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ABSTRACT. In this article, we introduced a new approach based on graphical method (GPM), maximum likelihood method (MLM), 
energy pattern factor method (EPFM), empirical method of Justus (EMJ), empirical method of Lysen (EML) and moment method 
(MOM) using the even or odd classes of wind speed series distribution histogram with 1 m/s as bin size to estimate the Weibull 
parameters. This new approach is compared on the basis of the resulting mean wind speed and its standard deviation using seven 
reliable statistical indicators (RPE, RMSE, MAPE, MABE, R2, RRMSE and IA). The results indicate that this new approach is adequate 
to estimate Weibull parameters and can outperform GPM, MLM, EPF, EMJ, EML and MOM which uses all wind speed time series data 
collected for one period. The study has also found a linear relationship between the Weibull parameters K and C estimated by MLM, 
EPFM, EMJ, EML and MOM using odd or even class wind speed time series and those obtained by applying these methods to all class 
(both even and odd bins) wind speed time series. Another interesting feature of this approach is the data size reduction which 
eventually leads to a reduced processing time.  
 
Keywords: Odd bin wind speed time series, Even bin wind speed time series, Weibull parameters, Statistical analysis, Comparative evaluation. 

Article History: Received February 16th 2018; Received in revised form May 5th 2018; Accepted May 27th 2018; Available online 
How to Cite This Article: Salami, A.A., Ajavon, A.S.A., Kodjo, M.K. , Ouedraogo, S. and Bédja, K. (2018) The Use of Odd and Even Class Wind 
Speed Time Series of Distribution Histogram to Estimate Weibull Parameters. Int. Journal of Renewable Energy Development 7(2), 139-150. 
https://doi.org/10.14710/ijred.7.2.139-150 

                                                             
* Corresponding author: akim_salami@yahoo.fr 

1. Introduction 

In the last century, several climate changes have 
been observed in regions all over the world. The main 
cause of these climatic changes is the rise in fossil fuel 
use, which is due to the important demographic and 
industrial developments. These negative effects have 
forced scientists to draw attention to renewable energy 
sources such as solar, wind and hydraulic energy, which 
are the most suitable solution in the future (Dahmouni et 
al. 2011). Recently, interest in wind energy has been 
growing and many researchers have attempted to 
develop and to perform reliable wind energy conversion 
systems. 

Wind energy conversion systems design required 
considerable efforts in recognizing a suitable statistical 
model for wind speed frequency distribution. The widely 
used function to model wind speed data is the Weibull 
distribution function(Celik, 2004). Recently it has become 
a reference distribution function in commercially used 
wind energy software i-e the Wind Atlas Analysis and 
Application Program (Sahin, 2004). We characterized the 
Weibull distribution by two parameters, a scale and a 
shape parameter (C and K) (Salami et al., 2016). 

To estimate Weibull parameters several methods 
have been suggested in the literature, such as the 
graphical method (GPM), the maximum likelihood 
method (MLM), the moment method (MOM), the 
empirical method of Justus (EMJ), the empirical method 
of Lysen (EML), the method of the modified maximum 
likelihood (MMLM), the equivalent energy method 
(EQM)(Rocha et al., 2012) and the energy pattern factor 
method (EPFM) (Kasra et al., 2016). 

To estimate Weibull parameters for a site using the 
methods frequently used and cited above, the wind speed 
time series data collected in an interval of one (1) hour in 
a given period are used (Garcia et al., 1998). The recent 
works of (Yuan et al., 2015) aims to compare the 
performance of the MLM and the MOM. The results 
show that for an extreme small data size, the MLM 
slightly outperforms the MOM and generally, the MLM 
has an advantage over medium and large data sizes. In 
conclusion, for life data analysis, it is suggested to use 
MLM for the two-parameter Weibull distribution. Given 
that, wind speed distribution is used in estimating 
Weilbull parameters; we argue that it is possible to 
reduce the length of the input series through filtering. A 
reduced data size will lead to higher computational 
efficiency in estimating Weibull parameters and key 
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wind site characteristics such us mean wind speed and 
wind speed standard deviation. The main question to 
address is what filtering to perform in order to achieve 
this much-desired computational efficiency while 
maintaining acceptable estimation accuracy? To the best 
of our knowledge, no existing work proposed a filtering 
method that allies accuracy and efficiency for Weibull 
parameter estimation in wind energy applications. This 
paper proposes the following contributions. 

In order to reduce data size and therefore parameter 
estimation time, while maintaining a high accuracy of 
mean wind speed and standard deviation, a new 
approach is proposed. Indeed, the series of wind speed is 
grouped in classes (or bins), each class being represented 
by a bin in the distribution histogram. The set of classes 
is divided into two subsets: even and odd order speed 
classes. In this paper, we aim to adequately determine 
the overall Weibull parameters (K and C) using those 
estimated for the subsets of odd and even speed classes. 
For each subset, the Weibull parameters are estimated 
using six well known methods namely graphical method 
(GPM), empirical method of Justus (EMJ), empirical 
method of Lysen (EML), energy pattern factor method 
(EPFM), maximum likelihood method (MLM) and 
moment method (MOM). So in this article eighteen 
methods are used to estimate Weibull parameters for a 
given period at a geographic locality, these are: 

• GPM, EMJ, EML, EPFM, MLM, MOM using all 
bins wind speed time series; 

• GPM, EMJ, EML, EPFM, MLM, MOM using 
Odd Bins wind speed time series (GPOBM, 
EMJOB, EMLOB, EPFOBM, MLOBM, 
MOOBM); 

• GPM, EMJ, EML, EPFM, MLM, MOM using 
Even Bins wind speed time series (GPEBM, 
EMJEB, EMLEB, EPFEBM, MLEBM, 
MOEBM). 

Consequently, in this study the capability of eighteen 
parameter estimation methods is evaluated to calculate 
the K and C parameters for adjusting the Weibull 
distribution of wind speeds. The main goal is identifying 
the most appropriate method for computing the mean 
and standard deviation at two sites (Lomé in Togo and 
Ouagadougou in Burkina Faso). To achieve this, a 
comprehensive statistical analysis based upon several 
statistical parameters and approaches is conducted using 
the eighteen parameter estimation methods. 

The rest of this paper is structured as follows. Section 
2 describes numerical methods for determining the 
Weibull parameters. Section 3 presents in detail the 
proposed approaches to estimate Weibull parameters. In 
Section 4, statistical indicators for performance 
evaluation are illustrated. The results and discussions 
along with the underlying case study data are presented 
in Section 5. Finally, conclusions are drawn in Section 6. 

2. Numerical Methods for determining the Weibull 
parameters 

Wind speed is a random variable, and to determine 
the wind potential of a region it is necessary to use 
statistical analysis (Salami et al., 2013). This requires 
the existence of time series records of wind speed. 

Such records are the wind data. Based on the wind 
speed data collected, the Weibull distribution can be 
described as a probability density function f(V) and a 

cumulative distribution function F(V) are respectively 
determined by Eqs. (1) and (2) (Ahmed, 2013): 
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The mean and standard deviation of the wind speed 
series are given by Eq. (3). and Eq. (4).  
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where: C and K are respectively scale and shape 
parameters of the Weibull distribution function andG  
represents the gamma function defined by the Euler 
integral of the second kind. 

Wind power density is an important indicator for 
determining the potential of wind resources and to 
describe the amount of wind energy at various wind 
speeds at a particular location. Knowledge of wind power 
density is also useful to evaluate the performance of wind 
turbines and select the optimum wind turbines. Wind 
power density resembles the level of accessible energy at 
the site which can be converted to electricity by wind 
turbines. Indeed, the mean kinetic energy, available at a 
site per unit of time and per unit area is expressed by Eq. 
(5) (Seguro et al., 2000): 
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where:  

• r  is air density (kg m-3), 
• V is wind speed  
• f(V)  is the Weibull probability distribution 

function (pdf) (Eq. 1),  
• 3V  is the cubic mean wind speed. 

There are some methods introduced in the literature 
(Dinler et al., 2009) to calculate the K and C parameters 
of the Weibull distribution function. In this study, six 
methods: graphical method (GPM), empirical method of 
Justus (EMJ), empirical method of Lysen (EML), energy 
pattern factor method (EPFM), maximum likelihood 
method (MLM) and moment method (MOM) frequently 
used to compute the K and C parameters are selected for 
comparative evaluation. The descriptions of these six 
methods are provided briefly in what follows. 
 

2.1. Graphical method (GPM) 

The graphical method is achieved through the 
cumulative distribution function. In this distribution 
method, wind speed data are interpolated by a straight 
line, using the concept of least squares. The equation for 
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this method can be represented by a double logarithmic 
transformation (Rocha et al., 2012) as follows, 
 

[ ]{ }ln -ln 1- F(V) = Kln(V) - Kln(C)  (6) 

 

2.2. Empirical method of Justus (EMJ) 

Based on the empirical method introduced by Justus, the 
K and C parameters are computed, respectively by Eq. 
(7) and Eq. (8)(Kasra et al., 2016): 
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where:  
• V

 
is the mean wind speed, 

• s  is the standard deviation of the observed 
data, 

• Γ(x) is the gamma function. 

2.3. Empirical method of Lysen (EML) 

In the empirical method suggested by Lysen, K is 
calculated by Eq. (7) same as the Justus method. In fact, 
the only difference is the equation of C. In the empirical 
method of Lysen, C is obtained by Eq. (9) (Kasra et al., 
2016): 
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2.4. Energy pattern factor method (EPFM) 

The energy pattern factor method is related to the 
averaged data of wind speed and is defined by the 
following equations (Kasra et al., 2016): 

 
æ ö
ç ÷
ç ÷
è ø

3

3V
E =pf

V
 (10) 

 
æ ö
ç ÷
ç ÷
è ø

3.69
K = 1+ 2Epf

 (11) 

 
and parameter C is also computed similarly as in the 
empirical method of Justus by Equation (8). 
 
2.5. Maximum likelihood method (MLM) 
 
The maximum likelihood estimation method is difficult to 
solve, since numerical iterations are needed to determine 
the parameters of the Weibull distribution (Kidmo et al. 
2015). In this method, the parameters K and C are 
determined according to the equations below: 
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2.6. Moment method (MOM) 

The moment method can be used as an alternative to the 
maximum likelihood method and, in this case, the 
parameters K and C are respectively determined by Eq. 
(14) and Eq. (15) (Mostafaeipour et al. 2011). 
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3. Proposed approaches to Weibull parameter 
estimation 

The information contained in the wind measurements at 
a given site can be represented as a histogram. Given 
( 1 2 3 rV , V , V , ,V ), r  wind speeds measured at a site, this 
sequence can be grouped into m  (m r£ ) classes 
( 0 1 2 m 1Bin , Bin , Bin , ,Bin - ); let j,f be the relative 
frequency of class jBin , the graph j j,(Bin f )´ represents 
the histogram of the distribution of relative frequencies 
of wind speed at this site.  

Thus, for all n  samples of wind measurements 
( 1 2 3 nV , V , V , ,V ) obtained during a period of time at a 
given site, the application of the 6 selected methods 
(GPM, MLM, EPFM, EMJ, EML and MOM) gives the 
shape K and scale C parameters of the Weibull.   

In order to reduce the number of data to be processed 
while maintaining accurate standard deviation and mean 
wind speed, all samples of n  wind measurements 
( 1 2 3 nV , V , V , ,V ) obtained during a period of time at a 
given site are grouped into classes and represented as a 
histogram (the graph j j,(Bin f )´ ). The obtained wind 
speed classes can be divided into two groups: the group of 
even speed classes ( 2kBin ) and the group of odd classes 
( 2k 1Bin + ). 

Samples of p  wind speed measurements 
( 1 2 3 pX , X , X , , X ) of the group of even classes group 
( 2kBin ), subsets of ( 1 2 3 nV , V , V , ,V ), are used to estimate 
the shape parameter K and scale parameter C using 6 
selected methods. So this new approach is referred to as: 

• graphical with Even Bin time series method 
(GPEBM) when GPM is used; 
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• maximum likelihood with Even Bin time series 
method (MLEBM) when MLM is used; 

• energy pattern factor with Even Bin time series 
method (EPFEBM) when EPFM is used; 

• empirical method of Justus with Even Bin time 
series (EMJEB) when EMJ is used; 

• empirical method of Lysen with Even Bin time 
series (EMLEB) when EML is used; 

• moment with Even Bin time series method 
(MOEBM) when MOM is used. 

Likewise, samples of q  wind measurements 
( 1 2 3 qY , Y , Y , ,Y ) of the group of odd classes ( 2k 1Bin + ), 
subsets of ( 1 2 3 nV , V , V , ,V ), are used to estimate K and C 
(shape and scale parameters) using 6 selected methods. 
So this new approach is referred to as: 

• graphical with Odd Bin time series method 
(GPOBM) when GPM is used; 

• maximum likelihood with Odd Bin time series 
method (MLOBM) when MLM is used; 

• energy pattern factor with Odd Bin time series 
method (EPFOBM) when EPFM is used; 

• empirical method of Justus Odd Bin time series 
(EMJOB) when EMJ is used; 

• empirical method of Lysen Odd Bin time series 
(EMLOB) when EML is used; 

• moment with Odd Bin time series method 
(MOOBM) when MOM is used. 

Thus, this study aims to verify if, from each speed 
class group (even or odd) taken individually; it is possible 
to estimate the parameters (K and C) suitable for an 
accurate estimation of the mean wind speed and 
standard deviation at the Lomé and Ouagadougou sites. 

4. Statistical indicators used for performance 
evaluation 

To assess the performance of the eighteen parameter 
estimation methods of the Weibull distribution for 
estimating mean wind speed and standard deviation, 
different statistical approaches including seven reliable 
statistical indicators (Legates et al., 1999) have been 
used in this study. Several statistical parameters 
including relative percentage error (RPE), mean absolute 
percentage error (MAPE), mean absolute bias error 
(MABE), root mean square error (RMSE), relative root 
mean square error (RRMSE), correlation coefficient (R2) 
and index of agreement (IA) (Kasra et al., 2016) along 
with some other statistical tools have been utilized to 
offer an appropriate comparative assessment. In the 
following, a brief description of the considered statistical 
parameters is offered 

4.1. Relative percentage error (RPE) 

The RPE shows the percentage deviation between the 
calculated wind speed and standard deviation from the 
Weibull function xi and those obtained by measured 
values yi and its values ranging between -10% and +10% 
which are usually considered acceptable. RPE is defined 
as: 

æ ö
ç ÷ç ÷
è ø

y - xi iRPE(%)=100×
yi

 (16) 

where:  
• N is the number of observations,  
• iy  is the measured values,  
• ix is the predicted values.  

4.2. Mean absolute percentage error (MAPE) 

The MAPE shows the mean absolute percentage 
difference between the computed mean wind speed and 
standard deviation using the Weibull function and those 
attained by measured values. The MAPE is calculated by 
Eq. (17): 

 

å
N y - x1 i iMAPE= ×100

N yi=1 i
 (17) 

4.3. Mean absolute bias error (MABE) 

The MABE represents the average quantity of total 
absolute bias errors between the calculated mean wind 
speed and standard deviation by Weibull function and 
those obtained by measured values. The MABE is defined 
by Eq. (18): 
 

å
N1MABE= y - xi iN i=1

 (18) 

 

4.4. Root mean square error (RMSE) 

The RMSE identifies model accuracy by comparing the 
deviation between the values achieved by the Weibull 
function and those of measured data. The RMSE has 
always a positive value and it is calculated using Eq. 
(19): 
 

( )å
N 21RMSE= y - xi iN i=1

 (19) 

4.5. Relative root means square error (RRMSE) 

The RRMSE is obtained by dividing the RMSE by the 
average of mean wind speed and standard deviation 
obtained by measured values as follows: 
 

( )å

å

N 21 y - xi iN i=1RRMSE(%)= ×100N1 yiN i=1

 (20) 

 
Different ranges of RRMSE can be defined to 

represent the precision of the model as (Legates et al., 
1999): 

• Excellent for RRMSE < 10%; 
• Good for 10% < RRMSE < 20%; 
• Fair for 20% < RRMSE < 30%; 
• Poor for RRMSE > 30%. 

4.6. Correlation coefficient (R2) 

The R2 which indicates the strength of the linear 
relationship between the calculated mean wind speed 
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and standard deviation by the Weibull function and those 
computed using measured values is calculated by Eq. 
(21): 

 

( )( )

( ) ( )
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å å

N

i i i i
2 i=1

N N2 2

i i i i
i=1 i=1

x - x y - y
R =

x - x y - y
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4.7 Index of agreement (IA)  

The IA generally shows the degree of precision of the 
predicted values compared to the measured values. The 
IA which varies from 0 to 1 is calculated by Eq. (22): 
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5. Results and discussion 

5.1 Case study and wind speed data 

The data for the two sites, Lomé in Togo and 
Ouagadougou in Burkina Faso were chosen for this study 
because several wind energy projects have become a 
necessity in both countries.  

The demand for electricity in Togo continues to 
increase at an average rate of 8% per year and could 
double in the next 10 years. The country's electricity 
supply is heavily dependent on oil and its derivative 
products (including natural gas), which are subject to 
international price volatility (Kimatu et al., 2011) . Togo 
is ranked among the quiet areas although transient 
spikes wind speed can reach high values up to 4m/s in 
some areas especially in the northern part of the country 
during the harmattan period. Only the coastal area of the 
country has favorable evidence with wind speeds of 3 m/s 
on average. The development of wind power can be 
considered as a viable alternative. A project of two wind 
farms of 12 MW each located near Lomé is undergoing by 
a private company named Eco Delta Development (EDD) 
and its subsidiary Delta Wind Togo. 

In Burkina Faso, renewable energy concerns mainly 
the use of the wood fuel. Indeed, at household level in 
peri-urban and rural areas, biomass is the primary 
energy source for cooking. Due to accelerating 
urbanization in recent decades, services in peri-urban 
areas are collapsing under the strain of rapid 
development, resulting in uncontrolled sanitation 
problems and household energy insecurity. However, the 
further development of renewable energy technologies is 
only marginally supported by the government, despite its 
significant potential (Al-Mulali et al., 2012). Due to the 
western location of Burkina Faso, the potential for wind 
power is very limited. The average wind speed ranges 
between 1 and 3 m/s, with the maximum only obtained in 

the North. However, small-scale generators at suitable 
sites for selective purposes (e.g. water pumping, 
desalination systems etc.) might be feasible(Bugaje, 
2006). Hourly mean wind speed data used for Lomé and 
Ouagadougou were obtained from the meteorological 
database at  
http://weather.uwyo.edu/area/meteorogram/’.  
The coordinates of the two sites in our case study are 
given in Table 1. The data is recorded every day at one 
hour intervals (this is the mean over the 10 minutes 
before the hour) at a height of 10 m above the ground. 
 
Table 1 
Coordinates of the case study sites  
 

Sites Coordinates 
Lomé 6.17N, 1.25E, 25 meters 
Ouagadougou 12.35N, 1.52 °W, 306 meters 

 
Data collected cover the period, from January 2004 to 

December 2015 for the Lomé site (record length of 
approximately twelve (12) years) and from January 2009 
to December 2015 for the Ouagadougou site (record 
length of approximately seven (7) years). 
Using the methodology described earlier, we processed 
the 10-minute averaged hourly wind speed data collected 
at the Lomé and Ouagadougou sites. In order to assess 
the performance of our proposed approach, it is 
important to apply it over several periods. Given the 
importance of the analysis of monthly variations of wind 
characteristics at a given site, our case study covers each 
month (the entire dataset is grouped monthly into 12 
study periods: January, February, March, April, May, 
June, July, August, September, October, November, 
December), each month of each year and the aggregate 
for the whole year. As the data collected at the Lomé site 
covers a period from January 2004 to December 2015, the 
total number of periods of the study is 157 for the Lomé 
site. Total study periods considered for the Ouagadougou 
site is 97, since the data collected on this site covers a 
period from January 2009 to December 2015. For each 
given period and each of the two sites considered, we 
classified wind speeds in bins of size 1 m/s each according 
to Table 2. 

For each period and each site, the results are 
presented and analyzed. Table 3 and 4 present some 
descriptive statistics including maximum, mean, 
standard deviation, skewness and kurtosis of the used 
wind speed data at the two sites for even, odd and all 
classes of wind speed data subset.  
 
Table 2 
Wind speed classes adopted for the two sites. 

Wind speed (m/s) Bins Type 
]0, 1[ Bin0 Even bin 
[1, 2[ Bin1 Odd bin 
[2, 3[ Bin2 Even bin 
… … … 
… … … 
]21, 22[ Bin21 Odd bin 
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Table 3 
Descriptive statistics of the used wind speed data according to wind speed classes for the Lomé site 2004-2015. 
 

Wind speed 
classes (Bins) 

Rel. Freq. 
(%) 

Max. 
(m/s) 

Mean  
(m/s) 

Std. Dev.  
(m/s) Kurt. Skew. 

All  100 16 3.52870 2.02964 2.33358 0.26247 
Odd  51.46085 13 3.52034 2.03017 2.19198 0.32246 
Even  48.53915 16 3.53756 2.02906 2.48615 0.19880 

Table 4 
Descriptive statistics of the used wind speed data according to wind speed classes for the Ouagadougou site 2009-2015 
 

Wind speed 
classes (Bins) Rel. Freq. (%) 

Max. 
(m/s) 

Mean  
(m/s) 

Std. Dev.  
(m/s) Kurt. Skew. 

All  100 22 2.99562 1.66267 4.59290 0.78947 
Odd  49.59290 15 3.06272 1.63272 4.40914 0.79136 
Even  50.40710 22 2.92961 1.68904 4.76355 0.79843 

The mean wind speed and standard deviation are 
similar for all three data classes considered for each site. 
This is a preliminary indication that the Weibull 
parameters estimated from either even or odd class speed 
data subset might yield similar mean wind speed and 
standard deviation as the entire dataset (all class data). 

As noticed, Lomé has the highest mean wind speed of 
3.5287 m/s and Ouagadougou has the lowest wind speed 
of 2.99562 m/s. Moreover, for the Ouagadougou site, the 
coefficient of Kurtosis is significantly higher than the 
Lomé site. 
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Fig. 1. Histograms of wind speed data according to the wind 
speed classes at the Lomé site. 
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Fig. 2 Histograms of wind speed data according to the wind 
speed classes at the Ouagadougou site. 

 
 
 

Fig. 1 and Fig. 2 show the probability densities of the 
utilized wind speed data according to the wind speed 
classes for two selected sites, respectively. 

Also in order to show that the Weibull parameters 
can be estimated from even or odd class wind speed data 
for the periods considered at a site, we checked if there is 
a linear correlation between all class wind speed data 
characteristics (means and standard deviations of wind 
speed time series for chosen periods) calculated, and even 
or odd class wind speed data characteristics (means and 
standard deviations of wind speed time series for chosen 
periods) calculated. 

The results in Fig. 3 and Fig. 4, show that there is:  
• a strong linear correlation (R2 = 0.95735) between the 

means of wind speed time series calculated 
considering all class data and the means of wind 
speed time series calculated considering the even 
class data first, against a linear correlation (R2 = 
0.80231) considering odd class data when the data 
collected at the Lomé site are used; 

• a strong linear correlation (R2 = 0.98234) between the 
means of wind speed time series calculated 
considering all class data and the means of wind 
speed time series calculated considering the even 
class data first, against a linear correlation ( R2 = 
0.9705) considering odd class data when the data 
collected at the Ouagadougou site are used. 
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Fig. 3 Scatter plots of computed mean wind speed values 
using all bin time series versus those computed using even bin 
or odd bin wind speed time series for Lomé. 
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Fig. 4 Scatter plots of computed mean wind speed values 
using all bin time series versus those computed using even bin 
or odd bin wind speed time series for Ouagadougou. 

 
From the results of Fig. 5 and Fig. 6, we note that 

there is: 
• a strong linear correlation (R2 = 0.95469) between the 

standard deviations of wind speed time series 
calculated considering all class data and standard 
deviations of wind speed time series calculated 
considering the even class data first, against low 
linear correlation (R2 = 0.23878) considering odd  
class data when the data collected at the Lomé site 
are used; 

• a strong linear correlation (R2 = 0.96961) between the 
standard deviations of wind speed time series 
calculated considering all class data and standard 
deviations of wind speed time series calculated 
considering the even class data first, against a linear 
correlation (R2 = 0.93225) considering odd class data 
when the data collected at the Ouagadougou site are 
used. 
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Fig. 5 Scatter plots of computed wind speed standard 
deviation values using all bin time series versus those computed 
using even bin or odd bin wind speed time series for Lomé. 

 

From the results of Figs. 3, 4, 5 and 6, we can hope 
that we can estimate the Weibull parameters at two (02) 
study Sites by using only odd or even bin wind speed 
time series. This is true when we use the moment 
method which consists in solving equations of the mean 
(Eq. 14) and standard deviation (Eq. 5). 
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Fig. 6 Scatter plots of computed wind speed standard 
deviation values using all bin time series versus those computed 
using even bin or odd bin wind speed time series for 
Ouagadougou. 
 

5.2 Fitting histogram to Weibull functions 
Our goal in this article is to identify the most appropriate 
method for fitting wind speed probability distribution 
histograms for wind energy applications at two sites: 
Lomé (Togo) and Ouagadougou (Burkina Faso). From 
Fig. 7 and Fig. 8 it is possible to verify how the curves 
representing the Weibull probability density function, for 
each of the eighteen numerical methods considered in the 
analysis, match the histograms, giving an idea of which 
method yields the best fit to the data of wind speed 
collected. 
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Fig. 7 Weibull distribution functions for the Lomé site (years 
2004-2015). 
 
Graphically, it is observed that, all methods present a 
better curve fit with the histogram of wind speed at the 
two sites, excepted GPM, GPOBM and GPEBM. 

To choose an adequate method that better adjusts the 
wind speed histogram at each site, we calculated the 
RMSE and R2. The results in Tables 5 and 6 show that: 
• at the Lomé site, only five methods (MLOBM, 

EMLEB, EMJEB, EML and EMJ) have RMSE lower 
and equal to 0.0200 and R2 which is above 0.9665; the 
adequate method is MLOBM; 

• on Ouagadougou site, only five methods (MLM, 
EMJOB, EMLOB, MLOBM, and EPFOBM) have 
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RMSE lower and equal to 0.01477 and R2 which is 
above 0.9840; and the adequate method is MLM. 

The results show that:  
• there is a strong linear correlation between the shapes 

parameters (K) estimated using all bin speed time 
series and the estimate using even bin or odd bin wind 
speed time series; unless the GPM method is used;  

• there is a strong linear correlation between the scale 
parameters (C) estimated using all bin speed time 
series and the estimate using even bin or odd bin wind 
speed time series. 

Thus we can conclude that the Weibull parameters can 
be estimated at the two sites using anyone of five 
methods (EMJ, EML, EPFM, MLM, MOM) with even or 
odd bin wind speed time series and then we used a linear 
function to estimate the Weibull parameters when the 
entire series of wind speed data is used 
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Fig. 8 Weibull distribution functions for the Ouagadougou 
site (years 2009-2015). 
 

 
Table 5 
Statistical analysis of Weibull parameters estimated for the Lomé site (years 2004-2016). 

Methods K C RMSE R2 
GPM 1.89612 3.24713 0.04074 0.90607 
GPOBM 1.56804 2.58127 0.05951 0.80298 
GPEBM 1.99766 3.11241 0.04805 0.88165 
MLM 2.03100 4.17884 0.02134 0.96206 
MLOBM 1.79134 3.96250 0.01967 0.96612 
MLEBM 2.38769 4.41967 0.03054 0.92621 
EPFM 1.88456 3.97553 0.02075 0.96515 
EPFOBM 1.86990 3.96502 0.02067 0.96518 
EPFEBM 1.90034 3.98662 0.02085 0.96503 
EMJ 1.82327 3.97037 0.01989 0.96619 
EMJOB 1.81807 3.96046 0.02000 0.96590 
EMJEB 1.82882 3.98088 0.01979 0.96647 
EML 1.82327 3.97318 0.01985 0.96628 
EMLOB 1.81807 3.96328 0.01995 0.96600 
EMLEB 1.82882 3.98368 0.01974 0.96656 
MOM 1.88656 3.97561 0.02078 0.96510 
MOOBM 1.87190 3.96509 0.02071 0.96514 
MOEBM 1.90234 3.98669 0.02089 0.96497 

 
 
Table 6 
Statistical analysis of Weibull parameters estimated for the Ouagadougou site (years 2009-2015). 
 

Methods K C RMSE R2 
GPM 1.56205 2.91854 0.03393 0.91999 
GPOBM 1.37146 2.33153 0.05464 0.81172 
GPEBM 1.43075 2.42168 0.05131 0.83444 
MLM 2.10118 3.53456 0.01409 0.98608 
MLOBM 1.97528 3.46123 0.01433 0.98538 
MLEBM 2.24057 3.61116 0.01681 0.98075 
EPFM 1.87026 3.37404 0.01670 0.98008 
EPFOBM 1.94847 3.45396 0.01477 0.98442 
EPFEBM 1.79813 3.29417 0.01949 0.97289 
EMJ 1.89527 3.37560 0.01605 0.98168 
EMJOB 1.98012 3.45524 0.01423 0.98562 
EMJEB 1.81861 3.29592 0.01885 0.97471 
EML 1.89527 3.37781 0.01604 0.98170 
EMLOB 1.98012 3.45727 0.01424 0.98560 
EMLEB 1.81861 3.29826 0.01883 0.97478 
MOM 1.87126 3.37404 0.01668 0.98015 
MOOBM 1.95747 3.45431 0.01461 0.98479 
MOEBM 1.80013 3.29426 0.01943 0.97307 
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5.3 Comparison between the mean wind speed predicted 
by the methods and the observed data 

The statistical indicators introduced in Section 4 are 
utilized to evaluate the performances of the eighteen 
parameter estimation methods. Tables 7 and 8 provide 
the results of the performance evaluation of the eighteen 
methods in terms of MAPE, MABE, RMSE, RRMSE 
RPE, R2 and IA, respectively for the Lomé and 
Ouagadougou sites. It is significant to note that each 
statistical parameter offers different useful way of 
comparing the methods. Thus, the combination of all of 
these statistical indicators provides a possibility to 
compare the differences between the calculated mean 
wind speed from measured data and those from the 
Weibull distribution function within different 
perspectives with much higher reliability.  

The results show that the accuracy of computed mean 
wind speed values changes when the parameter 

estimation method changes. It is clear that for the Lomé 
site when eight methods EPF, EMJ, EML, MOM, 
EPFEBM, EMJEB, EMLEB and MOEBM, and for the 
Ouagadougou site when fifteen methods of EPF, EMJ, 
EML, MOM, EPFEBM, EMJEB, EMLEB, MOEBM, 
MOOBM, EPFOBM, EMLOB, EMJOB, MLOBM, MLM 
and MLEBM are used to compute the Weibull 
parameters, the calculated mean wind speed values by 
the Weibull distribution function are in good agreement 
with the mean wind speed values computed from 
measured data. This conclusion is drawn because of the 
low values of MAPE, MABE, RMSE, RRMSE, RPE (RPE 
whose histograms are shown in Figs 9 and 10) and the 
high values of R2 and IA. On the other hand, it is found 
that the lowest agreements are attained when the 
GPOBM, GPEBM and GPM methods are applied for K 
and C parameter calculations 

 
Table 7 
Performance evaluation of mean wind speed calculated by all 18 methods using different statistical indicators for the Lomé site. 
 

Methods 
MAPE 
(%) MABE RMSE 

RRMSE 
(%) R2 IA 

GPM 16.555 0.605 0.623 17.017 0.978 0.574 
GPOBM 25.454 0.945 1.021 27.889 0.788 0.509 
GPEBM 24.655 0.893 0.910 24.855 0.968 0.519 
MLM 8.726 0.271 0.463 12.659 0.812 0.734 
MLOBM 7.077 0.219 0.429 11.733 0.803 0.786 
MLEBM 11.830 0.377 0.534 14.588 0.806 0.637 
EPFM 0.0000 0.000 0.000 0.000 1.000 1.000 
EPFOBM 7.101 0.220 0.431 11.791 0.802 0.787 
EPFEBM 5.197 0.165 0.289 7.897 0.957 0.875 
EMJ 0.000 0.000 0.000 0.000 1.000 1.000 
EMJOB 7.101 0.220 0.431 11.791 0.802 0.787 
EMJEB 5.197 0.165 0.289 7.897 0.957 0.875 
EML 0.053 0.001 0.001 0.053 1.000 0.998 
EMLOB 7.108 0.220 0.432 11.802 0.802 0.787 
EMLEB 5.211 0.165 0.290 7.930 0.956 0.875 
MOM 0.002 0.000 0.000 0.003 1.000 0.999 
MOOBM 7.101 0.220 0.431 11.791 0.802 0.787 
MOEBM 5.200 0.165 0.289 7.903 0.957 0.875 

 
 
Table 8 
Performance evaluation of mean wind speed calculated by all 18 methods using different statistical indicators for the Ouagadougou site 
 

Methods 
MAPE 
(%) MABE RMSE 

RRMSE 
(%) R2 IA 

GPM 16.555 0.605 0.623 17.017 0.978 0.574 
GPOBM 25.454 0.945 1.021 27.889 0.788 0.509 
GPEBM 24.655 0.893 0.910 24.855 0.968 0.519 
MLM 8.726 0.271 0.463 12.659 0.812 0.734 
MLOBM 7.077 0.219 0.429 11.733 0.803 0.786 
MLEBM 11.834 0.377 0.534 14.588 0.806 0.637 
EPFM 0.000 0.000 0.000 0.000 1.000 1.000 
EPFOBM 7.101 0.220 0.431 11.791 0.802 0.787 
EPFEBM 5.197 0.165 0.289 7.897 0.957 0.875 
EMJ 0.000 0.000 0.000 0.000 1.000 1.000 
EMJOB 7.101 0.220 0.431 11.791 0.802 0.787 
EMJEB 5.197 0.165 0.289 7.897 0.957 0.875 
EML 0.053 0.001 0.001 0.053 1.000 0.998 
EMLOB 7.108 0.220 0.432 11.802 0.802 0.787 
EMLEB 5.211 0.165 0.290 7.930 0.956 0.875 
MOM 0.002 0.000 0.000 0.003 1.000 0.999 
MOOBM 7.101 0.220 0.431 11.791 0.802 0.787 
MOEBM 5.200 0.165 0.289 7.903 0.957 0.875 
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5.4. Comparison between wind speed standard deviation 
predicted by the methods and measured data 

The same statistical analyses to compare the mean wind 
speed predicted by the methods to that calculated from 
collected data are made here. 
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Fig. 9 Histograms of RPE (%) of mean wind speed predicted 
with 18 methods for Lomé. 
 
 

Tables 9 and 10 provide the results of the 
performance evaluation for the eighteen methods in 
terms of MAPE, MABE, RMSE, RRMSE, R2 and IA, 
respectively for the Lomé and Ouagadougou sites. The 
results show that the accuracy of computed wind speed 
standard deviation values changes when the parameter 
estimation method changes. It is clear that for the Lomé 
site when four methods namely EML, EMJ, EMLEB and 
EMJEB, and for the Ouagadougou site when six methods 

namely EML, EMJ, MOM, EPF, EMJEB, EMLEB and 
MOEBM are used to compute the Weibull parameters, 
the calculated wind speed standard deviation by the 
Weibull distribution function are in good agreement with 
the wind speed standard deviation values computed from 
measured data. This conclusion is drawn because of the 
low values of MAPE, MABE, RMSE, RRMSE, RPE (RPE 
whose histograms are shown in Figs 11 and 12). On the 
other hand, it is found that the lowest agreements are 
obtained when the GPOBM, GPEBM and GPM methods 
are applied for K and C parameter calculation. 
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Fig. 10 Histograms of RPE (%) of mean wind speed predicted 
with 18 methods for Ouagadougou. 

 

 

Table 9 
 Performance evaluation of the standard deviation of wind speed calculated by all 18 methods using different statistical indicators for 
the Lomé site 
 

Methods MAPE(%) MABE RMSE RRMSE(%) R2 IA 
GPM 19.407 0.397 0.490 24.424 0.238 0.500 
GPOBM 19.059 0.387 0.514 25.637 0.234 0.516 
GPEBM 26.328 0.535 0.628 31.309 0.186 0.498 
MLM 8.175 0.176 0.272 13.601 0.309 0.534 
MLOBM 6.601 0.143 0.237 11.839 0.234 0.500 
MLEBM 13.863 0.287 0.358 17.889 0.327 0.495 
EPFM 4.260 0.089 0.111 5.552 0.944 0.666 
EPFOBM 6.632 0.145 0.242 12.099 0.284 0.515 
EPFEBM 6.256 0.129 0.172 8.605 0.760 0.576 
EMJ 0.994 0.020 0.021 1.059 0.999 0.932 
EMJOB 6.177 0.134 0.234 11.707 0.257 0.518 
EMJEB 3.606 0.071 0.084 4.204 0.957 0.810 
EML 0.942 0.019 0.020 1.002 0.999 0.935 
EMLOB 6.189 0.134 0.234 11.701 0.256 0.517 
EMLEB 3.564 0.070 0.083 4.173 0.957 0.812 
MOM 4.154 0.087 0.112 5.591 0.956 0.683 
MOOBM 6.661 0.145 0.244 12.169 0.306 0.531 
MOEBM 6.225 0.128 0.173 8.666 0.771 0.588 
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Table 10 
Performance evaluation of the standard deviation of wind speed calculated by all 18 methods using different statistical indicators for 
the Ouagadougou site. 

 
Methods MAPE (%) MABE RMSE RRMSE (%) R2 IA 
GPM 12.385 0.203 0.281 17.765 0.326 0.513 
GPOBM 15.291 0.247 0.319 20.144 0.469 0.539 
GPEBM 18.570 0.299 0.370 23.350 0.421 0.530 
MLM 5.679 0.093 0.110 6.987 0.959 0.673 
MLOBM 3.481 0.058 0.077 4.916 0.935 0.770 
MLEBM 10.464 0.167 0.189 11.986 0.881 0.590 
EPFM 1.929 0.030 0.036 2.334 0.985 0.887 
EPFOBM 4.743 0.075 0.099 6.281 0.855 0.684 
EPFEBM 3.111 0.048 0.063 3.983 0.951 0.848 
EMJ 1.010 0.016 0.017 1.090 0.999 0.945 
EMJOB 3.670 0.061 0.079 5.004 0.933 0.763 
EMJEB 3.028 0.048 0.060 3.832 0.969 0.864 
EML 0.955 0.015 0.016 1.029 0.999 0.948 
EMLOB 3.658 0.061 0.078 4.980 0.933 0.764 
EMLEB 3.027 0.048 0.060 3.832 0.969 0.864 
MOM 0.769 0.013 0.025 1.577 0.995 0.952 
MOOBM 3.588 0.059 0.078 4.967 0.927 0.765 
MOEBM 2.928 0.046 0.060 3.825 0.960 0.860 
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Fig. 11 Histograms of RPE (%) for wind speed standard deviations predicted with 18 methods for Lomé.
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Fig. 12 Histograms of RPE (%) for wind speed standard 
deviations predicted with 18 methods for Ouagadougou. 
 

 
 
6. Conclusion 
The following conclusions can be drawn from the 
preceding analysis: 
• the approaches based on odd or even class wind speed 

time series with 1 m/s as bin size using Maximum 
Likelihood Method (MLM), the Energy Pattern Factor 
Method (EPFM), the Empirical Method of Justus 
(EMJ), the Empirical Method of Lysen (EML) and the 
Moment method (MOM) are efficient methods for 
determining the K and C parameters to fit Weibull 
distribution curves to wind speed data collected in 
Lomé, Togo and Ouagadougou, Burkina Faso 
analyzed using statistical tests; 

• the maximum likelihood with the odd bin time series 
method (MLOBM) is an adequate method that gave 
lower RMSE value of Weibull parameters K = 1.79134 
and C = 3.96250 m/s at the Lomé site using the whole 
data collected; 
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• the MLM is an adequate method that yields lower 
RMSE value of the Weibull parameters K = 2.10118 
and C = 3.53456 m/s at the Ouagadougou site using 
the whole data collected; 

• the accuracy of computed mean and standard 
deviation of wind speed values changes when the 
parameter estimation method changes at the Lomé 
and Ouagadougou sites; 

• in the evaluation of the mean and standard deviation, 
the GPM, the Graphical with Even Bin time series 
Method (GPEBM) and the Graphical with Odd Bin 
time series Method (GPOBM) are the least effective 
methods for fitting Weibull distribution curves to the 
wind speed using the data analyzed for the Lomé and 
Ouagadougou sites; 

• there is a linear relationship between the Weibull 
parameters K and C estimated by MLM, EPFM, EMJ, 
EML and MOM using odd or even class wind speed 
time series and all class wind speed time series; this 
result empowers one to compress wind data by 
removing either even or odd bins (depending on the 
site) prior to any available energy assessment while 
still expecting the same outcome as when the entire 
data is used. 
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