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Abstract 
 

The mangrove ecosystem, found along tropical and subtropical coasts, adapts to extreme conditions like rapid tidal 

changes, high salinity, anthropogenic influences, and anoxic environments. Mangrove sediments host diverse 

organisms, particularly invertebrates and bacteria, which significantly influence sediment structure and 

biochemical processes by enhancing permeability and water flow. Modern molecular approaches, notably Next-

Generation Sequencing (NGS), are increasingly used to identify macro and microorganism communities in 

sediments. NGS, a powerful tool for DNA and RNA sequencing, allows for parallel sequencing of numerous DNA 

fragments, providing comprehensive insights into genome structure, genetic variants, gene expression, and 

epigenetic modifications. Its efficiency and cost-effectiveness make NGS vital for both basic biological research and 

clinical diagnostics. Recent NGS studies on mangrove sediments have focused on bacterial, archaeal, and fungal 

diversity. The study examines eukaryotic diversity in mangrove sediments at two locations, targeting the Cytochrome 

Oxidase Subunit I (COI) gene, a universal marker for eukaryotes. Results indicate distinct taxa at each site with 

minimal overlap, demonstrating eDNA's potential for assessing both macro and microorganism diversity in 

mangrove sediments. This preliminary study underscores the utility of molecular techniques in biodiversity research 

and also dynamic ecosystem changes in the mangrove sediment ecosystem. The high influence of the environment 

around the mangrove ecosystem will affect the quality of the mangrove itself. eDNA here provides a fast method 

for recording possible changes to be able to carry out better management in the future. 
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Introduction 
 

The mangrove ecosystem is an ecosystem that 

is generally found along coasts in tropical and 

subtropical regions. This ecosystem is able to adapt 

to extreme environments, such as rapid changes in 

tides, temperature, high salinity, and anoxic 

conditions (Alongi, 2022). These driving factors force 

structural and functional limits, promote physiological 

processes for adaptation, and consequently render 

the ability to survive in a high-saline and low-oxygen 

environment (Alongi et al., 2016). Mangrove 

ecosystems play a vital role in the environment, 

particularly coastal environments, and provide 

various ecosystem services that benefit the 

environment globally and communities' livelihoods 

(Getzner and Islam, 2020). These services include 

preventing coastal abrasion (Indarsih and Masruri, 

2019), protecting coastal communities from climate 

disasters (Nur and Hilmi, 2021), providing habitat for 

a variety of organisms (Widayanti et al., 2023), 

regulating nutrients (Constance et al., 2022), and 

serving as a natural carbon sink that is important for 

nature-based approach to climate mitigation (Arifanti 

et al., 2022). This ecosystem's ability to absorb and 

store long-term carbon has made the mangrove 

ecosystem recognized as part of the "blue carbon" 

ecosystem (Donato et al., 2011; Lovelock and Duarte, 

2019). 

 

Furthermore, mangrove sediments also 

provide a habitat for many organisms, especially 

invertebrates and bacteria. The presence of benthic 

invertebrates within the mangrove ecosystem 

imposes a significant impact on sediment structure 

and biochemical processes, primarily through 

enhancing sediment permeability and water flow 

(Pravinkumar, 2013). A study conducted by Santos et 

al. (2010) observed that the Metazoa group was the 

most prevalent eukaryote in mangrove sediments, 
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followed by Stramenopiles and Alveolata from SAR 

group. In recent years, several techniques have been 

developed for assessing microorganism communities 

in mangrove sediments. These techniques include 

the conventional cultivation approach, DNA 

fingerprinting techniques, clone libraries, and 

sequencing technologies (Zhang et al., 2009; Dias et 

al., 2010; Santos et al., 2010; Andreote et al., 2012; 

Mendes and Tsai, 2014; Sá et al., 2014) 

 

Demak, Central Java, Indonesia has a 

mangrove area of 13,960.5 ha. However, pressures 

such as abrasion, population growth, land conversion 

and industrialization have caused a decline in the 

quality of the mangrove ecosystem in Demak 

(Sihombing et al., 2017). This can certainly affect the 

function of the mangrove ecosystem at large. Apart 

from that, the entry of pollutants including rubbish 

and other organic substances will affect the condition 

of the mangrove sediment ecosystem which will 

threaten the diversity of its original biodiversity. 

 

Presently, molecular approaches are 

increasingly used to identify macro and 

microorganism communities within sediment due to 

their perceived ability to produce massive results in a 

short time. Over the last two decades, sequencing 

technology has developed rapidly and entered third-

generation or next-generation sequencing (NGS), 

which is a new approach that overcomes the 

limitations of the two previous generations of 

sequencing technology (Salk et al., 2018; Kumar et 

al., 2019; Goto et al., 2020). NGS is an emerging 

technological advancement used in genetic research 

for DNA and RNA sequencing, as well as the 

identification of variants and mutations (Qin, 2019). 

NGS also enables the efficient sequencing of many 

DNA fragments in parallel, facilitating an extensive 

knowledge of genome structure, genetic variants, 

gene expression patterns, and epigenetic alterations 

(Satam et al., 2023). Due to its rapid data processing 

and attractive cost-performance ratio, NGS has 

become an essential tool for basic biological research 

and clinical diagnostics (Goodwin et al., 2016). 

Several recent studies based on NGS on mangrove 

sediments have been conducted and focused on 

bacterial composition and diversity (Liu et al., 2019; 

Jeyanny et al., 2020; Iturbe-Espinoza et al., 2022; 

Nimnoi and Pongsilp, 2022), prokaryotic diversity 

(Zhang et al., 2019; Lemoinne et al., 2023) and 

fungal diversity (Haldar and Nazareth, 2019).  

 

Therefore, this research aims to utilize the NGS 

method (Environmental DNA or eDNA Metabarcoding) 

to examine the structure and composition of 

eukaryotes communities in mangrove sediments at 

Demak, Central Java, Indonesia. Environmental DNA 

is a technique for identifying DNA from organisms that 

has been released into the environment, such as in 

soil, water, or air. One of the molecular approaches 

for eDNA study is DNA Metabarcoding. DNA 

Metabarcoding is a fast and rapid molecular 

technique that identifies many species in a single 

sample by analyzing DNA sequences from short 

regions of genes. This research will use Cytochrome 

Oxidase Subunit I (COI) genetic markers and wants to 

see the advantages and disadvantages of this 

marker. It is hoped that there will be a protocol ready 

to be used to see the diversity of the mangrove 

sediment ecosystem in a short time and with massive 

data. This research will contribute to becoming a 

scientific reference in developing research related to 

the application of NGS technology, especially its 

relevance in efforts to develop sustainable mangrove 

ecosystem management strategies 

 

Materials and Methods 

 
The sampling was conducted in two locations, 

Bedono and Morosari village, Sayung district, Demak 

Regency, Central Java (Figure 1.) in June, 2022. 

These two locations were chosen because they have 

different characteristics. Bedono situated in the 

Mangrove Forest Conservation areas in the Demak 

region, close with the beach with high level of 

abrasion every year.  On the other hand, Morosari 

situated in the estuaries of the Sayung river which is 

a fishing area and is affected by settlements. Two 

sediment samples were collected from each 

sampling point. 10 grams of mangrove sediment 

were collected using sterile spatula and preserved in 

96% ethanol in new and sterile 15 ml falcon tubes. 

Samples were stored in the close cool box and then 

transported to Integrated Laboratory, Universitas 

Diponegoro for further analysis.  

 
DNA extraction and molecular analysis 

 

Around 0.25 g of sediment samples were 

extracted using ZymoBIOMICS Quick-DNA™ 

Fecal/Soil Microbe Miniprep Kit as described by the 

manufacturer. DNA was amplified using an amplicon-

based approach utilizing the Next Generation 

Sequencing (NGS) methods.  Cytochrome Oxidase 

Subunit 1 (COI) genes were targeted using the 

mlCOIintF (5’-GGW ACW GGW TGA ACW GTW TAY CCY 

CC-3’) and dgHCO2198 (5’-TAA ACT TCA GGG TGA 

CCA AAR AAY CA-3’) primers (Meyer, 2003; Leray et 

al., 2013). Library preparation for COI amplicons 

followed a single indexing approach where barcodes 

were incorporated into the forward primer to facilitate 

multiplexing of up to 96 samples per run. Sequencing 

was performed using the Illumina MiSeq sequencing 

platform at PT. Genetika Science Indonesia. 
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Figure 1. The map of sampling locations in Desa Bedono, Demak, Jawa Tengah, Indonesia. The red dot is the sampling site 1 in 

Morosari and the yellow dot is sampling site 2 in Bedono. 

 

 

Bioinformatic analysis 

 

Forward and reverse raw fast sequence files 

were obtained from the Illumina machine. Raw 

sequences were checked for quality, cleaned, de-

noised, and merged with QIIME2 (the Quantitative 

Insights Into Microbial Ecology 2 program, 

https://qiime2.org/) (Bolyen et al., 2018) and 

Divisive Amplicon Denoising Algorithm 2 (DADA2) 

software (Callahan et al., 2016), wrapped in QIIME2. 

To assign taxonomy to the resulting ASVs (Amplicon 

Sequence Variants), we use “Creating Reference 

libraries Using eXisting tools” (CRUX), which 

generates comprehensive reference databases for 

specific user‐defined metabarcoding loci from 

database such as NCBI (https://www. 

ncbi.nlm.nih.gov/) (Curd et al., 2018) for COI data. 

The phyloseq package (McMurdie & Holmes, 2013) 

in R Studio (R development core team) was used to 

summarize the taxonomic composition of each 

sample. Stacked bar plots summarizing taxonomic 

composition and sequence abundance were 

generated using ggplot2 (Wickham, 2009) in R Studio 

(R development core team). Alpha and beta diversity 

were analysed using Vegan package (Oksanen, 2007; 

Oksanen et al., 2018) in R Studio (R development 

core team). For each sample and location, we used 

http://bioinformatics.psb.ugent.be/webtools/Venn/ 

to create a set of Venn diagrams to determine how 

many ASVs were shared among samples and 

sampling locations. The rarefaction curves were 

created with the Ranacapa package using the grade 

command (Kandlikar, et al., 2018). 

 

Result and Discussion 
 

Environmental DNA (eDNA) is an approach that 

is widely used to assess environmental conditions 

and also collect biodiversity data. The High 

Throughput Sequencing approach used in eDNA 

research enables the massive identification of DNA in 

the environment. One of the benefits of eDNA is 

looking at eukaryote communities in sediments, such 

as mangrove sediments in the Bedono area, Central 

Java. Biodiversity disclosures at the two locations 

used as sampling locations show that eukaryotic 

communities vary and are influenced by 

environmental conditions and factors at each 

sampling location. 

 

There are only three samples that were 

successfully amplified using a COI marker (ID 

M20708 from Morosari and S0706 and S0709 from 

Bedono). The total reads obtained from this study is 

96,419 reads and 828 ASVs range from 23,688 - 

9,132 reads per sample. Eukaryote dominated the 

samples with 305 ASVs and 47,627 reads, followed 

by unidentified (47,893 reads and 492 ASVs), and 

https://qiime2.org/)
http://bioinformatics.psb.ugent.be/webtools/Venn/
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Bacteria (899 reads and 31 ASVs). The downstream 

analysis will exclude Bacteria and Unidentified ASVs. 

The Unidentified ASVs are sequences that did not 

assigned at a specific taxonomic level based on the 

database. The reads from each sample were rarefied 

to 6,824 reads to get an equal number of reads and 

avoid bias. A total of 20,472 reads and 303 ASVs 

were observed from the result. The rarefaction curve 

of COI amplicons reaches a plateau, indicating 

sufficient depth of sequencing to account for most of 

the amplified taxa (Figure 2.). 

 

Overall, there are 16 Phylum (Chordata, 

Arthropoda, Bacillariophyta, Mollusca, Ascomycota, 

Phaeophyceae, Gastrotricha, Annelida, Nematoda, 

Nemertea, Basidiomycota, Cnidaria, Chlorophyta, 

Mucoromycota, Eustigmatophyceae, Kinorhyncha) 

and an unidentified group of taxa (Figure 3.).  The 

communities were dominated by Chordata (45% of 

total reads), Arthropoda (17% of total reads) and also 

Bacillariophyta (11% of total reads). The analysis also 

reports 9% reads of unidentified taxa in both 

sampling areas.  

 

Both sampling locations show a different taxa 

composition. The first location, Bedono is one of the 

Mangrove Forest Conservation areas in the Demak 

region (Wijaya et al., 2022) but has a high level of 

abrasion every year. Meanwhile, the location in 

Morosari was characterized by one of the estuaries of 

the Sayung river which is a fishing area (Maisaroh et 

al., 2020) and is affected by settlements and fishing 

activities. The differences between both locations 

lead to a difference in taxa composition, where 

Bedono was dominated by Chordata, Bacillariophyta, 

Ascomycota, and Arthropoda. Meanwhile, Morosari 

was dominated by Chordata and Arthropoda. In 

Bedono we can see the dominance of unidentified 

reads at species level is 75% and in Morosari it is 32% 

compared to total reads in each location. The results 

also show the dominance of Homo sapiens reads in 

Morosari (46%) and Bedono (13%) compared to total 

reads in each location. 

 

Bedono has higher diversity compared with 

Morosari. Bedono has 218 ASVs, meanwhile 

Morosari has 91 ASVs. There are 87 genus and 78 

species were identified in this study. This is supported 

by the Shannon-Wiener diversity index in Morosari of 

2.97 and in Bedono of 4.27 and 2.84. In addition, 

Bray-Curtis dissimilarity analysis shows high taxa 

compositional differences between Morosari and 

Bedono. (Table 1). By subtracting the Homo sapiens, 

we can see many other species composed of both 

locations. In total, Bedono consists of 53 species, 

including mammalian, fish, and protists. On the other 

hand, Morosari get a smaller number of species (27 

species), consisting of fish, arthropoda, and algae. 

The This study report 212 unique ASVs in Bedono, 85 

unique ASVs in Morosari and 6 ASVs shared on both 

locations (Figure 4.). 

 

 
Table 1. Bray-Curtis dissimilarity matrix between samples from Morosari (M20708) and Bedono (S0706 and S0709) 

 

Sample ID  M20708 S0706 

S0706 0.9838804  

S0709 0.8716295  0.7482415 

 

 

 
 

Figure 2. Rarefaction plot between two locations examined in this study. Species richness (left axis) plotted against sequencing 

depth (bottom axis). 
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Figure 3. Bar plot showing the taxonomy composition based on the read abundance of eukaryotic taxa from each sample. The 

bar plot shows the taxonomic hierarchy of (A) Phylum, (B) Class, (C) Order, (D) Family, (E) Genus, and (F) Species. The 

plot only shows the taxa groups that represented more than 2% of total abundance in the sample. 

 
 

The two research locations have different 

regional characteristics, so the composition of the 

organisms that make up the sediment ecosystem will 

also be different. In general, the taxa that dominate 

the two locations in this study are Phylum Arthropoda, 

Ascomycota, Bacillariophyta, Chordata. These taxa 

have different relative read abundances in each 

location. For example, at the Morosari sampling 

location, almost 46% of the reads in Morosari were 

identified as human (Homo sapiens) DNA. Although 

human DNA was also found at the Bedono location, 

the percentage was very small (7% of the total 

sequences at Bedono). Humans certainly contribute 

most of their DNA which escapes from residential 

areas and enters mangrove areas. This could be 

because the presence of a river is one of the factors 

that influences whether there is a lot of human DNA 

in the sediment, considering that the sampling 

location in Morosari is close to the river. 

 

The Bedono sampling location, which is in an 

area with high mangrove cover, has several taxa 

closely related to marine ecosystems that have been 

identified, including marine fish, several types of 

insects, fungi and Bacillariophyta. If you pay 

attention, the types of vertebrates and invertebrates 

found in this area are dominated by taxa that are 

commonly found in the sea, such as molluscs, 

cnidaria, and fish. Meanwhile, the Morosari location 

is more influenced by land, so that some of the taxa 

identified (insecta and chordata) are taxa that are 

commonly found on land. 

 
The chordates identified in mangrove 

sediments consist of several types of fish (Auxis 

rochei, Engraulis encrasicolus, Gnathodentex 

aureolineatus, Pomadasys hasta, Scomber colias, 

Takifugu obscurus, and Thunnus thynnus), mammals 

(Bos indicus, Rattus norvegicus, and Homo sapiens), 

and aves (Gallus gallus). Bos indicus and Homo 

sapiens are the two taxa shared by both locations, 

while Homo sapiens is the dominant taxa identified 

from Morosari (15% of the total reads) (Figure 5.). 
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Figure 4. The Venn diagram shows the number of unique and shared ASVs (Amplicon Sequence Variance) from two different 

study locations. 

 

 
Figure 5. Bar plot showing the taxonomy composition based on the read abundance of eukaryotic taxa from each sample after 

removing the Homo sapiens and unidentified group. The bar plot shows the taxonomic hierarchy of (A) Sample from 

Bedono and (B) Sample from Morosari. 
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The invertebrates identified in this study were 
from the phylum Arthropoda, Mollusca, Cnidaria, 
Nematoda, Nemertea and Gastrotricha. The taxa 
found at the Bedono sampling location were 
dominated by Mollusca, Cnidaria, Nematoda, 
Nemertea and Gastrotricha and several arthropods 
including moths, butterflies and beetles. Meanwhile, 
from the Morosari area, only types of land arthropods 
such as collembola, millipede, arachnids, beetles and 
spiders were identified (Appendix 1.). 

 
This study also identified several types of fungi, 

both from the phylum Ascomycota, Basidiomycota 
and the class Oomycetes. Most types of these fungi 
were identified from the Bedono area (14 of 16 total 
species), and only 3 species were identified from 
Morosari (Beauveria bassiana, Talaromyces 
marneffei, and Sporisorium scitamineum). 

 
There are three classes of Phylum 

Bacillariophyta, 5 orders, 6 families, and 7 genus. 
There are 12 species identified, Cyclotella sp. MBTD-
CMFRI-S052, Ditylum brightwellii, Gomphonema 
parvulum, Nitzschia palea, Nitzschia sp. 
BOLD:AA007109, Pseudo-nitzschia sabit, Sellaphora 
blackfordensis, Sellaphora capitata, Sellaphora 
laevissima, Sellaphora pupula, Skeletonema 
costatum, and Skeletonema potamos (Appendix 1). 

 
Apart from that, the taxa identified from the 

mangrove sediments in Bedono and Morosari are 
groups of algae from the phyla Chlorophyta and 
Phaeophyceae and the class Florideophyceae. These 
algae are types that are commonly found in marine 
waters, for example filamentous brown algae 
(Ectocarpus siliculosus), red algae (Gloiocladia 
repens) 

 
The eDNA identification results, especially for 

vertebrates, must also be interpreted with caution. In 
the results of this analysis, several other vertebrates 
found, such as several types of fish found (Engraulis 
encrasicolus, Thunnus thynnus, Scomber colias, 
Gnathodentex aureolineatus, Pomadasys hasta, 
Auxis rochei, and Takifugu obscurus) are indeed 
types that might be found in sediment because DNA 
that escapes from the organism and settles in 
sediment. However, several organisms such as Homo 
sapiens, Bos indicus, Rattus norvegicus, and Gallus 
gallus are often considered contaminants if found in 
marine or fresh waters (Klymus et al., 2017; Dass et 
al., 2022). However, in this study, these taxa are still 
counted as part of the community, because of the 
close relationship between the mangrove community 
and land, so it is still possible for DNA from these taxa 
to enter the mangrove ecosystem. The use of the 
eDNA method in conducting environmental 
assessments is very effective (Juhel et al., 2020; 
Madduppa et al., 2021; Marwayana et al., 2022). Not 
only as a tool to identify species in an ecosystem, but 
it can also be used as a tool to determine the 

introduction of alien species (Mohd Dali et al., 2023; 
Rahmi et al., 2023) or pathogens (Sato et al., 2019; 
Brannelly et al., 2020). For sampling locations in 
remote areas, several research teams have also 
developed portable labs (Chang et al., 2020; Ames et 
al., 2021) which allow all activities to be carried out 
directly in the field. 

 

However, this method also has weaknesses. 

Some of the weaknesses that often occur are poor 

sampling and sample transportation processes (Wee 

et al., 2023). Apart from that, choosing the right 

marker and sequencing platform according to the 

target organism is also very challenging. For example, 

the selection of COI and 18S rRNA markers in 

sediment samples must be chosen based on the 

target organism (Giebner et al., 2020). COI will 

capture more metazoans (Clarke et al., 2021) while 

18S rRNA will capture more single cell eukaryotes 

(rRNA) (Guo et al., 2015; Pratomo et al., 2022). 

 

In the future, by paying attention to all the 

advantages and disadvantages of this method, it is 

hoped that we can carry out better sampling and carry 

out a sampling plan according to the research 

question, so that our interpretation of the data can be 

close to what we expect. The development of 

platforms for sequencing and bioinformatics should 

also be a strength of eDNA researchers in the field 

considering its rapid development. The hope is that 

the eDNA approach can be used as an important tool 

in collecting biodiversity data in Indonesia. 

 

Conclusion 
 

Molecular approaches such as eDNA 

metabarcoding are a complementary method for 

collecting biodiversity data, especially mangrove 

biodiversity data collection in Indonesia. Mangroves 

are a vital part of the ecosystem, providing many 

functions, including food security, nesting and 

migration, and soil stabilization. Mangrove sediment 

plays a vital role in the mangrove ecosystem and the 

environment as a whole, by accumulating carbon, 

supporting biodiversity, and providing nurseries. The 

research is a preliminary study to see the diversity of 

eukaryotes in mangrove sediments at two research 

locations. The gene targeted is the COI gene which is 

a universal marker for recording eukaryotes. In this 

study, it can be seen that the two research locations 

have different types of taxa with little overlap. This 

shows that eDNA can be used to assess diversity in 

mangrove sediments, both macro and 

microorganism. 
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Appendix 1.  The species list identified from the eDNA samples from Bedono and Morosari, Demak, Central Java   

         

Phylum Class Order Family Genus Species 
Location 

Bedono Morosari 

Chordata Actinopteri Scombriformes Scombridae Auxis Auxis rochei               1  
Chordata Mammalia Unidentified Bovidae Bos Bos indicus 1 1 

Chordata Actinopteri Clupeiformes Engraulidae Engraulis Engraulis encrasicolus 1  
Chordata Aves Galliformes Phasianidae Gallus Gallus gallus  1 

Chordata Actinopteri Spariformes Lethrinidae Gnathodentex Gnathodentex aureolineatus  1 

Chordata Mammalia Primates Hominidae Homo Homo sapiens               1 1 

Chordata Actinopteri Lutjaniformes Haemulidae Pomadasys Pomadasys hasta            1 

Chordata Mammalia Rodentia Muridae Rattus Rattus norvegicus  1 

Chordata Actinopteri Scombriformes Scombridae Scomber Scomber colias             1  
Chordata Actinopteri Tetraodontiformes Tetraodontidae Takifugu Takifugu obscurus  1 

Chordata Actinopteri Scombriformes Scombridae Thunnus Thunnus thynnus 1  
Arthropoda Collembola Unidentified Neanuridae Acanthanura Acanthanura sp. RCG-2005  1 

Arthropoda Arachnida Oribatida Achipteriidae Anachipteria Anachipteria howardi            1 

Arthropoda Arachnida Astigmata Analgidae Analges Analges sp. JS-2011              1 

Arthropoda Insecta Lepidoptera Gelechiidae Chionodes Chionodes mediofuscella 1  
Arthropoda Insecta Diptera Empididae Empididae Empididae sp. BOLD:ACG8431 1  
Arthropoda Collembola Unidentified Isotomidae Folsomia Folsomia quadrioculata  1 

Arthropoda Insecta Diptera Muscidae Haematobia Haematobia irritans              1 

Arthropoda Malacostraca Decapoda Palaemonidae Macrobrachium Macrobrachium rosenbergii        1 

Arthropoda Insecta Coleoptera Chrysomelidae Mantura Mantura chrysanthemi         1  
Arthropoda Insecta Coleoptera Curculionidae Naupactus Naupactus leucoloma  1 

Arthropoda Arachnida Scorpiones Buthidae Odontobuthus Odontobuthus tirgari            1  
Arthropoda Diplopoda Julida Julidae Ophyiulus Ophyiulus pilosus  1 

Arthropoda Arachnida Oribatida Haplozetidae Peloribates Peloribates pilosus  1 

Arthropoda Insecta Diptera Psychodidae Psychoda Psychoda alternata 1  
Arthropoda Arachnida Unidentified Unidentified Sarcoptiformes Sarcoptiformes sp. BOLD:ACI7602  1 

Arthropoda Insecta Lepidoptera Lycaenidae Satyrium Satyrium titus                  1  
Arthropoda Insecta Coleoptera Curculionidae Sitona Sitona lepidus                  1 

Arthropoda Insecta Coleoptera Anobiidae Stegobium Stegobium paniceum  1 

Arthropoda Arachnida Araneae Thomisidae Xysticus Xysticus montanensis  1 

Mollusca       Gastropoda Unidentified Ancylidae Ferrissia Ferrissia fragilis 1  
Mollusca       Cephalopoda Teuthida Ommastrephidae Illex Illex coindetii 1  
Cnidaria Scyphozoa Semaeostomeae Pelagiidae Chrysaora Chrysaora pacifica 1  
Cnidaria Hydrozoa Leptothecata Campanulariidae Rhizocaulus Rhizocaulus verticillatus 1  
Cnidaria Hydrozoa Anthoathecata Ptilocodiidae Thecocodium Thecocodium quadratum 1  
Nematoda Chromadorea Desmodorida Desmodoridae Desmodora Desmodora sp. 1 FH-2016 1  
Nematoda Chromadorea Chromadorida Chromadoridae Neochromadora Neochromadora poecilosomoides 1  
Nemertea Palaeonemertea Unidentified Cephalothricidae Cephalothrix Cephalothrix sp. 1 TCH-2015 1  
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Appendix 1.  The species list identified from the eDNA samples from Bedono and Morosari, Demak, Central Java (continue) 
 

Phylum Class Order Family Genus Species 
Location 

Bedono Morosari 

Nemertea Palaeonemertea Unidentified Cephalothricidae Cephalothrix Cephalothrix spiralis 1  
Gastrotricha Unidentified Chaetonotida Chaetonotidae Chaetonotus Chaetonotus antrumus 1  
Gastrotricha Unidentified Chaetonotida Chaetonotidae Lepidochaetus Lepidochaetus brasilense 1  
Gastrotricha Unidentified Chaetonotida Chaetonotidae Lepidodermella Lepidodermella minus 1  
Ascomycota    Eurotiomycetes Eurotiales Aspergillaceae Aspergillus Aspergillus niger 1  
Ascomycota    Sordariomycetes Hypocreales Cordycipitaceae Beauveria Beauveria bassiana 1 1 

Ascomycota    Sordariomycetes Hypocreales Nectriaceae Fusarium Fusarium oxysporum 1  
Ascomycota    Leotiomycetes Unidentified Unidentified Leohumicola Leohumicola verrucosa 1  
Ascomycota    Sordariomycetes Sordariales Sordariaceae Neurospora Neurospora crassa 1  
Ascomycota    Eurotiomycetes Eurotiales Trichocomaceae Talaromyces Talaromyces marneffei  1 

Basidiomycota  Microbotryomycetes Sporidiobolales Sporidiobolaceae Rhodotorula Rhodotorula taiwanensis 1  
Basidiomycota  Ustilaginomycetes Ustilaginales Ustilaginaceae Sporisorium Sporisorium scitamineum  1 

Mucoromycota Unidentified Mucorales Lichtheimiaceae Lichtheimia Lichtheimia ramosa 1  
Unidentified Oomycetes Anisolpidiales Anisolpidiaceae Anisolpidium Anisolpidium ectocarpii      1  
Unidentified Oomycetes Myzocytiopsidales Myzocytiopsidaceae Chlamydomyzium Chlamydomyzium dictyuchoides 1  
Unidentified Oomycetes Peronosporales Peronosporaceae Peronospora Peronospora lamii            1  
Unidentified Oomycetes Peronosporales Unidentified Phytophthora Phytophthora multivora 1  
Unidentified Oomycetes Peronosporales Unidentified Phytophthora Phytophthora palmivora 1  
Unidentified Oomycetes Pythiales Pythiogetonaceae Pythiogeton Pythiogeton ramosum          1  
Unidentified Oomycetes Pythiales Pythiaceae Pythium Pythium sulcatum 1  
Bacillariophyta Coscinodiscophyceae Thalassiosirales Stephanodiscaceae Cyclotella Cyclotella sp. MBTD-CMFRI-S052 1  
Bacillariophyta Mediophyceae Lithodesmiales Lithodesmiaceae Ditylum Ditylum brightwellii 1  
Bacillariophyta Bacillariophyceae Cymbellales Gomphonemataceae Gomphonema Gomphonema parvulum            1  
Bacillariophyta Bacillariophyceae Bacillariales Bacillariaceae Nitzschia Nitzschia palea 1  
Bacillariophyta Bacillariophyceae Bacillariales Bacillariaceae Nitzschia Nitzschia sp. BOLD:AAO7109     1   

Bacillariophyta Bacillariophyceae Bacillariales Bacillariaceae Pseudo-nitzschia Pseudo-nitzschia sabit         1  
Bacillariophyta Bacillariophyceae Naviculales Sellaphoraceae Sellaphora Sellaphora blackfordensis 1  
Bacillariophyta Bacillariophyceae Naviculales Sellaphoraceae Sellaphora Sellaphora capitata 1  
Bacillariophyta Bacillariophyceae Naviculales Sellaphoraceae Sellaphora Sellaphora laevissima 1  
Bacillariophyta Bacillariophyceae Naviculales Sellaphoraceae Sellaphora Sellaphora pupula              1  
Bacillariophyta Coscinodiscophyceae Thalassiosirales Skeletonemataceae Skeletonema Skeletonema costatum 1 1 

Bacillariophyta Coscinodiscophyceae Thalassiosirales Skeletonemataceae Skeletonema Skeletonema potamos 1 1 

Unidentified Unidentified Unidentified Vannellidae Paravannella Paravannella minima  1 

Chlorophyta Trebouxiophyceae Chlorellales Chlorellaceae Chlorella Chlorella sorokiniana 1  
Chlorophyta Mamiellophyceae Mamiellales Mamiellaceae Micromonas Micromonas pusilla  1 

Phaeophyceae Unidentified Ectocarpales Ectocarpaceae Ectocarpus Ectocarpus siliculosus 1  
Unidentified Florideophyceae Rhodymeniales Faucheaceae Gloiocladia Gloiocladia repens 1  
Unidentified Florideophyceae Batrachospermales Batrachospermaceae Nothocladus Nothocladus theaquus  1 

Unidentified Chrysophyceae Chromulinales Chromulinaceae Pedospumella Pedospumella sinomuralis 1   

          Total Species 54 28 

 


