
Int. Journal of Renewable Energy Development 6 (1) 2017: 9-17 
P a g e  | 9 

 

© IJRED – ISSN: 2252-4940, February 15th 2017, All rights reserved 

 
Contents list available at IJRED website 
 

Int. Journal of Renewable Energy Development (IJRED) 
 
Journal homepage: http://ejournal.undip.ac.id/index.php/ijred 

 

 

Improving Stability and Convergence for Adaptive Radial Basis 
Function Neural Networks Algorithm 

 (On-Line Harmonics Estimation Application)  

Eyad K. Almaita†* and Jumana Al Shawawreh † 

 †Dept. of Electrical Power and Mechatronics Engineering, Tafila Technical University, Jordan 

 

ABSTRACT. In this paper, an adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to estimate the 
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1. Introduction 

Recently, power quality has become a major concern 
for modern power systems. One of the main power 
quality issues is the harmonic distortion in power 
systems.  The excessive presence in harmonics in power 
system can cause many problems such as: 
malfunctioning of circuit breakers and relays, 
overheating of conductors and motors, insulation 
degradation, and communication interference (Eyad 
Almaita, 2016; Izhar, Hadzer, Masri, & Idris, 2003; 
Rahmani, Hamadi, & Al-Haddad, 2009; Sumaryadi, 
Gumilang, & Susilo, 2009). 

Different approaches have been used for harmonics 
mitigation in power systems. Active Power filters (APFs) 
are considered an effective means to reduce harmonics 
to acceptable levels. Any  APF  is consist of two main 
parts: (i) Control part that  measures  the distorted signal 
(voltage or current) then decomposed the measured 
signal  into fundamental component and other harmonic 
components based on on-line harmonic estimation 
algorithm. (ii) Power part consists of   power electronics 
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module to compensate for all harmonic distortions 
(Akagi, Watanabe, & Aredes, 2007). On-line harmonic 
estimation algorithms have been extensively studied. 
They can be classified into three main classes; (i) time 
domain algorithms, (ii) frequency domain algorithms, 
and (iii) artificial intelligent algorithms (Akagi, 1996; 
Rahmani et al., 2009; Wang, Wong, & Member, 2015; 
Yasmeena & Das, 2016; Zhang, Li, & Wang, 2010). Time 
domain algorithms always have to compromise between 
the phase delay and the attenuation, also, oscillations is 
always can be caused by fast transition time (Zhang et al., 
2010). On the hand, frequency domain algorithms need 
high computations and considered not real-time filters 
(Zhang et al., 2010). The artificial intelligent (neural 
networks) algorithms have been successfully tested to 
overcome the disadvantages of the time and frequency 
domain filters. The three main techniques used in neural 
networks algorithms are (i) adaptive linear neuron 
(ADALINE), (ii) back propagation (BP), and (iii) radial 
basis function neural networks (RBFNN). The ADALINE 
is used as online harmonics identifier and its 
performance depends on the number of harmonics 
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included in its structure. The convergence of the 
ADALINE slows as the number of harmonics included 
increases because the ADALINE can only approximate 
linear functions (Chang, Chen, & Teng, 2010; Zouidi, 
Fnaiech, AL-Haddad, & Rahmani, 2008). On the other 
hand, The BPNN is more capable and can approximate 
linear and nonlinear function. It uses offline supervised 
training to identify selected harmonics. The long training 
time required in BPNN and the chance of falling into local 
minima is always present (Haykin, 1999; Kasabov, 
1996). The RBFNN has several advantages over 
ADALINE and BPNN; capable of approximating highly 
nonlinear functions, its structural nature facilitate the 
training process because the training can be done in a 
sequential manner, and the use of local approximation 
can give better generalization capabilities (Haykin, 1999; 
Kasabov, 1996).  Several schemes for RBFNN have been 
used; some of these schemes have large number of 
hidden neurons and still uses training algorithm similar 
to that of BPNN (Chang et al., 2010). Other schemes gets 
better results and with small number of hidden neurons 
using direct inversion matrix as training algorithm (E 
Almaita & Asumadu, 2011a, 2011b). An adaptive version 
of RBFNN has been introduced in ( Almaita, 2012). In this 
adaptive version the parameters of RBFNN can be 
modified after the deployment without the need of re-
training the RBFNN. This gives an additional strength to 
the RBFNN. The main problem of this adaptive version is 
the learning rate, which needs to be selected very 
carefully to ensure the convergence and stability of the 
system. 

In this paper, which is an extension to the works in 
(Almaita, 2012;  Almaita & Asumadu, 2011a, 2011b), a 
systematic approach is introduced to select the 
parameters of the adaptive RBFNN algorithm. This 
approach will ensure the stability and will also minimize 
the estimation error.  Also, the adaptive RBFNN will be 
used to estimate the fundamental and harmonic contents 
in current signal of non-linear load. 

 

2. Conventional RBFNN 
2.1 Structure of RBFNN 

The RBFNN structure consists of three main 
different layers as shown in Fig. 1; one input layer 
(source nodes with inputs I1, I2,.., IN), one hidden layer has 
K neurons, and one output layer (with outputs y1, y2,.., ym). 
The input-output mapping consists of two different 
transformations; nonlinear transformation from the 
input layer to the hidden layer and linear transformation 
from hidden to the output layer. The connections 
between the input and hidden layers are called centers 
and the connections between the hidden and output 
layers are called weights (Almaita & Asumadu, 2011a, 
2011b). 

The most common radial basis function used in RBFNN 
is given by 

      
  i=1,2,…,K   (1)       

 
 

 
This is a Gaussian basis function with φi as the 

output of the ith hidden neoron , x is the input vector data 
sample (I1, I2,…,IN) (could be training, actual, or test data), 
ci  is centers vector of the ith hidden neuron (ci1,ci2,.., ciN), 
σi  is the normalization factor, and (x-ci)T(x-ci) is the 
square of the vector (x-ci) (Almaita & Asumadu, 2011a, 
2011b). The ith output node yi is a linear weighted 
summation of the outputs of the hidden layer and is given 
by 

 
𝑦𝑖 = 𝑤𝑖

𝑇∅(𝑥), 
 

             i=1, 2,…., m              (2) 
 
where wi is the weight vector of the output node and Ф(x) 
is the vector of the outputs from the hidden layer 
(augmented with an additional bias which assumes a 
value of 1). 

 
2.2 Training Algorithm of RBFNN 

The block diagram shown in Fig. 2 illustrates one of 
the RBFNN training processes called hybrid learning 
process (Moody & Darken, 1989; Yousef & Hindi, 2005). 
The hybrid learning process has two different stages; (i) 
finding suitable locations for the radial basis functions 
centers of the hidden neurons (Moody & Darken, 1989; 
Yousef & Hindi, 2005) and (ii) finding the weights 
between the hidden and output layers.  In the first stage 
the K-means (Moody & Darken, 1989; Yousef & Hindi, 
2005) clustering algorithm is used to locate the centers 
in the input data space regions where a significant data 
are present (shown as I in Fig. 2). In the second stage 
(shown as II in Fig. 2) the weights between the hidden 
and the output layers are found by linear matrix 
inversion algorithm based on the least-square solution, 
which minimizes the sum-squared error function 
(Yousef & Hindi, 2005). 

 

Figure 1 Structure of Conventional RBFNN Network 
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Figure 2 Block Diagram for the RBFNN Hybrid Learning Process 

 

The weights matrix w is given by 
 

DAw T 1
                                                                            (3) 

where D is the desired output vector for l training data 
samples set and given by  
 

                                                                
 
 
 

    (4) 
 
 
 
 

where d(xj) describes the output vector corresponding to 
the jth training data samples vector (xj).  is a matrix 
where each element φi(xj), is a scalar value  and 
represents the output of the ith hidden neuron for the jth 
training data samples vector (xj).  
 
The  matrix for l training data samples is given by 
 

                                     
  (5) 
 
 
 
 
 

A-1, the variance matrix and given by 
 

  11   TA
                                                      (6) 

 
One of the advantages of this method compare to 

other training algorithms is that it does not need 
iterations in the training phase; what it needs is the 
matrix inversion shown in Eq (6), which needs negligible 
time to be calculated. 

 

3. Adaptive RBFNN 
One of the major disadvantages of the feed 

forward neural networks (BPNN and conventional 
RBFNN) techniques is that; the obtained parameters do 
not changed once the training process is completed. In the 
presence of the noise, these fixed parameters can degrade 
the performance of the neural networks. The main 
objective of the adaptive RBFNN algorithm is to enhance 

the reliability of the conventional RBFNN after 
embedding the network in the system. This can be 
achieved by introducing an adaptive algorithm for 
RBFNN structure that allows the change of the weights of 
RBFNN after the training process is completed. As shown 
in II, the RBFNN adjustable parameters that will affect the 
output are the centers and the weights. This algorithm 
assumes that the noise present in the system can be 
mitigated only by adjusting the weights between the 
hidden and the output layers, without the need of 
adjusting the values of the centers between the input and 
hidden layers.  

Figure 3 shows the general structure of the 
adaptive RBFNN algorithm.  It has the same conventional 
RBFNN structure regarding input layer, hidden layer, and 
output layer. But it has two extra components; (i) 
Summation component, which is located after the outputs 
of the RBFNN. The goal of this component is to calculate 
the error signal between the estimated outputs y and the 
reference (actual) signal (R). (ii) Weights updating 
component. The goal of this component is to adjust the 
weights in order to reduce the error signal. In the absence 
of the noise δ(k) in the input side,  the summation of the 
outputs of the RBFNN model is equal to the reference 
signal R(k). 
 

 

Figure 3 General Structure of Adaptive Conventional RBFNN Network 
 
 
In this case the error E(k) equal to zero and no change in 
the RBFNN weights. 
 

𝐸(𝑘) = 𝑅(𝑘) − {𝑦1(𝑘) +  𝑦2(𝑘) + ⋯ + 𝑦𝑚(𝑘)}           (7) 
 

In the presence of noise in the input side, the jth output 
node of the RBFNN will be affected by this noise as 

 
𝑦𝑗(𝑘) = 𝑦𝑜𝑗(𝑘) +  𝛿𝑗(𝑘)                                                           (8) 

 
where 𝑦𝑜𝑗(𝑘)  is the jth output node without noise and 

𝛿𝑗(𝑘)  is the added noise error to the jth output node.  
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In this case the error E(k) is not equal to zero. 
 
In order to mitigate the effect of the noise in the 
performance of the RBFNN, the error E(k) is used to 
update the weights vectors based on the least-mean- 
square-error algorithm (Moody & Darken, 1989) as: 
 

𝑤1𝑛𝑒𝑤 = 𝑤1𝑜𝑙𝑑 +  µ1∅(𝑘)𝐸(𝑘)                                         (9) 
⋮ 

𝑤𝑚𝑛𝑒𝑤 = 𝑤𝑚𝑜𝑙𝑑 +  µ𝑚∅(𝑘)𝐸(𝑘)                                   (10) 
 
where µj is the regulation factor for the jth output node. 
 
The weights updating will continue until the error E(k) 
become zero again. The above algorithm has several 
advantages including the following: 

 It has a fast convergence time because it adjusts 
only the weights between the hidden and 
output layers, which is a linear relationship. 
Therefore, fast convergence can be achieved. 

 The updating process could be initiated based 
on threshold value for E(k) (different  from 
zero), which gives the flexibility to the 
algorithm and saves excessive computations. 

 This algorithm has greater capabilities compare to the 
popular neural linear adaptive algorithm (ADALINE) 
because the RBFNN structure can be used to realize linear 
and nonlinear functions. 
 

4. Methodology 

Figure 4 shows the inputs and outputs signals for 
the adaptive RBFNN used in this paper. The input signal 
is sampled at constant rate and passed through first-
input-first-output (FIFO) buffer to create a delayed vector 
with length 64, represent a half cycle of the signal, which 
match the length of the input vector of RBFNN.   The 
adaptive RBFNN used in this paper has two outputs; one 
of them is to estimate the fundamental component (yf) 
and the other is to estimate the harmonic components 
(yh), these outputs are calculated as follows: 

                                                   
(11) 

                                                    
(12) 

 

where Wf, Wh, is the weight vector of the  fundamental 
and harmonic components output , respectively and Ф(x) 
is the vector of the outputs from the hidden layer. 

    The accurate online estimation of the 
fundamental and harmonic components depends on 
continuous updating of the weight vectors of 
fundamental and harmonic components Wf, Wh, 
respectively, as illustrated in III. Updating the weight 
vectors depends on the values of regulation factors f 
and h as follows: 

 

                                   
(13) 

                                    
(14) 

 

These values should be selected carefully to ensure fast 
convergence and system stability. The range of f and h  
depends on the greatest eigenvalue max of 
autocorrelation matrix R, where  

                                                     
(15) 

 

And 

 

 

 

 

 

Figure 4 The Block Diagram for the Input and Output signals for the 
Adaptive RBFNNN model 

 

The value of  can be express in terms of max as follows: 

 

 

 

So to achieve the system stability η should be in the 
range:  

 

Adapting Wh and Wf  can improve RBFNN performance, 
if the values of f and h are selected carefully, where 
some values of them can cause the system to diverge, so 
defining the stable margin of them is the first goal of this 
paper, after that it is desired to choose the optimal values 
of f and h to minimize the error between the measured 
and estimated outputs.  

In this paper, the values of f and h will be changed to 
investigate the effect of their values on the system 
performance based on the mean square error MSE value. 
First the fundamental weights will be only adapted to  
find the stable range of h and to define also the optimal 
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value of f that give the minimum MSE, Then adapting  
the harmonics weights only to find the stable and 
optimal range of h. Then both of fundamental and 
harmonic weights will be update and comparing the 
range of stability and optimality of f and h in this case 
with the previous values. The effect of the noise is also 
investigated in this paper by defining the stable range 
and the optimal value of f and h in terms of signal to 

noise ratio SNR. 

 

5. Results and Discussion 
At first the input current for a three-phase controlled 

rectifier shown in Fig.5 is measured and sampled using 
digital oscilloscope. The measured signal represents the 
input current for different firing angle to ensure the 
robustness of the system and to cover all the range. RBFN 
now will be used to estimate the fundamental and the 
harmonic components of the measured signal. First the 
values of ηf and ηh is examined carefully to ensure 
system stability, then to determine the optimal values of 
ηf and ηh to minimize the Mean Square Error (MSE) 
between the measured and the estimated signals, after 
that the effect of the noise on the optimal values of η is 
examined. Fig. 6 shows the actual signal and the 
estimated signal form conventional RBFNN.  It is clear 
from Fig.6 that the error between the actual and 
estimated signal is significant and cannot be tolerated for 
on-line harmonic estimation, where the MSE equals 
2.2224. By adopting adaptive RBFNN this error can be 
minimized without the need to retrain the RBFNN.  

 
5.1 Minimizing Error Using Regulation Factors 

First, the weight vector of the fundamental component Wf 
is only updated by using eq.14, while the weight vector of 
the harmonic component is remained unchanged (ηh=0), 
updating Wf  depend on the value ηf, the value of ηf is 
changed over the whole stability range for η (from 0 to 2), 

and the Mean Square Error (MSE=
1

𝑁
∑ (𝑒(𝑘)2𝑁

𝑖=1 ) is 

calculated for each value of ηf, as shown in Fig,7.  

 

Figure 5 Schematic Diagram for a Three-Phase controlled Converter 

The value of MSE is decreased as ηf increased until ηf 
equals 0.9779 (approximately in the mid of stability 
range). As ηf  value increases further, the MSE increases. 
This pattern continues till the value of ηf approaches the 
stability range limit (ηf ≈ 2) the MSE is increased rapidly 
and this causes the system to diverge. This result is a 
perfect match with theoretical stability range of  ηf . Fig 8 
shows the actual signal and the estimated signal from 
adaptive RBFNN for ηf equals to 0.9778 (optimal value). 
The MSE for this ηf value is minima and equals to 
0.276978 

 

 

Figure 6 Measured current signal (solid)  and estimated current 
signal from Conventional RBFNN (dashed), MSE equals 2.2224 

Figure 7 MSE for different values of ηf 

Secondly, the weight vector of the harmonic component 
Wh is only updated, while the weight vector of 
fundamental component is remained unchanged (ηf=0), 
updating Wh depend on the value ηh. ηh value also is 
changed over the whole stability range for η (from 0 to 2), 
and the mean square error (MSE) is calculated for each 
value of ηh, as shown in Figure 4. 
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Figure 8 Measured current signal (solid)  and estimated current 
signal from Adaptive RBFNN (dashed). (ηf=0.9778 and ηh=0) 

 

Figure 9. MSE against h,f equals 0. 

Again, the minimum value of MSE is 0.276978  and it is 
obtained when ηh  value is approximately in the middle of 
stability range (ηh =0.9779). As ηh value approaches the 
stability range limit (ηh ≈ 2) the MSE is increased rapidly 
and this causes the system to diverge. These are the same 
results obtained when ηf is only changed. Thirdly, both of 
fundamental and harmonic weight vectors are adapted. 
Fig.10 shows the variation in MSE as ηh is changed for 
different values of ηf. It can be noticed that the minimum 
value of MSE is still the same value that is obtained from 
changing only ηh or ηf alone (i.e. 0.276978), but this time 
it occurs with several combinations of ηf and ηh values.  
The stability region for changing both ηf and ηh is shown 
in Fig.11. The two solid lines represent the range of the 
stability, which means that any values of ηf and ηh in the 
area between the two solid lines maintain the stability of 
the system, otherwise any combination out of this area 
will cause system divergence. The equations of the two 
solid lines are:  
 

     
ηf + ηh =0                                                                             (16) 

     
ηf + ηh =2                                                                             (17) 

 
The combinations of ηf and ηh that give the minimum MSE 
are shown also in Fig.6 and they are represented by the 
dashed line. It is clear that the relation between them is 
linear and can be given by:  

 

                                                          
(18) 

which means that any combination of ηf and ηh satisfies 
this equation will produce an estimated signal with 
minimum  MSE (MSE= 0.276978), which is the minimum 
MSE can be achieved of this system. 

 

 

Figure 10 MSE versus ηh for different values of ηf 

 

Figure 11 The values of ηf and ηh that give the minimum MSE 

97780. hf 
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Figure 12  The FFT of the measured signal. 

Fig. 12 shows the Fast Fourier Transform (FFT) of the 
measured signal of the fundamental (Fun) and 
harmonic’s orders components. Fig.13 shows  the 
difference of the FFT component between the measured 
signal and the estimated signal using the conventional 
filter (red bar) and the difference between the FFT 
components of the measured signal and the estimated 
signal using the adaptive filter (blue bar). This figure 
prove that adapting technique improves system 
capability of detecting all the harmonics component, so 
the improvement of MSE value does not come from 
improving one harmonic component, but it comes from 
improvement of all the harmonics components. 

 

 

Figure 13. The difference between the FFT components between 

measured signal and conventional filter (red bar) and between 

measured signal and the adapting filter ( blue bar)  

 

5.2 Effect of the noise 

The effect of the noise in the performance of the adaptive 
RBFNN is investigated in this section. An additive white 
Gaussian noise is added to the original signal. The 

performance of the RBFNN is investigated under three 
different cases: (i) update only the weight vector of the 
harmonic component using optimal value for ηh 

(ηh=0.9778, ηf=0), (ii)  update only the weight vector of 
the fundamental component using optimal value for ηf 

(ηf=0.9778, ηh=0), and (iii) update both the weight vectors 
of the harmonic component and fundamental component 
using optimal combination  for ηh and ηf  (ηh+ ηf =0.9778). 
The parameter used in this paper to measure the noise 
level in this paper is Signal to Noise Ratio (SNR), where 
the SNR in dB is given by: 

         
                                            

 

                                      (19) 

 

Where Psignal and Pnoise are the signal and noise power 
respectively. 

In this paper the SNR level will be changed from 20 db to 
100 db. This level is above the common SNR level in 
electrical power signals that had been adopted in the 
previous literature, which was above 30 (Đurić & Đurišić, 
2010; Liu, Wang, Liu, & Cui, 2016).  Figure 14 shows the 
MSE for several values of signal to noise ratio SNR, the 
value of h is zero and f is 0.9778 where these values 
give a minimum MSE without noise, when the SNR of the 
measured signal is above 20, the adaptation values still 
give minimum error, the same curve of Fig.14 is also 
obtained when the values of  are chosen to lie on the line 
h +f =0.9778, which shows that the noise with a SNR 
greater than or equal to 30dB, didn’t affect the 
performance of the filter. 

 

 

                         Figure 14. MSE against SNR for ηh=0 and ηf =0.9778 

In Fig.15 the values of h and f are changed, then the 
value of MSE is calculated for a signal has a SNR equals to 
30dB, the minimum value of each curve is denoted by ‘*’, 
if we examine the “*’ points, it is clear that the relation 
between them is linear since they lie on the same line and 

)log(
noise

signal

P

p
SNR 10
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the equation of this line is still the same as previous and 
is given by: h +f =0.9778.  

 

Figure 15 MSE against ηh and ηf for SNR=30dB, the ‘*’ represented 
the minimum MSE. 

5.3  Effect of threshold value 

Usually the adapting is required when the error exceeds 
a certain limit to avoid extra calculations, while in 
previous sections the threshold value of the error (i.e  
e(k)=abs(yest(k)-ymeasured(k))) was zero, which 
means that at each k the value of either h,f  or both of 
them are modified. In this sectionf are adapted only 
when e(k) exceeds a threshold value, the threshold value 
is changed from 0 to 3, and for each one of them  f is 
changed, then the MSE is calculated, the results of 
minimum MSE are shown in Fig. 16 and Fig.17. In Figure 
16 x-axis is the threshold value and Y-axis is the 
minimum MSE value, this value is obtained by changing 
f, while Fig.17 shows the value of f that gives the 
minimum MSE for each threshold value.  

 

 

Figure 16  Minimum error for each threshold value 

 

Figure 17 The value of f  that gives minimum error for each 
threshold value 

The result in those figures shows that the minimum MSE 
can be achieved when the threshold value is zero and f 

= 0.9778. Even though the MSE is decreased when the 
threshold value is decreased, but decreasing the 
threshold value means extra calculations (i.e extra 
calculation due to adaptation process) as it is shown in 
Fig. 18, where it shows that the number of calculations is 
decreased as the threshold value is increased. 

 

Figure 18 Number of calculations for different values of threshold 
value (constant adaptation coefficient). 

 

6. Conclusions 
In this paper, the stability and performance 
enhancement of adaptive RBFNN is investigated. 
Adapting the weight vectors of the fundamental and 
harmonic components based on LMS algorithm improve 
RBFNN capability to estimate output signal from a power 
electronic circuit, which is totally different from the 
signal that the RBFNN is trained for, the stability range of 
the adapting parameters ηf and ηh are investigated and by 
carefully selecting these values, the MSE between the 
estimated and the measured signal is minimized. The 
adapting RBFNN shows the capability for disturbance 
rejection even when the signal has 30 to 100 dB SNR of 
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Gaussian noise. Further investigating  for the adaptive 
RBFNN is carried out by exploring the effect of the 
adapting trigger threshold to prevent excessive 
calculations. 
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