand % silt % clay 

pH 1           

Redox .449 1          

OC -.218 .293* 1         

N Total .420 .662 .971 1        

C/N .752* .793 .712 .048* 1       

OM .602 .173 .902* .078 .918 1      

CEC .739 .187 .943 .406 .331 .084 1     

NO₃ .719 .018 .391 .107 .591 .106 .519 1    

% sand .015 .159* -.902 .201 -.118 .219* .796 .331* 1   

% silt .023 .377** .175 .019 .379 .009* .204 -.088 .935* 1  

% clay .693 .517* .567 .101 .779 .015* .294 .619 .077** .935* 1 

 

 
Table 5. Loading of experimental water and soil quality variables on significant principal components 

 
Water Parameters Soil Parameters 

Variablea VF1b VF2c Variablea VF1b VF2c 

Temperature 0.794 0.231 pH 0.892 0.276 

pH 0.837 0.169 Redox 0.849 0.021 

Salinity -0.238 0.891 OC 0.993 -0.115 

DO -0.103 0.899 N Total 0.177 0.948 

CO₂ 0.853 0.146 C/N 0.701 0.111 

NO₃ 0.912 0.133 OM 0.948 0.116 

PO₄ 0.883 0.103 CEC 0.519 0.089 

NH₃ 0.894 0.124 NO₃ 0.427 0.124 

COD 0.387 0.881 % sand 0.113 0.895 

TOM 0.867 0.105 % silt 0.106 0.925 

Alkalinity 0.238 0.826 % clay 0.128 0.884 

NO₂ 0.184 0.914 - - - 

Eigenvalue 5.373 3.172 Eigenvalue 5.354 2.176 

% variance 55.381 31.187 % variance 54.892 27.495 

% cumulative  

variance 
54.272 78.295 

% cumulative  

variance 
51.729 75.487 
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From the PCA analysis, it can be explained that 

chemical parameters dominantly influence the water 

and soil data sets. Additionally, there are physical 

parameters with low influence. In integrated 

aquaculture activities, the dynamics of chemical 

parameters are considered to be more intense and 

can have a direct influence on the environment 

(Stevenson et al., 2024). The chemical-physical 

parameters strongly influence the silvofishery ponds 

(Musa et al., 2020). Water quality in aquaculture 

ponds fluctuates dynamically over time (Ariadi et al., 

2023). The dynamics of physicochemical parameters 

in silvofishery waters will have a correlative influence 

on fish growth rates, decomposition rates and 

chemical cycles in the waters (Ariadi et al., 2019). 

 

WQI and SQI analysis 

 

The estimations of Water Quality Index (WQI) 

and Soil Quality Index (SQI) in the silvofishery ponds 

are illustrated in Figure 2. Excellent WQI values are 

found in pond 4. Poor WQI values are observed in 

ponds 1 and 2, with pond 3 classified as having a 

good WQI. The range of WQI values in the silvofishery 

ponds is 0.47-0.85. Excellent SQI values are found in 

pond four, while the remaining silvofishery ponds are 

classified as having a good SQI. The range of SQI 

values in the silvofishery ponds is between 0.52-

0.77. The classification of WQI and SQI status can be 

seen in Table 6. Variations in Water Quality Index 

(WQI) and Soil Quality Index (SQI) values in 

silvofishery ponds are due to differences in the 

aquaculture waste recycling process and the amount 

of aquaculture input provided (Nguyen et al., 2022). 

 

The key to the balance of a aquaculture site is 

the presence of a stable environmental carrying 

capacity (Song et al., 2019). Soil quality, based on SQI 

Index classification, is relatively good and suitable for 

aquaculture activities. Good soil quality determines 

the level of land productivity in supporting 

aquaculture sites (Shafi et al., 2021; Hasibuan et al., 

2023). The WQI Index tends to be relatively good for 

cultivation activities (Figure 2.). The unstable water 

status can be managed by using suitable fish species 

for aquaculture cultivation (Ariadi et al., 2019). 

Overall, this silvofishery site is considered good for 

fish farming. 

 

The status of land and resources is a key factor 

that should be considered before engaging in 

cultivation activities (Song et al., 2019). Ideal land 

and water conditions are highly beneficial in 

supporting the operational cycle  of  aquaculture
 

 

 

Table 6. WQI/SQI modification distributed into four class indicating from condition of pond culture 

 

The value of WQI Water/soil condition Interval classes The value of SQI 

>0.80 Excellent I >0.75 

0.60 < WQI < 0.80 Good II 0.50 < SQI < 0.75 

0.30 < WQI < 0.60 Poor II 0.25 < SQI < 0.50 

0.05 < WQI < 0.30 Badly IV 0.03 < SQI < 0.25 

 

 
 

Figure 2. WQI/SQI index in silvofishery pond 
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Table 7. Data calculation of oxygen carrying capacity in each pond 

 

Pond 
Volume of 

Pond (m³) 

Volume of 

pond 60% 

(L) 

DO in pond 

(kg.pond-1) 

TOM in 

pond 

(kg.pond-1) 

DO for TOM 

(kg.pond-1) 

DO for fish 

(kg.pond-

1) 

DO for culture 

activity (kg.pond-1) 
CC 

1 600 360 16.25 24.68 6.36 5.84 14.26 1.99 

2 600 360 17.55 37.29 7.11 5.92 15.87 1.68 

3 600 360 15.75 22.77 7.87 6.25 15.05 0.7 

4 600 360 16.50 32.58 5.46 4.89 15.27 1.23 

 

(Madusari et al., 2022). In these silvofishery ponds, 

there are feasibility values that are quite good to 

support the operational cycle of cultivation. The 

feasibility status of cultivation land is also related to 

the carrying capacity when the operational cycle of 

aquaculture is underway (Dong et al., 2021). 

 

The silvofishery pond carrying capacity 

 

Carrying capacity in the silvofishery ponds is 

calculated based on the availability of dissolved 

oxygen (DO) and the requirements for DO in the 

oxidation of organic matter, fish respiration, and the 

ecosystem activities in the silvofishery pond. 

Dissolved oxygen is important parameter that 

controls biochemical processes in aquaculture 

ecosystems (Wafi et al., 2021). The estimates are 

presented in Table 7. Overall, the DO carrying 

capacity in the silvofishery ponds is still highly 

sufficient for the DO consumption level in the ponds. 

The lowest DO production level is in pond 3 (15.75 

kg.pond-1), but its capacity can still cover the DO 

consumption level in the silvofishery ponds, which is 

15.05 kg.pond-1. The DO requirements for the 

oxidation of organic matter are 0.2 kg.DO-1, and for 

fish respiration, it is 4 mg.L-1. The range of oxygen 

production in these silvofishery ponds tends to be 

more stable (15.75-17.55 kg.pond-1) compared to the 

findings of Musa et al. (2020), which ranged between 

9.45-25.93 kg.pond-1. 
 

The high DO production in the silvofishery 

ponds is attributed to the high density of mangroves 

(Musa et al., 2020). In the research ponds, the 

cultivation area to mangrove ratio is 60:40. Mangrove 

roots produce oxygen that diffuses into the 

silvofishery pond ecosystem (Hossain et al., 2022; 

Musa et al., 2020). Mangroves also function as 

absorbers of organic matter resulting from fish 

farming activities (Kristensen et al., 2022). Nutrients 

from fish feces and uneaten feed can be converted 

into fertilizer for mangroves (Musa et al., 2020). 

Based on the research results, the lowest DO carrying 

capacity is 0.7 kg.pond-1 (Table 7.). This means that if 

the DO conversion in the silvofishery pond is less than 

0.7 kg.pond-1, the pond's carrying capacity is 

considered unsuitable. The oxygen carrying capacity 

is limited factor by the maximum water that can cover 

the waste load for the decomposition process (Wafi et 

al., 2021). To enhance the DO carrying capacity, 

partial harvesting, effective water circulation 

management with paddle aerator, and the use of 

appropriate fish stocking densities can be 

implemented (da Silveira et al., 2022; Ariadi et al., 

2023). 
 

The carrying capacity of aquaculture ponds is 

dynamic due to the influence of biotic and abiotic 

factors (Dong et al., 2021). Information on carrying 

capacity is crucial for determining the level of input in 

fish farming production (Santanwat et al., 2023). 

Carrying capacity is also necessary to avoid excessive 

accumulation of waste in the surrounding 

environment of the pond (Mardiana et al., 2023). 

Silvofishery ponds with the utilization of mangrove 

ecosystems are well-suited for sustainable cultivation 

concepts with controlled carrying capacity (Ouyang 

and Guo, 2016). Silvofishery is very easy to develop 

and adaptive to be replicated in coastal waters (Urli 

et al., 2022). Silvofishery is also suitable for 

development in coastal areas as an effort to preserve 

mangrove ecosystems and promote integrated 

aquaculture patterns (Umilia and Asbar, 2016; Urli et 

al., 2022). 
 

Conclusion 
 

The findings of this study indicate that the 

feasibility of water and soil quality in the silvofishery 

pond is still technically suitable for silvofishery 

activities. The carrying capacity of the silvofishery 

pond, based on the DO carrying capacity and 

mangrove cover ratio, is still deemed highly sufficient 

for the operational aspects of silvofishery. In essence, 

the silvofishery cultivation system is considered 

capable of enhancing the overall productivity of 

aquaculture while minimizing the risk of 

environmental pollution in the vicinity of shrimp pond 

cultivation areas. 
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