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ABSTRACT. Although there are a wide variety of applications that require wind speed time series (WSTS), this paper emphases on WSTS 
to be used into wind turbine simulation for controllers tuning. These simulations involve several WSTS to perform a proper assessment. 
These WSTS must assure specific wind speed variations such as wind gusts and include some rare events such as extreme wind situations. 
The architecture proposed to generate this WSTS is based on autoregressive models with specific post-processing. The methodology used is 
entirely described by precise notation as well as it is parametrised using data gathered from a weather station. Also, specific parameters of 
this methodology are adjusted using features extracted from Extreme Operation Gust (EOG). Two different cases are performed and 
assessment; the first case is fed by weather data with high wind speed and significant variability. The second case, on the opposite, use 
moderate wind speed as a data source. Through final assessment, it shows that this methodology generates representative WSTS with 
realistic variations of wind speed.  
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1. Introduction 
Wind is air in motion initially produced by the effect of the 
non-uniform distribution of sunlight on Earth surface due 
to Earth movements: the ecliptic trajectory around the 
Sun and perpendicular rotation around its axis. Sunlight 
is absorbed in several grades depending on Earth location. 
These effects produce bulk air movements because of 
variations of temperature, pressure, and composition at 
different atmospheric layers. Wind speed is a variable and 
uncontrollable factor. This factor is studied over an 
extended period by climate sciences and predicted by 
Weather forecasting. 

There are various and diverse type applications that 
require a large chain of consecutive WSTS. The purpose of 
these applications can divide into two. On the one hand, 
for simulation analysis, different and variable kind of 
simulations are needed to assess rare events such as 
extreme wind situations when parameters of the control 
system are tuned(González-González et al. 2014). Also, 
another case of simulation analysis resides on capture 
under the wind speed conditions specific state occurs. For 
instance, detect the turbulence intensity threshold of wind 
when the initial fracture occurs in a fatigue simulation 
analysis (Li et al. 2018).  
                                                        
* Corresponding author: asier.gonzalez@tecnalia.com 

On the other hand, for forecasting purposes, predicting 
accuracy efficiently the short-term is crucial such as safety 
perform an operation and management of wind turbines 
(Sun et al. 2018). Also, wind power forecast to maintain a 
balance maintained between electricity consumption and 
generation is another situation of WSTS is used (Guo, Gao 
and Wu 2017). 

Although there are diverse methods to generate WSTS, 
the primary classification divides method into 
deterministic and probabilistic approach such as Monte 
Carlo method (Guerrero et al. 2011).  

A WSTS probabilistic model includes random variables 
and probability distributions which can reproduce the 
wind speed features. Weibull distribution and Rayleigh 
distribution are widely used (Sedaghat et al. 2017). 
However, the time evolution characteristics of wind speed 
are neglect in these probabilistic models (Guo et al. 2017). 
Modelling longitudinal wind speed is approached by 
several authors in different disciplines. A methodology for 
the simulation of bivariate non-stationary WSTS and 
direction was proposed (Solari and Losada 2016). A wind 
speed model considering meteorological conditions and 
seasonal variations, based on the Markov Chain, was 
proposed (Guo et al. 2017). A variogram function employed 
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to measure the change rate exists between wind speed 
variations, and daily periodicity was proposed (Liu et al. 
2016).  

A deterministic wind speed model for forecasting using 
a combination of two methods: and time-varying mixture 
copula function (Gualtieri and Secci 2014) and outlier 
robust extreme learning machine (Peng et al. 2017). 

This paper presents a framework to generate 
customised longitudinal wind speed time series for wind 
turbine controllers intended for simulation purposes using 
autoregressive methods. This customisation resides on 
using the data gathered from a specific weather station 
where wind turbine could place. Customised wind speed 
time series involve a better parametrisation of wind 
turbine controller due to increasing the accuracy between 
of real wind speeds and WSTS used in simulations. 
Autoregressive methods are powerful techniques to create 
time series in a stochastic way. Also, a post-processing 
data is carried out by a filter to wipe non-desired wind 
speed fluctuations. 

This paper contains five sections organised as follow. 
Section 2 provides background information about the 
mathematical components used as well as the 
methodology applied to generate WTTS. Section 3 shows 
the sources from data is gathered. Section 4 presents the 
simulations performed using the methodology proposed 
and data parametrised. Section 5 brings main conclusions 
as well as future work planning. 

2. Methodology  
WSTS for simulation purposes, specifically for wind 
turbine control, is generated using the architecture 
presented in Figure 1. This model is fed by data gathered 
from a weather station as well as specific features of wind 
gusts. Although data sample is generated by the 
autoregressive model in a particular organised and 
random approach, a post-data-process is executed by filter 
and saturation blocks due to erase improper wind speed 
behaviour. 

This section is organised as follows. The autoregressive 
component proposed as well as a short overview of 
autoregressive models are explained in Section 2.1. The 
post-data-process component to remove unwanted wind 
speed behaviour is explained in section 2.2.  
 

 
Fig. 1 The architecture used for WTTS. 

2.1 Autoregressive models 
An autoregressive model is a stochastic method to 

successively generate values of the specific variable based 
on its previous values (Durán Mario, Cros and Riquelme 
2007). These models are used to perform different types of 
applications such as predictions (Durán Mario et al. 2007) 
and simulations that involve wind speed time series 
(Lojowska et al. 2010). An autoregressive model with p 
parameters is denoted by AR(q). Eq.(1) shows an AR(q) to 
produce a wind speed time series where v(t) is the wind 
speed at time t, c is a constant, φ+ is the i − th 
autoregressive parameter, and ε(t) is an independent 
random normal distribution with zero mean and constant 
variance σ12, mathematically denoted as ε	(t)	~	N	(0, σ1).  

 

𝑣(𝑡) = 𝑐 +=𝜑? · 𝑣(𝑡 − 𝑖)	
?BC

?BD

+ 𝜀(𝑡)	 (1) 

 
Parameters can be established by fulfilling statistics 

properties. On the one hand, the expected value properties 
are applied over Eq.(1) to obtain Eq.(2): i) The expected 
value at each instant is the same for the entire time series, 
and it corresponds with the mean value of entire time 
series, denoted by vF; ii) The expected value of 
autoregressive parameters and constant parameter are 
equal to themselves; iii) The expected value of a random 
normal distribution with zero mean and constant variance 
is zero. 

 

�̅� ∙ I1 −=𝜑?

?BC

?BD

K = 𝑐 (2) 

 
On the other hand, the expected variance and auto-

covariance properties are applied over Eq.(1). Auto-
covariance is the covariance of the same time series 
separated by k instants, and it is calculated by Eq.(3). The 
variance of time series is a case of auto-covariance when 
there is no instant separated. 

 
𝐶MM(𝑡, 𝑘) = 𝐸[𝑣(𝑡)	 ∙ 𝑣(𝑡 − 𝑘)	] − 𝐸[𝑣] ∙ 𝐸[𝑣] (3) 

 
Using applying the premise of the expected variance 

and auto-covariance at each instant is the same for the 
entire time series to Eq. (1) gives a system of linear 
equations of p autoregressive parameters and p linear 
equations represented by Eq.(4). 

 

R
𝐶MM(𝑡, 1)

⋮
𝐶MM(𝑡, 𝑝)

U

= R
𝑣𝑎𝑟(𝑣) ⋯ 𝐶MM(𝑡, 𝑝 − 1)

⋮ ⋱ ⋮
𝐶MM(𝑡, 𝑝 − 1) ⋯ 𝑣𝑎𝑟(𝑣)

U

∗ R
𝜑D
⋮
𝜑C
U 

(4) 

 
To calculate AR(p) parameters. Firstly, the p 

autoregressive parameters are settled by Eq.(4) and 
secondly constant parameter is settled by Eq.(1). 
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There are variations of the preliminary AR(q) model by 
adding one or more components. One case is the 
autoregressive moving average model that includes a 
second polynomial for the moving average to smooth short-
term fluctuations. 

An autoregressive moving average model with p 
parameters of autoregression polynomial and q 
parameters of moving average polynomial is denoted by 
ARMA(p,q). Eq.(5) shows an ARMA(p,q) model to produce 
a wind speed time series where θ+ is the i − th parameter 
of the model. Polynomial parameters can be calculated 
using least squares technique (Lojowska et al. 2010), Burg 
Method (Rajagopalan and Santoso 2009) and Shanks 
method (Rajagopalan and Santoso 2009). 

 

𝑣(𝑡) = 𝑐 +=𝜑? · 𝑣(𝑡 − 𝑖)	
?BC

?BD

+=𝜃? · 𝜀(𝑡 − 𝑗)	
_B`

_BD
+ 𝜀(𝑡)	 

(5) 

 
Another autoregressive model combining ARMA(p,q) 

model with an integral component is an autoregressive 
integrated moving average model. This model is denoted 
by ARIMA(p,d, q) with d difference instant 

Another autoregressive model used when some 
statistics parameters (such as mean and variance) change 
over time is Autoregressive Integrated Moving Average 
(ARIMA) model. This model adds a component with d 
parameters of moving average polynomial, and it is 
denoted as ARIMA(p,d, q) (Drobinski 2012). Making a 
comparison with the previous models, on the one 
hand,	ARMA(p,q) model is a particular case of 
ARIMA(p,d, q) when there is not integration polynomial 
(d = 0). On the other hand, AR(q) is a particular case of 
ARIMA(p,d, q) when there is neither integration 
polynomial (d = 0) nor autoregression polynomial (p = 0) 
(Cadenas and Rivera 2010) 

An alternative variation of autoregressive model is via 
including autoregressive conditional heteroskedasticity 
models. In this type of models, the random variable 
variance value is not constant, and it is adaptable using a 
function of the previous terms. For example, generalised 
autoregressive conditional heteroscedasticity models use 
an additional autoregressive model to calculate the 
random variable variance value (Hamilton and Susmel 
1994). The heteroscedasticity component improves wind 
speed time series due to the capability of modelling 
together moments with high variability combined with 
little variation (Lojowska et al. 2010). 

 
2.2 Post-data-process 

Enhance certain features of the autoregressive 
sampled signal through a set of mathematical operations 
is needed by using a digital filter to removes unreal high 
fluctuations of wind speed. Although there are different 
types of filters according to the frequency response, a 
second order low pass filter is proposed to avoid high 
variations between two consecutive wind speed points. 
This filter is described in Laplace notation as: 

 
𝑉2(𝑠)
𝑉D(𝑠)

=
𝜔f2

𝑠2 + 2 ∙ 𝜉 ∙ 𝜔f ∙ 𝑠 + 𝜔f2
 (6) 

 

where s is the Laplace transform variable, ζ is the 
damping ratio and ωj is the natural frequency in rad/s. 
These values are settled as following. On the one hand, the 
natural frequency is assigned according to cut-off 
frequency desired by using Eq(7) where fj is the cut-off 
frequency. Frequencies above cut-off are reduced by 
40	dB/dec. 

 
𝜔f = 2 ∙ 𝜋 ∙ 𝑓f (7) 

 
On the other hand, damping ratio defines the 

overshoot of the response. This overshoot is defined as the 
maximum peak value of the response curve measured 
from the desired response of the system. Normally, it is 
given in the range between 0 and 1 and calculated by Eq(8) 
where Mu is the overshoot response in parts per unit.  

 
𝑀C = 𝑒xyz/ {Dxz

|| } (8) 
 
The attenuated frequencies are represented by Figure 

2and Figure 3. These figures use a logarithmic scale. The 
first shows the magnitude of the frequency response in 
decibels. The second shows the phase shift in radians. 

 

 
Fig. 2 Magnitude attenuation at each frequency. 

 

 
Fig. 3 a) Magnitude attenuation at each frequency. 

b) Phase at each frequency response.  
 

2.3 Saturation block  

The saturation block limits range of wind speed values 
fluctuates. This range is defined by Eq(9) with the wind 
speed lower limit and upper limit parameters. 

 
𝑣~?f ≤ 𝑣D ≤ 𝑣~�� (9) 
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3. Case study 

3.1 Weather station  
Data collected was from a weather station placed 

inside of Vitoria-Gasteiz, the capital city of Basque 
country, thanks to Basque Meteorology Agency 
Euskalmet. The exact location of this weather station is at 
-2.68899 and 42.8604 of longitude and latitude values 
respectively. The location of the weather station is 546 
meters above sea level, and sensors installed are 11 
meters above the ground. Figure 4 shows two photos about 
this weather station and the place that it placed. 

 

 
Fig. 4 Weather station placed in one street of Vitoria-

Gasteiz. 
 
Table 1  
Data gathered from the weather station.  

Symbol Description Units 

t It is the timestamp that identifies 
uniquely date and time of event 
occurred. 

yy-mm-dd 
hh:mm 

vFj It is a statistical longitudinal wind 
speed averaged over a period of 10 
minutes expressed in meters per 
second. 

(m/s) 

v��� It is the maximum longitudinal wind 
speed over a period of 10 minutes 
expressed in meters per second. 

(m/s) 

v�+j It is the minimum longitudinal wind 
speed over a period of 10 minutes 
expressed in meters per second. 

(m/s) 

Sj It is a standard deviation of wind 
speed over a period of 10 minutes 
expressed in meters per second. 

(m/s) 

T It is a statistical air temperature 
averaged over a period of 10 minutes 
expressed in Kelvin degrees. 

(K) 

H It is a statistical relative air humidity 
averaged over a period of 10 minutes 
expressed as a percentage. 

(%) 

P It is a statistical atmospheric 
pressure over a period of 10 minutes 
expressed in Pascal. 

(Pa) 

z It is the meters above sea level. (m) 
Source: www.euskalmet.euskadi.eus 

Although this weather station can provide several 
public records, the only information used is shown in 
Table 1. Every 10 minutes, a data sample is stored. 

3.2 Air density 
Air density fluctuates with temperature, pressure and 

humidity. However, according to International 

Electrotechnical Commission (IEC), WSTS are expressed 
with normalised value of air density at 1.225 kg/m�. This 
value is presented at sea level pressure and 288.15 K 
temperature according to the international standard 
atmosphere. Air density is denoted as ρ�+� moreover, 
expressed regarding pressure and temperature by Eq(10) 
where g is the gravity constant (9.81	m/s2 at sea level) and 
R is the specific gas constant for air (287.05	J/(kg ∙ K)). 
This equation combines ideal gas law equation as well as 
constant pressure at sea level, p�, relates to its 
exponential decrement as height increases. The height 
above sea level is denoted by 𝑧. 

 

𝜌�?� =
𝑝�
𝑅 ∙ 𝑇 · 𝑒𝑥𝑝¡−

(𝑔 ∙ 𝑧)
(𝑅 ∙ 𝑇)£ (10) 

 
Additionally, air density can be calculated more 

accurate according to the International Committee on 
Weights and Measures using temperature, pressure and 
humidity. WSTS with normalised value of air density 
require postprocessing consisting of divide WSTS 
generated by the normalised air density and multiplied by 
air density, calculated at each time, using Eq(10). 

3.3 Auto-covariance 

The autoregressive block is parametrised with 
longitudinal average, auto-covariance and standard 
deviation wind speed. The average and the standard 
deviation over a period of 10 minutes is gathered directly 
from the weather station. However, auto-covariance 
values must be settled experimentally due to the 
frequency of the sample of the weather station is fewer 
than the frequency required to generate WSTS. Usually, 
for simulation purposes, the frequency required is less 
than a second (González-González et al. 2014). 

Extract features set the maximum values of the auto-
covariance from a deterministic wind gust called Extreme 
Operation Gust (EOG). The IEC 61400 norm defines this 
gust, and a wind speed decrement characterises it, 
following a high increment as a Mexican hat wavelet. The 
maximum auto-covariance values are calculated by 

 

𝐶𝑚𝑎𝑥MM(𝑘) =
𝑑¦

𝑑𝑡¦ 𝑣§¨©
(𝑡) (11) 

 
Where 𝐶𝑚𝑎𝑥MM(𝑘) is the maximun auto-covariance 

value of the WSTS separated by k instants and 𝑣§¨©(𝑡) is 
the EOG function.  

3.4 Cut-off frequency 
Similarly, cutoff frequency parameter is settled by an 

EOG characteristic time parameter defined in the norm as 
10.5 seconds. The Cutoff frequency parameter is 
calculated by the inverse value of EOG characteristic time 
represented by Eq(12) 

𝑓f = 10.5	xD (12) 

3.5 Wind speed boundaries  
The saturation block is settled by maximum 

longitudinal wind speed values from the weather station. 
Due to nonpositive values does not make sense, the 
minimum longitudinal wind speed is defined by zero. 

𝑣~?f ≥ 0 (13) 
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4. Simulations and results 
4.1 Simulations 

Although several simulations are performed, only the 
two main representative simulations are shown in this 
paper. The first simulation is generated by data gathered 
from the weather station on February 13, 2017. The data 
of the first 4 hours of this day are shown in table 1; an 
average high wind speed characterises it. 

 

 
Fig. 5 10 minutes of WSTS with data gathered on February 13, 

2017. 
 

Table 1  
Data gathered from the weather station on February 13, 2017.  

Time 
interval 𝐯F𝐧 𝐯𝐦𝐚𝐱 𝐒𝐧 𝐓 𝐇 𝐏 

0:00 0:10 14.2 23.7 3.3 284.1 71.0 93780 

0:10 0:20 13.6 24.7 4.0 284.2 71.0 93780 
0:20 0:30 13.5 26.8 4.7 284.1 72.0 93770 
0:30 0:40 14.7 25.4 4.1 284.1 72.0 93750 
0:40 0:50 15.4 25.5 3.9 284.0 73.0 93720 
0:50 1:00 13.0 29.0 4.4 284.0 73.0 93720 
1:00 1:10 12.8 27.1 4.6 284.1 72.0 93740 
1:10 1:20 13.1 30.6 5.3 284.1 72.0 93750 
1:20 1:30 12.8 24.9 3.8 284.2 71.0 93760 
1:30 1:40 10.9 22.6 4.0 284.1 72.0 93760 
1:40 1:50 13.9 30.2 4.6 284.1 72.0 93760 
1:50 2:00 13.3 24.5 4.8 284.1 72.0 93760 
2:00 2:10 11.9 29.3 5.4 284.1 72.0 93780 
2:10 2:20 11.4 26.7 4.8 284.1 72.0 93770 
2:20 2:30 15.0 27.9 5.0 284.0 73.0 93720 
2:30 2:40 13.1 22.6 4.1 284.0 73.0 93720 
2:40 2:50 14.8 28.8 4.2 284.0 72.0 93710 
2:50 3:00 10.3 22.3 4.3 284.0 73.0 93750 
3:00 3:10 10.4 22.3 3.7 284.0 72.0 93770 
3:10 3:20 11.6 26.6 5.1 284.2 70.0 93770 
3:20 3:30 12.1 25.6 3.8 284.3 69.0 93790 
3:30 3:40 11.9 27.1 4.2 284.2 69.0 93790 
3:40 3:50 11.2 22.9 3.7 284.0 70.0 93790 
3:50 4:00 12.2 23.4 3.5 284.1 69.0 93770 
4:00 4:10 12.0 23.5 3.9 284.2 68.0 93770 

Figure 5 shows 10 minutes of the first simulation of WSTS 
using the data from Table 1 and the proposed method. 

 
Table 2  
Data gathered from the weather station on April 19, 2017. 

Time 
interval 𝐯F𝐧 𝐯𝐦𝐚𝐱 𝐒𝐧 𝐓 𝐇 𝐏 

0:00 0:10 2,6 4,1 0,7 282,8 61,0 95810 

0:10 0:20 1,7 3,7 0,7 282,8 62,0 95820 
0:20 0:30 2,1 3,5 0,7 282,6 61,0 95820 
0:30 0:40 2,4 3,9 0,8 282,4 60,0 95820 
0:40 0:50 2,7 4,5 0,9 282,3 60,0 95820 
0:50 1:00 3,1 5,2 0,7 282,1 59,0 95820 
1:00 1:10 2,8 4,8 0,7 281,9 58,0 95810 
1:10 1:20 2,7 4,5 0,9 281,8 59,0 95810 
1:20 1:30 2,8 4,3 0,7 281,6 59,0 95800 
1:30 1:40 2,8 4,1 0,7 281,3 60,0 95800 
1:40 1:50 2,9 5,0 0,8 281,1 59,0 95790 
1:50 2:00 3,4 5,5 0,8 281,0 59,0 95780 
2:00 2:10 3,5 4,7 0,7 280,9 59,0 95770 
2:10 2:20 3,4 5,6 0,7 280,8 58,0 95780 
2:20 2:30 3,0 5,2 0,9 280,8 57,0 95780 
2:30 2:40 2,8 4,4 0,6 280,9 56,0 95790 
2:40 2:50 3,0 4,2 0,6 280,7 56,0 95790 
2:50 3:00 3,0 4,5 0,6 280,6 56,0 95790 
3:00 3:10 2,9 4,4 0,6 280,6 55,0 95790 
3:10 3:20 3,3 5,3 0,8 280,6 54,0 95790 
3:20 3:30 3,2 5,3 1,0 280,7 53,0 95790 
3:30 3:40 3,3 5,0 0,7 280,7 51,0 95790 
3:40 3:50 3,4 5,1 0,8 280,7 51,0 95790 
3:50 4:00 3,2 4,7 0,7 280,6 51,0 95790 
4:00 4:10 3,0 5,0 0,7 280,4 51,0 95790 

 

 
Fig. 6 10 minutes of WSTS with data gathered on April 19, 

2017. 
 

The second simulation represents the WSTS generated by 
data gathered from the weather station on April 19, 2017. 
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Moderate wind speed characterises this day. The data of 
the first 4 hours of this day are shown in table 2. 

Figure 6 shows 10 minutes of the second simulation of 
WSTS using the data from Table 2 and the proposed 
method. 

4.2 Results 

The WSTS generated in figure 5 and 6 are appropriate 
to be implemented into simulations for wind turbine 
control. Tuning this controller by time response 
simulation require synthetic longitudinal WSTS as these 
cases presented.  

The wind speed parameter inside simulations for wind 
turbine control is the primary disturbance parameter of 
the system. Generate realistic wind speed fluctuation in a 
short time is required to set suitable values on control 
parameters. Although the proposal digital-filter reduces 
unrepresentative high variations of wind speed, select the 
appropriate values is not trivial. According to simulations 
performed, the proposal of calculating the cutoff frequency 
parameter using extracting features from deterministic 
normalised wind gust is a correct strategy.  

However, through a contrast between average and 
standard deviation used to parametrise the autoregressive 
model and the calculated over WSTS generated in figure 5 
and 6, it shows a decrease in wind variability. This 
assessment is shown in the Table 3. 

Although standard deviation error is significant, the 
maximum change rate of wind speed concerning time does 
not cross the autoregressive threshold defined. 

 
Table 3  
Average and standard deviation error.  

Properties Figure 5 Figure 6 

Average error 0.20% 0.39% 

Standard deviation error 41.32% 41.25% 
Source: survey data 

5. Conclusions 

This paper presents a methodology to generate WSTS. 
This methodology is mainly composed of three elements: 
autoregressive model, filter and saturation block. Data 
gathered from a weather station parametrises the 
autoregressive model and saturation block. The filter is 
parametrised by analysing EOG characteristic time 
defined in the IEC 61400 norm. 

This methodology is appropriate to implemented into 
time response simulations for tuning wind turbine 
controls due to short time wind speed fluctuations 
generated are particularly realistic. Wind turbine 
controllers are designed to reject wind speed disturbances. 
Therefore, unrealistic variations of wind speed must be 
avoided.  

Two WSTS cases are generated with different data. 
They are shown in Figure 5 and Figure 6. Also, these two 
WSTS are evaluated by various statistic metrics to 
calculate the error performed from the initial data. 

The standard deviation error resides on effect 
performed by filter component due to frequencies reduced 

decreases samples fluctuation. The Standard deviation 
error is very similar in both simulations, so in future work, 
another gain parameter will be needed to reduce the error 
commitment. A considerable amount of simulations will be 
performed to check gain parameter experimentally. 
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