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Abstract 

 

This study models the spatial distribution of yellowfin tuna (YFT) in the Banda Sea using the MaxEnt approach, 

addressing critical questions about its predictive capability, the influence of environmental variables such as sea 

surface temperature (SST) and chlorophyll-a concentration, and temporal patterns. MaxEnt was chosen for its 

ability to predict potential distribution areas based on presence data and environmental factors. Data utilized 

include fish catch records obtained from the fishing logbook of the Ministry of Marine Affairs and Fisheries of the 

Republic of Indonesia, chlorophyll-a concentration, and SST data sourced from ocean color satellite observations. 

Model performance was evaluated using the Area Under the Curve (AUC) metric. Study results reveal that significant 

spatial and temporal variations in YFT distribution are influenced by oceanographic factors, with the model 

performing best in July (AUC 0.72) and lowest in April, September, and December (AUC ~0.60). SST was the 

dominant variable in November (82.35%), while chlorophyll-a had the highest contribution in April (83.02%). These 

findings highlight the dynamic link between tuna distribution and environmental conditions. The spatial maps offer 

insights for optimizing fishing practices, reducing pressure on overexploited stocks, and supporting sustainable 

fisheries management through data-driven approaches like MaxEnt. However, the MaxEnt model has limitations 

such as sensitivity to multicollinearity, overfitting, and low transferability. Future research could enhance accuracy 

and robustness by using advanced methods like Spatial Maxent, Monte Carlo Variable Selection, or ensemble 

modeling to support adaptive fisheries management. 
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Introduction 
 

Modeling the spatial distribution of yellowfin 

tuna (Thunnus albacares) is crucial for understanding 

the environmental factors influencing its habitat. One 

widely used method in species distribution modeling 

is Maximum Entropy (MaxEnt) due to its ability to 

predict potential distribution areas based on the 

presence of data and relevant environmental 

variables (Anand et al., 2021; Lin et al., 2023). 

MaxEnt has been extensively applied in various 

marine ecological studies, particularly for modeling 

the distribution of large pelagic fish like tuna 

(Sharifian et al., 2023). 
 

 The yellowfin tuna (YFT) is a species with high 

economic value and is widely distributed in tropical 

and subtropical waters (Nimit et al., 2020). Research 

on the spatial distribution of this fish is crucial within 

the context of sustainable fisheries, particularly in 

climate change and increasingly intensive fishing 

activities (Sambah et al., 2023). Modeling with 

MaxEnt enables the integration of various 

environmental variables, such as sea surface 

temperature (SST), salinity, and chlorophyll content, 

which play a significant role in determining the habitat 

of yellowfin tuna (Siregar et al., 2019). Moreover, 

oceanographic factors like temperature, oxygen 

concentration, and sea surface height influence this 

fish’s vertical movement and distribution in its habitat 

(Rohner et al., 2023). Regarding fishing, the 

application of remote sensing data and the MaxEnt 

model has proven effective in identifying potential 

fishing zones for yellowfin tuna in the Eastern Indian 

Ocean (Syah et al., 2020). 

 
The MaxEnt method enables the development 

of distribution models based on presence-only data, 

often the only available information in marine studies 

(Anand et al., 2021). Therefore, this method is 

particularly suitable for predicting the distribution of 

yellowfin tuna in vast ocean areas that are often 

difficult to access for comprehensive data collection 

(Anand et al., 2021; Lin et al., 2023). This model also 

addresses sample bias issues, which frequently occur 

in modeling the distribution of marine species 

(Sharifian et al., 2023). 



  

   

ILMU KELAUTAN: Indonesian Journal of Marine Sciences March 2025 Vol 30(1):103-114 

104  Modeling of Yellowfin Tuna in the Banda Sea (S. Asuhadi et al.) 
 

Previous studies have demonstrated that 

MaxEnt can predict potential fishing areas accurately, 

especially when combined with satellite data on 

oceanographic conditions (Anand et al., 2021; 

Sharifian et al., 2023). For instance, the application 

of MaxEnt in the waters of Aceh successfully 

identified ideal tuna fishing locations, showing 

excellent model accuracy with high AUC (Area Under 

the Curve) values (Siregar et al., 2019). 

 

With the increasing pressure on yellowfin tuna 

stocks due to overfishing, distribution modeling using 

MaxEnt is expected to provide important information 

to support more effective and sustainable fisheries 

management. This approach not only helps to 

understand the spatial distribution patterns of 

yellowfin tuna in the waters of the Banda Sea but also 

has the potential to be used to identify new strategic 

fishing areas (Siregar et al., 2019). This is important 

to reduce fishing pressure on yellowfin tuna 

populations in specific locations, thereby supporting 

the sustainability of fish stocks in the area and 

improving the efficiency of fishery activities. Thus, the 

results of this study can contribute to a more adaptive 

and conservative data-based fisheries management 

(Haruna et al., 2019). 

 

This study aims to answer several important 

questions related to the spatial distribution of 

yellowfin tuna in the Banda Sea. How can the MaxEnt 

model be used to predict the spatial distribution of 

yellowfin tuna, the extent to which environmental 

variables such as chlorophyll-a concentration and 

SST affect the prediction results, and whether there 

is a significant temporal pattern in the accuracy of 

distribution prediction? In addition, this study also 

seeks to explore how the prediction results can be 

used to improve the effectiveness of fishing while 

supporting more sustainable fisheries management 

in the region. 

 

Materials and Methods 
 

As shown in Figure 1, the research location is 

in Fisheries Management Area (FMA) 714, which 

covers the waters of the Banda Sea and its 

surroundings. This area is known for its rich 

biodiversity, particularly as a habitat for tuna species, 

and plays a critical role in Indonesia’s fisheries sector 

(Romdon et al., 2019). 

 

Collecting and processing data 

 

 The initial stage of this research involves 

setting up the working environment in R Studio by 

loading packages such as `dplyr` for data 

manipulation, `lubridate` for date processing, and 

`sf` and `sp` for spatial analysis. This is followed by 

raster and `dismo`, which support species 

distribution modeling, enabling the analysis to be 

conducted effectively and comprehensively (Doser et 

al., 2022). This study utilizes fish catch data, 

chlorophyll concentration, and SST. Fish catch data in 

the form of a location of arrest as presence data, a 

total of 13,371 rows, is sourced from logbooks 

collected and managed by the Directorate of Fishery 

Resources Management under the Ministry of Marine 

Affairs and Fisheries, covering the period from 2014 

to 2022. Meanwhile, chlorophyll-a concentration 

data, a total of 2,994,105 rows, and SST data, a total 

of 3,234,156 rows focusing on the Banda Sea and its 

surroundings, were obtained via Aqua MODIS with a 

spatial resolution of 4 km (Sean, 2023) and then 

processed using the Ocean Data View (ODV) software. 

All data collected through this research were 

subsequently cleaned, further processed, and 

visualized using R Studio version 4.4.0, utilizing 

appropriate libraries and executing necessary 

functions for analysis.  

 

 
Figure 1. Research location in the Banda Sea region 
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The assumption of the selection of chlorophyll-

a and SST variables in the MaxEnt model is that both 

significantly affect the distribution of fish. Chlorophyll-

a, as a primary productivity indicator, indicates high 

food availability, so areas with optimal chlorophyll-a 

concentrations are often potential fishing zones 

(Nursan et al., 2022). SST affects the thermal habitat 

of fish and the distribution of their prey, making it the 

dominant variable in predicting fish habitat spatially-

temporal (Siregar et al., 2019). This combination of 

variables allows MaxEnt to generate accurate 

predictions of fish distribution under various 

environmental conditions (Kamaruzzaman et al., 

2021). 

 

Geographical transformations and projections 

 

The data coordinates were converted into the 

appropriate format and aligned with a consistent 

geographic projection using the WGS84 coordinate 

system. This step ensures that all data have a uniform 

spatial projection for subsequent analysis (Liu et al., 

2020). 

 

Utilizing MaxEnt for modeling  

  

The maxent() function from the dismo package 

was used to build the MaxEnt model predicting the 

spatial distribution of fish in FMA 714, utilizing the 

presence data of yellowfin tuna and environmental 

variables such as chlorophyll-a and SST. This model 

is highly effective in generating accurate distribution 

maps, particularly when available data is limited or 

computational constraints exist, and it can identify 

potential habitats based on environmental variables 

(Baines & Weir, 2020; Kaky et al., 2020). 

 

Model validation 

  

The developed model was evaluated using 

performance metrics such as ROC (Receiver 

Operating Characteristic) and AUC. AUC indicates the 

model’s accuracy in predicting species distribution 

and is a reliable metric, particularly when dealing with 

imbalanced data or when studying species with rare 

or sparse occurrences (Hallman & Robinson, 2020). 

Furthermore, AUC is valuable for evaluating model 

performance when predictions are extended to 

broader geographical areas (Sofaer et al., 2019). AUC 

is a performance measure of a classification model 

based on two main components: True Positive Rate 

(TPR) and False Positive Rate (FPR). 

 

Prediction and visualization of spatial distribution 

  

The spatial distribution of yellowfin tuna is 

predicted monthly using the MaxEnt model and 

visualized with plotting functions in R Studio for 

further analysis. This approach effectively identifies 

potential fishing areas by considering oceanographic 

parameters such as sea surface temperature and 

chlorophyll-a concentration obtained from satellite 

data. Additionally, this method allows for real-time 

habitat forecasting, which can enhance the efficiency 

of fishing activities and support sustainable fisheries 

management (Syah et al., 2023; Wu et al., 2023). 

 

Measuring the contribution of environmental 

variables 

  

 Each environmental variable in the model is 

evaluated using "contribution score" and 

"permutation importance" metrics to understand its 

role and influence on the spatial distribution 

predictions of yellowfin tuna. This method helps 

identify the most significant variables influencing the 

prediction outcomes. MaxEnt models widely apply 

this approach to assess the importance of variables 

such as SST and chlorophyll-a in estimating potential 

habitats for yellowfin tuna in the Indian and Pacific 

Oceans (Vayghan & Lee, 2022). 

 

Analysis of environmental variable responses 

 

 The model’s response to each environmental 

variable is analyzed to understand how each affects 

the spatial distribution of yellowfin tuna in the study 

area. This analysis utilizes response curves 

generated through the response () function from the 

`demo` package. The application of this approach in 

modeling the habitat distribution of yellowfin tuna 

shows significant variations in the response of 

environmental variables, such as SST and 

chlorophyll-a, to the spatial distribution of the 

species. 

 

Result and Discussion 
 

Model validation 

 

The performance of the MaxEnt model in 

predicting the spatial distribution of yellowfin tuna in 

the Banda Sea and its surrounding waters was 

evaluated using the ROC curve, AUC metric, the 

number of presences (n presences), absences (n 

absences) of the species for each month, predictive 

correlation (cor), and the maximum value of TPR+TNR 

(max_TPR+TNR_at). The MaxEnt model metrics for 

various months are presented in Table 1 and the AUC 

values are visualized in Figure 2.  

 

The metrics presented in Table 1 comprise the 

counts of presences (n_presences) and absences 

(n_absences) in the dataset, the AUC, correlation, and 

max_TPR+TNR_at. AUC is the main metric to assess 

how well the model differentiates between presence 

and absence locations. An AUC value close to 1 

reflects high predictive accuracy, where as a value  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

 

(l) 

Figure 2. Visualization of AUC values for the spatial distribution of yellowfin tuna: (a) January; (b) February; (c) March; (d) April; 

(e) May; (f) June; (g) July; (h) August; (i) September; (j) October; (k) November; and (l) December 

 

 

nearing 0.5 implies predictions are essentially 

random. A higher AUC score, such as 0.72, observed 

in July, indicates strong model performance. The 

correlation reflects the linear association between 

model predictions and observed values, where 

greater values demonstrate a better fit. The metric 

max_TPR+TNR_at represents a combination of the 

TPR and TNR, aiming to identify the optimal 

prediction threshold; the peak values recorded in 

May and August (0.64) suggest an ideal balance in 

detecting both the presence and absence of the 

species. 
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Table 1. Performance evaluation of the MaxEnt model for the spatial distribution of yellowfin tuna 

 

Month n_presences n_absences Cor max_TPR+TNR_at 

January 1,156 1000 0.28 0.60 

February 1,281 1000 0.30 0.60 

March 1,681 1000 0.20 0.61 

April 1,097 1000 0.18 0.61 

May 701 1000 0.36 0.64 

June 749 1000 0.31 0.60 

July 793 1000 0.37 0.52 

August 694 1000 0.20 0.64 

September 1,110 1000 0.17 0.61 

October 1,527 1000 0.26 0.62 

November 1,389 1000 0.30 0.67 

December 1,157 1000 0.16 0.62 

 

 

Visualizing and predicting spatial data distributions 

 

This study utilized the MaxEnt model to predict 

the monthly spatial distribution of yellowfin tuna from 

2014 to 2022, as shown in Figure 3. The resulting 

distribution maps outline the potential areas of 

yellowfin tuna presence in the Banda Sea and 

surrounding waters, considering environmental 

factors such as chlorophyll-a concentration and SST. 

A monthly distribution pattern analysis was 

conducted to identify yellowfin tuna’s seasonal 

variations and distribution trends. Areas with a high 

probability of yellowfin tuna presence were 

successfully identified, demonstrating the model’s 

ability to capture ecological patterns influenced by 

environmental conditions. 

 

From January to December, the spatial 

distribution predictions of yellowfin tuna in the Banda 

Sea and its surrounding regions, using the MaxEnt 

model, reveal variations in the probability of presence 

across different areas, with fluctuating values 

throughout the year. In January, areas with a high 

probability (0.7) are predominantly found in the 

northern part, slightly increasing in February, with the 

highest probability reaching around 0.8 in the 

northwest. The probability distribution becomes more 

uniform between March and April, with peak values 

ranging from 0.6 to 0.7. During May to July, areas with 

high probability are more fragmented and scattered, 

dominated by light green and pink colors (0.2-0.4), 

indicating a low likelihood of yellowfin tuna presence 

across most regions. From August to October, the 

probability of presence increases again, reaching 

values around 0.6 to 0.7 in certain areas. In 

November, the probability distribution becomes more 

uniform, with values ranging from 0.2 to 0.7, while in 

December, there is an increase in areas with high 

probability, particularly in the northwest and central 

regions, reaching up to 0.8, indicating a higher 

concentration of yellowfin tuna presence towards the 

end of the year. 

Temporal dynamics of environmental factors and fish 

spatial distribution 

 

The temporal variability in environmental 

conditions and fish distribution is evident from 

January to December, with significant changes in 

chlorophyll-a concentration and SST. In January, the 

chlorophyll-a concentration ranges from 0.11-8.29 

mg.m-³ and SST from 27.73-31.24°C; in February, 

chlorophyll-a ranges from 0.099-1.48 mg.m-³ and 

SST from 27.56-32.41°C; in March, chlorophyll-a is 

0.10-4.39 mg.m-³ with SST ranging from 28.05-

32.13°C; April shows chlorophyll-a between 0.073-

2.10 mg.m-³ and SST from 28.78-31.21°C; in May, 

chlorophyll-a is 0.10-1.79 mg.m-³ and SST 28.87-

32.26°C; in June, the chlorophyll-a concentration is 

0.010-4.71 mg.m-³ with SST ranging from 28.25-

31.75°C; July shows chlorophyll-a at 0.11-1.43 

mg.m-³ and SST from 26.03-30.68°C; in August, 

chlorophyll-a is 0.11-1.92 mg.m-³ and SST ranges 

from 26.16-29.59°C; while in September, 

chlorophyll-a reaches its highest value of 0.086-6.93 

mg.m-³ with SST between 26.82-31.65°C; October 

records chlorophyll-a at 0.10-2.02 mg.m-³ and SST 

from 28.60-32.95°C; in November, chlorophyll-a is 

0.067-1.39 mg.m-³ with SST ranging from 27.99-

32.17°C; and in December, the chlorophyll-a 

concentration is 0.085-2.27 mg.m-³ with SST from 

28.39-32.52°C. These variations reflect the dynamic 

changes in marine environmental conditions 

throughout the year, with peaks in chlorophyll-a 

concentrations in January and September and SST 

fluctuations following seasonal patterns that 

influence the distribution of yellowfin tuna. 

 

Assessing model sensitivity to environmental factors 

 

 To gain a deeper understanding, an analysis 

was conducted on how the MaxEnt model responds 

to each environmental variable influencing the spatial 

distribution of yellowfin tuna. The response curves 

generated by the response function from the dismo 

package illustrate how the predicted probability of  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

 

(l) 

Figure 3. Predicted distribution of yellowfin tuna in the Banda Sea and its surrounding waters: (a) January; (b) February; (c) March; 

(d) April; (e) May; (f) June; (g) July; (h) August; (i) September; (j) October; (k) November; and (l) December 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 4. MaxEnt model response to each environmental variable: (a) January; (b) February; (c) March; (d) April; (e) May; (f) June; 

(g) July; (h) August; (i) September; (j) October; (k) November; and (l) December.  
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(i) 

 

(j) 

 

(k) 

 

(l) 

 

Figure 4. MaxEnt model response to each environmental variable: (a) January; (b) February; (c) March; (d) April; (e) May; (f) June; 

(g) July; (h) August; (i) September; (j) October; (k) November; and (l) December. (continue) 
 

 

yellowfin tuna presence changes across various 

levels of chlorophyll-a and SST. These curves reveal 

threshold values and optimal ranges for each 

variable, where outside these ranges, the probability 

of tuna presence tends to decrease. The visualization 

of the model response is presented in Figure 4. 

 

The graph above shows that from January to 

December, the MaxEnt model’s response to 

environmental variables like chlorophyll-a (layer.1) 

and SST (layer.2) exhibits different patterns affecting 

the spatial distribution predictions of yellowfin tuna. 

For the chlorophyll-a variable, the model’s 

response generally indicates an increase in 

predicted fish presence at values around 5 to 10, 

as seen in the sharp spikes in February, May, and 

December. Conversely, the model shows a 

decrease in predictions at lower chlorophyll-a 

concentrations (around -5 to 0), which occurs 

consistently throughout the year. Meanwhile, the 

model’s response demonstrates a broader range of 

variations for the SST variable, with a significant 

increase in predicted fish presence at 30-35°C 

temperatures, especially in January, June, and 

October. On the other hand, lower temperatures 

around 20-25°C in July and August indicate a 

decrease in the predicted fish presence. This 

pattern shows that the concentration of 

chlorophyll-a and SST significantly influences the 

spatial distribution of yellowfin tuna throughout the 

year. 

 

Assessing the significance of model predictions 

 

The mode values for chlorophyll-a and SST 

were used to understand the potential presence of 

yellowfin tuna throughout the year. In January, the 

mode of chlorophyll-a is 0.14 mg.m-³ with an SST of 

29.53°C; February shows a chlorophyll-a mode 

ranging from 0.10 to 0.11 mg.m-³ and an SST of 

29.55°C; in March, the chlorophyll-a mode is 0.11 

mg.m-³ and SST is 29.75°C; April has a chlorophyll-

a mode between 0.092 and 0.095 mg.m-³ with an 

SST of 30.58°C; May indicates a chlorophyll-a 

mode of 0.11 mg.m-³ and an SST of 29.71°C; in 

June, the chlorophyll-a mode ranges from 0.10 to 

0.13 mg.m-³ with an SST of 29.86°C; July shows a 

variation in chlorophyll-a mode from 0.18 to 0.34 

mg.m-³ with an SST of 28.22°C; in August, the 

chlorophyll-a mode reaches 0.19 to 0.33 mg.m-³ with 

SST dropping to 27.25°C; September shows a 

chlorophyll-a mode of 0.17 mg.m-³ and SST between 
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28.12 and 28.14°C; October has a chlorophyll-a 

mode of 0.11 mg.m-³ with an SST of 30.19°C; 

November shows a chlorophyll-a mode between 

0.078 and 0.11 mg.m-³ with an SST of 31.10°C; and 

in December, the chlorophyll-a mode is between 

0.094 and 0.098 mg.m-³ with an SST of 31.25°C. 

These values indicate that the potential presence of 

yellowfin tuna appears higher in months with greater 

chlorophyll-a concentration and cooler SST, such as 

in July and August. 

 

The impact of environmental variables on model 

performance 

 

To assess the influence of environmental 

variables chlorophyll-a and SST in the MaxEnt model 

from January to November, the metrics Variable 

Contribution and Permutation Importance were used. 

chlorophyll-a made the highest contribution in April at 

83.03%, while SST showed its greatest contribution 

in June at 87.11%. For Permutation Importance, 

chlorophyll-a peaked in February at 68.79%, whereas 

SST had its highest value in January at 77.35%. Both 

metrics are used to understand the role and impact 

of each variable in the model, where Variable 

Contribution indicates the priority of variables during 

the model training process. At the same time, 

Permutation Importance measures the influence of 

variables on prediction accuracy after training. These 

metrics are presented in Table 2. 

 

Discussion of research findings and their 

implications 

 

This study applied the MaxEnt model to predict 

the spatial distribution of yellowfin tuna in the Banda 

Sea and its surrounding waters by utilizing 

environmental data such as chlorophyll-a 

concentration and SST. The modeling results indicate 

significant variation in the spatial distribution of 

yellowfin tuna, influenced by changes in 

environmental conditions throughout the year. 

 

The AUC values of the MaxEnt model for 

predicting the distribution of yellowfin tuna vary each 

month, with the highest value in July (0.72) and the 

lowest in April, September, and December (0.60), 

indicating fluctuations in model performance due to 

environmental variability or a lack of observational 

data. In comparison, a study in the Aceh waters 

reported an AUC of 0.96 for predicting potential 

fishing grounds for yellowfin tuna using the MaxEnt 

model (Siregar et al., 2019), while in the eastern 

Indian Ocean off Sumatra, the AUC reached more 

than 0.90 for the potential habitat of this species 

(Syah et al., 2020), reinforcing the reliability of the 

MaxEnt model in predicting fish distribution based on 

different oceanographic conditions. The research 

also indicates that SST and salinity are the dominant 

environmental variables influencing the predicted 

distribution of yellowfin tuna, particularly during the 

transitional and monsoon seasons. Months with SST 

within the optimal range of approximately 29.5°C and 

stable salinity around 33.7 psu show a higher probability 

of yellowfin tuna presence (Syah et al., 2020). 

 

Based on the table "Variable Contribution and 

Permutation Importance," the measurement of 

variable contributions highlights the significant roles 

of both environmental variables, chlorophyll-a, and 

SST, in the prediction model for the distribution of 

yellowfin tuna. Chlorophyll-a showed the highest 

contribution, reaching 83.02% in April, while sea 

surface temperature had its largest contribution in 

November, at 82.35%. Conversely, months with lower 

variable contributions, such as June, where 

chlorophyll-a only contributed 12.89%, indicate that 

the variability of environmental parameters during 

certain periods can affect the accuracy of the model’s 

predictions. For comparison, a study in the Aceh 

waters using the Model MaxEnt found that SST 

contributed the most to the prediction of yellowfin 

tuna fishing zones in Aceh waters, with 64.4% in 

March, 62.4% in April, and 60.5% in May (Siregar et 

al., 2019).  

 

Using SST and chlorophyll-a data that tend to 

be more spatially distributed, MaxEnt can predict the 

ecological distribution of fish habitats even though 

fishing data is not consistently distributed throughout 

the year (Siregar et al., 2019). However, the model is 

susceptible to bias if the catch data reflects more 

human activity preferences than the actual biological 

distribution of fish (Dunn and Curnick, 2019). In 

addition, when the capture data is averaged for each 

pixel in an area, the model can miss important 

spatial-temporal dynamics of the species, so the 

results reflect more human activity than the natural 

distribution patterns of the species (Wu et al., 2023). 

Therefore, MaxEnt requires representative data 

integration and rigorous validation to generate more 

accurate predictions to minimize bias from the 

retrieval data structure. 

 

The findings of this study have significant 

implications for fisheries management in the Banda 

Sea and its surrounding areas. Information on the 

spatial and temporal variation in the distribution of 

yellowfin tuna can be utilized to make more accurate 

decisions regarding the timing and location of fishing 

to improve catch yields. Furthermore, this study 

supports the implementation of fisheries 

management strategies that consider environmental 

dynamics to maintain the sustainability of fish 

resources. Understanding the periods and areas with 

low probabilities of fish presence can help reduce the 

risk of overfishing in less productive regions and 

protect areas with high ecological value. 
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Table 2. Variable Contribution and Permutation Importance 

 

Month Chlorophyll-a 

Contribution (%) 

SST Contribution (%) Chlorophyll-a Permutation 

Importance (%) 

SST Permutation 

Importance (%) 

January 28.54 71.46 22.65 77.35 

February 65.97 34.03 68.79 31.21 

March 81.05 18.95 63.77 36.23 

April 83.02 16.98 83.64 16.36 

May 32.94 67.06 25.86 74.14 

June 12.89 87.11 17.30 82.70 

July 42.54 57.46 44.59 55.41 

August 45.94 54.06 32.52 67.48 

September 18.13 81.87 35.15 64.85 

October 54.28 45.72 47.16 52.84 

November 17.66 82.34 15.42 84.58 

December 39.26 60.74 47.46 52.54 

 

 
Overall, this study provides insights into the 

impact of environmental factors on the distribution 

patterns of yellowfin tuna and offers a scientific basis 

for a more adaptive and sustainable fisheries 

management approach in Indonesian waters. 

 

MaxEnt has several disadvantages, including 

sensitivity to the multicollinearity of environmental 

variables, overfitting due to suboptimal regulatory 

parameters, and low model transferability to other 

regions or times (Feng et al., 2019). Data resolution 

mismatches are also often a problem that affects 

prediction accuracy (Alsamadisi et al., 2020). To 

overcome this weakness, new methods such as 

SpatialMaxent can improve accuracy by considering 

the spatial structure of the data (Bald et al., 2023). In 

contrast, the Monte Carlo Variable Selection 

approach accelerates the selection of predictor 

variables from large data sets (Schnase et al., 2020). 

Additionally, ensemble modeling that combines 

algorithms such as Random Forest and Boosted 

Regression Trees with MaxEnt offers more accurate 

and robust results (Kaky et al., 2020). 

 

Conclusion 
 

This study successfully applied the MaxEnt 

model to predict the spatial distribution of yellowfin 

tuna in the Banda Sea by considering environmental 

variables such as chlorophyll-a concentration and 

SST. The model demonstrated good performance, 

with the highest AUC value reaching 0.72 in July, 

while the lowest values were recorded in April, 

September, and December, each with an AUC of 

~0.60. The variation in prediction accuracy reflects 

significant fluctuations in environmental conditions. 

The study also revealed that SST had the most 

significant influence on the distribution prediction in 

November (82.35%), while chlorophyll-a was the 

dominant factor in April, contributing up to 83.02%. 

The spatial distribution maps generated from this 

study can be used to enhance fishing effectiveness 

and support more sustainable fisheries management 

in the region. However, the MaxEnt model has 

limitations, including sensitivity to multicollinearity, 

overfitting risks, and reduced transferability. Future 

studies could incorporate advanced methods like 

SpatialMaxent, Monte Carlo Variable Selection, or 

ensemble modeling to improve model accuracy and 

robustness, further supporting data-driven and 

adaptive fisheries management. 
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