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ABSTRACT. In this study, the effectiveness of seven numerical methods is evaluated to determine the shape (K) and scale (C) parameters 
of Weibull distribution function for the purpose of calculating the wind speed characteristics and wind power density. The selected 
methods are graphical method (GPM), empirical method of Justus (EMJ), empirical method of Lysen (EML), energy pattern factor method 
(EPFM), maximum likelihood method (MLM) moment method (MOM) and the proposed. Hybrid method (HM) derived from EPFM and 
EMJ. The purpose is to identify the most appropriate method for computing the mean wind speed, wind speed standard deviation and 
wind power density for different costal locations in West Africa. Three costal sites (Lomé, Accra and Cotonou) are selected. The input data 
was collected, from January 2004 to December 2015 for Lomé site, from January 2009 to December 2015 for Accra site and from January 
2009 to December 2012 for Cotonou. The results indicate that the precision of the computed mean wind speed, wind speed standard 
deviation and wind power density values change when different parameters estimation methods are used. Five of them which are EMJ, 
EML, EPF, MOM, ML, and HM method present very good accuracy while GPM shows weak ability for all three sites. ©2020. CBIORE-
IJRED. All rights reserved 
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1. Introduction 

Nowadays, West Africa faces the challenge of generating 
more electricity to meet existing and future demand in a 
sustainable way (Brew-Hammond and Kemausuor 2009; 
Deichmann et al. 2011). Wind is an inexhaustible 
resource whose energy utilization has been increasing 
around the world at an accelerating pace while the 
development of new wind projects continues to be 
hampered by the lack of reliable and accurate wind 
resource data in many parts of the world, especially in the 
developing countries (Ayenagbo, Kimatu, and Rongcheng 
2011; Mentis et al. 2015). 

Commonly used functions for fitting the measured 
wind speed probability distribution in a given location 
over a certain period of time, typically monthly or yearly, 
are the Weibull, the Rayleigh and Lognormal. Amongst 
the most common distribution models, the Weibull 
function is accepted as the best model. Weibull 
distribution, a particular case of the generalized gamma 
distribution law, is characterized by the shape parameter 

                                                        
* Corresponding author: akimsalami11@gmail.com  

K and the scale parameter C. The two Weibull parameters 
help determine wind characteristics. Thus, the various 
estimation methods for Weibull parameters have been 
proposed. Justus et al. (Justus et al. 1978)  presented the 
four different estimation methods and the GPM 
(graphical method) based on the concept of least squares 
method and also compared them. Stevens and Smulders 
(Stevens, M. J. M., & Smulders 1979) suggested the MLM 
(maximum likelihood method) for the estimation of the 
parameters of Weibull wind speed distribution. Seguro 
and Lambert (Seguro and Lambert 2000) compared the 
commonly-used (MLM), (GPM) and the proposed MMLM 
(modified maximum likelihood method). As a result, they 
concluded that MLM performs better than GPM. Dorvlo 
(Dorvlo 2002) estimated the Weibull parameters used to 
model wind speeds in Oman using three methods, the 
Chi-square method, moment method (MOM) and GPM. 
The results showed that the Chi-square method gives 
better estimates for Weibull parameters than the other 
methods. Rocha et al. (Rocha et al. 2012) studied seven 
methods GPM, MLM, MMLM, MOM, EPFM, EM and 
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EEM (equivalent energy method). They aimed to analyze 
and compare these seven numerical methods for 
assessing effectiveness in determining parameters of 
Weibull, using wind data collected in the northeast region 
of Brazil. Jowder (Jowder 2009) compared the EM 
(empirical method) and GPM for prediction of the average 
wind speed and power density, using wind data measured 
in the Kingdom of Bahrain. The results indicated that EM 
provides more accurate prediction than GPM. Akdag and 
Dinler (Akdağ, S. A., & Dinler 2009) used three 
conventional methods, namely GPM, MLM and MOM to 
compare the proposed EPFM (energy pattern factor 
method) for estimating Weibull parameters. Their results 
show that the EPFM has better suitability than others 
according to power density and mean wind speed. 
Furthermore, Chang conducted a comparative study to 
show the performance of GPM, MLM, MMLM, MOM, 
EPFM and EM, in estimating Weibull parameters for 
wind energy application (Chang 2011). Along the same 
lines, Azad et al. (Azad, A., Rasul, M., & Yusaf 2014)  used 
the seven methods applied by Rocha et al. (Rocha et al. 
2012) to estimate Weibull parameters and used six 
statistical tools to rank the methods precisely. They found 
that MOM and MLM are the most efficient methods for 
estimating parameters of Weibull distribution. In 
addition, Arslan et al (Arslan, Bulut, and Yavuz 2014) 
compared MOM, MLM and the LMOM (L-moment 
method) for estimation of wind speed parameters relevant 
to Weibull distribution. They also found that when the 
sample size is greater than 100, MLM is preferable in 
comparison to other methods for the estimation of shape 
parameter in terms of the MSE (mean square error) 
criteria.  

Assessing the existing numerical methods to 
determine the most appropriate one for estimating of 
Weibull parameters is truly important in different 
applications of wind energy. Nevertheless, to the best of 
our knowledge, there is a lack of study in the literature on 
determining the most accurate Weibull parameter 
estimation methods to fit wind speed probability 
distribution histograms. Consequently, in this study, we 
evaluate the capability of six methods in estimating the K 
and C parameters of Weibull distribution function.  

The chief goal of this work is to identify the most 
appropriate method for fitting wind speed probability 
distribution histograms for wind energy applications at 
different locations of West Africa. To achieve this, a 
comprehensive statistical analysis based upon several 
statistical parameters and approaches applied for three 
costal sites in West Africa: Lomé (Togo), Accra (Ghana) 
and Cotonou (Benin) is conducted among six well known 
methods namely GPM, EMJ, EML, EPFM, MLM MOM 
and the proposed Hybrid method (HM) derived from 
EPFM and EMJ. 

The rest of this paper is structured as follows: the wind 
speed data of each site is presented in Section 2. Section 
3 describes methods for calculation of Weibull 
parameters. In Section 4, statistical indicators for 
performance evaluation are illustrated. In Section 5, 
results and discussion are presented. Finally, conclusion 
is drawn in Section 6. 

 

2. The data 

The data is saved every day at one hour interval (this is 
the average over the 10 minutes before the hour) at a 
height of 10 m above the ground. Note that the measuring 
point of these weather data for each station is in an 
airport area which theirs coordinates are presented in 
Table 1. Data collected cover the period, from January 
2004 to December 2015 for Lomé site (record length of 
approximately twelve (12) years), from January 2009 to 
December 2015 for Accra site (record length of 
approximately seven (7) years) and from January 2009 to 
December 2012 for Cotonou site (record length of 
approximately four (4) years). 
 
Table 1  
Coordinates of the case study site 

Sites Coordinates 
Accra (Kotoka) 5.60N, 0.17W, 69 meters 

Cotonou (Cadjehoun) 6.35N, 2.38E, 9 meters 
Lomé (Tokoin) 6.17N, 1.25E, 25 meters 

 
Table 2 presents  statistical parameters and the mean 
power density for the three (03) studied sites, (Lomé site, 
Accra site, and Cotonou site). As noticed, Accra site has 
the highest mean wind speed with the value of 4.1603 m/s 
and Lomé site has the lowest wind speed with the value 
of 3.5287 m/s. According to values of mean power density 
(< 100 W/m2) obtained in Table 2 we concluded that the 
three sites are not suitable for large-scale electric wind 
application (Celik 2003; Keyhani et al. 2010). But, small-
scale wind turbines could be good option for the three sites 
(Lomé, Accra and Cotonou sites) in order to supply power 
for lightings, electric fans, chargers and air conditioning 
units for small houses (Mostafaeipour et al. 2011).  
Figures 1 to 3 offer respectively the probability and 
cumulative probability densities of the utilized wind 
speed data for selected sites. The descriptive statistics 
presented in Table 2 as well as the probability and 
cumulative probability distribution of the wind speed 
provided by that figures give a good insight on the 
characteristics of wind speed in the selected site. 

3. Methods for calculation of Weibull parameters 

The wind speed measurement data obtained on a site 
are often vague to provide a clear vision of the wind power 
potential available on it. Hence, there is a need to 
compute key parameters that allow a quick assessment of 
power characteristics hidden in the measured wind speed 
data(Genc et al. 2005; Lu, Yang, and Burnett 2002; 
Salami et al. 2013). Since wind is a stochastic valued 
event, it is better to describe the variation of wind speeds 
by a statistical function. The probability distribution 
function (pdf) of the two-parameter Weibull distribution 
(Equation (1)) is often used in characterizing the 
distribution of wind speeds measured frequently over a 
period of a month, a year, or several years (Ajavon et al. 
2015; Safari 2011). 
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Table 2  
Descriptive statistics of the used wind speed data according to geographical locations  

Sites Periods Maximum 
wind speed 

(m/s) 

Mean wind 
speed 
(m/s) 

Standard 
deviation 
(m/s) 

Power 
density 
(W/m2) 

Kurtosis 
 

Skewness 
 

Lomé 2004-2015 16 3.52870 2.02964 54.96667 2.33358 0.26247 
Accra 2009-2015 21 4.16032 2.21591 82.22761 2.76699 0.08801 
Cotonou 2009-2012 14 4.01159 1.81438 63.35978 2.49218 -0.12249 

 

 
Fig. 1 Probability (a) and cumulative probability (b) densities of the measured wind speed at 10 m for Lome site 

 

 
Fig. 2 Probability (a) and cumulative probability (b) densities of the measured wind speed at 10 m for Accra site 

 

 
Fig. 3 Probability (a) and cumulative probability (b) densities of the measured wind speed at 10 m for Cotonou site
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       (1) 

 
Equation (2) gives the cumulative distribution function 
(cdf) of the wind speed, 

         (2) 

 

The mean and standard deviation of the wind speed series 
are given by Equations (3) and (4): 

         (3) 

 

       (4) 

where:  

•   is the mean wind speed, 
•  is the standard deviation of the observed data of 

the wind speed, 
• is the gamma function defined by the Euler 

integral of the second kind. 

 
The wind power density is an important indicator to 
determine the potential of wind resources and to describe 
the amount of wind energy at various wind speed values 
in a particular location. The knowledge of wind power 
density is also useful to evaluate the performance of wind 
turbines and nominate the optimum wind turbines. Wind 
power density represents the amount of energy available 
on the site which can be converted to electricity by using 
wind turbines. Indeed, the mean kinetic energy, available 
on a site per unit time and per unit area is expressed by 
Equation (5) (Celik 2003): 

 

       (5) 

where: 

•  is the air density (kg.m-3),  

• is the wind speed and, 
•  is the probability distribution function (pdf) of 

Weibull (Equation (1)), 

•  is the cubic mean wind speeds. 

 
There are some methods introduced in the literature to 
calculate the K and C parameters of Weibull distribution 
function. In this study, we introduced a Hybrid method 

(HM) derived from EPFM and EMJ. Seven methods 
including graphical method (GPM), empirical method of 
Justus (EMJ), empirical method of Lysen (EML), energy 
pattern factor method (EPFM), maximum likelihood 
method (MLM), moment method (MOM) and Hybrid 
method (HM) are selected for comparative evaluation. The 
descriptions of these seven methods are provided briefly in 
the following. 

 

3.1. Graphical method (GPM) 

The graphical method is achieved through the 
cumulative distribution function. In this distribution 
method, the wind speed data are interpolated by a straight 
line, using the concept of least squares. The Equation for 
this method can be represented by a double logarithmic 
transformation (Celik 2003; Dorvlo 2002) as follows: 

      (6) 

 

3.2. Empirical method of Justus (EMJ) 

Based on the empirical method introduced by Justus 
(Justus et al. 1978), the K and C parameters are 
computed, respectively by Equations (7) and (8) as: 

          (7) 

          (8) 

 

3.3. Empirical method of Lysen (EML) 

In the empirical method suggested by Lysen, K is 
calculated by Equation (7) as in the Justus method. In fact, 
the only difference is the Equation of C. In the empirical 
method of Lysen, C is obtained by Equation (9): 

         (9) 

 

3.4. Energy pattern factor method (EPFM) 

The energy pattern factor method is related to the 
averaged data of wind speed and is defined by the 
following Equations (Seguro and Lambert 2000): 

        (10) 

       (11) 

C parameter is also computed similar to empirical method 
of Justus by Equation (8). 
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3.5. Maximum likelihood method (MLM) 

The maximum likelihood estimation method is difficult 
to solve, since numerical iterations are needed to 
determine the parameters of the Weibull distribution 
(Chang 2011; Salami et al. 2013). In this method, the 
parameters K and C are determined according to the 
Equations below (Dorvlo 2002): 

    (12) 

 

       (13) 

3.6. Moment method (MOM) 

The moment method can be used as an alternative to 
the maximum likelihood method (Rocha et al. 2012) and, 
in this case, the parameters K and C are determined by 
the following Equations: 

        (14) 

      (15) 

 

3.7. Proposed method (Hybrid EPFM-EMJ) 

A hybrid method (HM) derived from EPFM and EMJ 
permit to find a formula to determine the shape parameter 
as follows:  

      (16) 

and C parameter is computed similar to empirical method 
of Justus by Equation (8). 

 

4. Performance Indicators 

To evaluate the performance of each method, the root 
mean squared error (RMSE), the correlation coefficient R2 
the relative percent error (RPE) and Relative root mean 
square error (RRMSE) are used. 

The RMSE parameter, whose ideal value is zero (0), 
gives the difference between the predicted or expected 
value xiand observed value yi for  data samples (Akdağ, 
S. A., & Dinler 2009; Rocha et al. 2012). It is given by 
Equation (17) 

       (17) 

The correlation coefficient whose ideal value is one (1) 
gives the correlation between the predicted or expected 
and observed values (Leung and Yang 2012; Stevens, M. 
J. M., & Smulders 1979). It is given by the relation (18). 

     (18) 

The relative percent error (RPE) between the predicted 
value and the observed value is given by Equation (19), it 
is considered acceptable if its absolute value is less or 
equal to 10% (Chang 2011; Dorvlo 2002; Seguro and 
Lambert 2000). 

       (19) 

The RRMSE is obtained by dividing the RMSE of wind 
speed characteristics (Means, standard deviations and 
power densities of wind speed) obtained by the average 
measured values as follows: 

      (20) 

Different ranges of RRMSE can be defined to represent the 
models’ precision (Jamieson, Porter, and Wilson 1991; Li 
et al. 2013; Mohammadi et al. 2016) as: 

§ Excellent for RRMSE < 10%; 
§ Good for 10% < RRMSE < 20%; 
§ Fair for 20% < RRMSE < 30%; Poor for RRMSE > 30%. 
 
 
5. Results and discussion 

Given the importance of the analysis of monthly and 
global variations of wind characteristics on a given site, 
our case study covers a global dataset for each site and 
each month (the entire dataset is grouped monthly into 12 
study periods: January, February, March, April, May, 
June, July, August, September, October, November, 
December). 
 

5.1 Global Analysis 

Our goal in this article is to identify the most 
appropriate method for fitting wind speed probability 
distribution histograms for wind energy applications on 
three costal sites in West Africa: Lomé (Togo), Accra 
(Ghana) and Cotonou (Benin). From Figures 4, 5 and 6 it 
is possible to verify how the curves representing the 
Weibull probability density function, for each of the six 
numerical methods considered in the analysis, match the 
histograms, giving an idea of which method yields the best 
fit to the data of wind speed collected.
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Fig. 4 Weibull distribution (a) and cumulative distribution (b) functions - Lomé (years 2004-2015) 

 

 
Fig. 5 Weibull distribution (a) and cumulative distribution (b) functions - Accra (years 2009-2012) 

 

 
Fig. 6 Weibull distribution (a) and cumulative distribution (b) functions - Cotonou (years 2009-2015) 

 
Graphically, it is observed that six methods (MLM, EPF, 
EMJ, EML MOM and HM), expected GPM present a 
better curve fit with the histogram of the wind speed on 
the three sites. To choose adequate method that adjusts 
better the histogram of the wind speed on each site, we 
calculated the RMSE and R2. The results in Table 3 show 
that: 
§ on Lomé site, only two methods (EMJ and EML) have 

RMSE below 0.0200 and R2 which are above 0.9660. 
EMJ and EML are followed by HM with RMSE of 
0.0203 and R2 of 0.9658; 

§ on Accra site, only MLM and EPFM have RMSE 
below 0.0210  and R2 which are above 0.9500. MLM 
and EPFM are followed by HM with RMSE of 0.0241 
and R2 of 0.9299; 

§ on Cotonou site, only MLM has RMSE below 0.0210 
and R2 which are above 0.9600. . MLM is followed by 
HM with RMSE of 0.0224 and R2  of 0.9588. 

The predicted values for K and C permitted the 
computation of the mean wind speed, standard deviation 
and its mean power density for each method, and the 
results are presented in Tables 4, 5 and 6. 
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Table 3  
Comparison of methods for different sites 
Methods   Lomé   Accra   Cotonou 

  K C RMSE R2  K C RMSE R2  K C RMSE R2 
GPM   1.8961 3.2471 0.0407 0.9061   1.7332 3.9821 0.0388 0.8305   2.0705 3.7028 0.0487 0.8219 
MLM   2.0310 4.1788 0.0213 0.9621   2.3825 5.0172 0.0207 0.9527   2.5722 4.6173 0.0206 0.9670 
EPFM   1.8846 3.9755 0.0207 0.9652   2.0616 4.6965 0.0238 0.9329   2.4372 4.5239 0.0224 0.9588 
EMJ   1.8233 3.9704 0.0199 0.9662   1.9820 4.6936 0.0245 0.9265   2.3671 4.5264 0.0225 0.9570 
EML   1.8233 3.9732 0.0198 0.9663   1.9820 4.6963 0.0245 0.9266   2.3671 4.5276 0.0225 0.9571 
MOM   1.8866 3.9756 0.0208 0.9651   2.0636 4.6965 0.0238 0.9330   2.4392 4.5239 0.0224 0.9588 
HM  1.8539 3.9731 0.0203 0.9658  2.0218 4.6953 0.0241 0.9299  2.4022 4.5252 0.0224 0.9588 

 
Table 4 
Comparison of methods according to mean speed, standard deviation and power density for Lomé site 

Methods 
 

Mean speed 
 

Standard deviation 
 

Mean power density 

  Predicted 
(m/s) 

RPE  
(%) 

 Predicted  
(m/s) 

RPE  
(%) 

 Predicted 
(W/m2) 

RPE  
(%)     

GPM  2.8816 -18.3389  1.5804 -22.1324  29.5832 -46.1798 

MLM  3.7025 4.9246  1.9088 -5.9556  58.4754 6.3835 

EPFM  3.5287 0.0000  1.9461 -4.1173  54.6857 -0.5111 

EMJ  3.5287 0.0000  2.0051 -1.2091  56.7331 3.2137 

EML  3.5312 0.0708  2.0065 -1.1392  56.8536 3.4329 

MOM  3.5286 -0.0018  1.9442 -4.2108  54.6198 -0.6310 

HM  3.5287 0.0000  1.9751 -2.6869  55.6799 1.2975 

Table 5 
Comparison of methods according to mean speed, standard deviation and power density for Accra site 

Methods 
 

Mean speed 
 

Standard deviation 
 

Mean power density 

  
Predicted 

(m/s) 
RPE 
(%) 

 
Predicted 

(m/s) 
RPE 
(%) 

 
Predicted 

(W/m2) 
RPE 
(%)     

GPM  3.5485 -14.7054  2.1111 -4.7292  61.2424 -25.5209 

MLM  4.4471 6.8933  1.9868 -10.3399  88.1104 7.1543 

EPFM  4.1603 0.0000  2.1162 -4.5016  81.7690 -0.5577 

EMJ  4.1603 0.0000  2.1925 -1.0576  85.0041 3.3766 

EML  4.1628 0.0587  2.1938 -0.9996  85.1538 3.5587 

MOM  4.1603 -0.0005  2.1143 -4.5853  81.6918 -0.6516 

HM  4.1603 0.0000  2.1536 -2.8125  83.3325 1.3439 

For the mean wind speed, only the graphical method 
presented a remarkable error. All the other methods have 
shown a good accuracy. Finally, we note that the Weibull 
parameters estimated by HM, EMJ and EPFM are 
adequate for predicting the average value with relative 
percent error (RPE) lower than 0.0301% in the three study 
sites. 

The standard deviation analysis permits similar 
conclusion, in spite of MLM, which predicted the standard 
deviation with relative percent error (RPE) greater than 
10% in Accra and Cotonou sites. Thus the EMJ, EML and 
HM methods are most appropriate to predict the standard 
deviation of wind speeds at the three sites. 

For the mean power density, only the graphical method 
presented a remarkable error. All the other methods have 
shown a good accuracy. But the power densities calculated 
from Weibull parameters estimated by EPFM, MOM and 
HM best predicts the power densities with relative percent 
error (RPE) lower than 1.3% in the three study sites. 

 

5.2 Monthly Analysis 

In this part, the obtained results on the monthly basis 
evaluation are presented. Figures 7 through 12 illustrate 
the average of monthly values of C and K for Lomé, Accra 
and Cotonou sites, respectively. It is seen that for all sites 
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the values of C parameter from all methods are very close 
to each other and only some major differences are noticed 
for GPM. Nevertheless, the values of K parameter for 
GPM, EMJ, EML, EPFM, MOM and HM methods are in 
the same range for all months while for the MLM methods 

the K takes higher values compared to other methods. 
These differences in K and C values for the methods lead 
to larger differences in the calculated values of wind speed 
average, standard deviation and wind power density.  

 
 

Table 6 
Comparison of methods according to mean speed, standard deviation and power density for Cotonou site 

Methods 
 

Mean speed 
 

Standard deviation 
 

Mean power density 

  
Predicted 

(m/s) 
RPE 
(%) 

 
Predicted 

(m/s) 
RPE 
(%) 

 
Predicted 

(W/m2) 
RPE 
(%)     

GPM  3.0520 -23.9213  1.5279 -15.7874  31.7458 -49.8960 

MLM  4.2210 5.2199  1.5852 -12.6319  66.0511 4.2477 

EPFM  4.0237 0.3018  1.7375 -4.2396  63.4089 0.0776 

EMJ  4.0237 0.3018  1.7825 -1.7547  64.7902 2.2576 

EML  4.0247 0.3269  1.7830 -1.7301  64.8388 2.3344 

MOM  4.0237 0.3027  1.7362 -4.3080  63.3730 0.0208 

HM  4.0116 0.0000  0.1791 1.9469  64.2653 1.4293 
 
 
 

 
Fig. 7 Average of monthly values of C (m/s) for Lomé 

 

 
Fig. 8 Average of monthly values of C (m/s) for Accra 

 
 
 

 
 
In order to provide a month by month comparison and 

assessment between measured and estimated values of 
wind speed average, standard deviation and wind power, a 
statistical frequency analysis was performed using the 
RPE indicator. The results of Tables 4, 5 and 6 show that 
only EPFM, EMJ, EML, MOM and HM methods are 
recommended to estimate Weibull parameters to predict 
the monthly average wind speeds, the monthly standard 
deviations of wind speeds and monthly power densities 
with RPE lower than 10% on Lomé site. 

Therefore EPFM, EMJ, EML, MOM and HM methods 
are recommended to estimate Weibull parameters to 
predict the monthly average wind speeds, the monthly 
standard deviations of wind speeds and monthly power 
densities with RPE lower than 10% on Accra site. 

 

 
Fig. 9 Average of monthly values of C (m/s) for Cotonou 
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Fig. 10 Average of monthly values of K (–) for Lomé 

 

 
Fig. 11 Average of monthly values of K (–) for Accra 

 

 
Fig. 12 Average of monthly values of K (–) for Cotonou 

 
According to above results, we notice that only EPFM, 

EMJ, EML, MOM, MLM and HM methods are 
recommended to estimate Weibull parameters to calculate 
average wind speeds, with RPE lower than 10% on 
Cotonou site for all the twelve months. Additionally to 
calculate the monthly standard deviations and wind 
power densities on the site of Cotonou, it is preferable to 
use the Weibull parameters estimated by EPFM, EMJ, 
EML and MOM.  

Among the calculated parameters (mean of wind 
speed, standard deviation of wind speed and wind power 
density), wind power density plays a critical role in wind 

energy applications.The wind power density portrays the 
potential of wind resources and to describe the amount of 
wind energy at various wind speed values in a particular 
location. The knowledge of wind power density is also 
useful for evaluating the performance of wind turbines 
and choosing the optimal wind turbines. Wind power 
density indicates the level of energy available that can be 
converted into electricity by using wind turbines. That is 
why the result of our analysis focuses on calculations of 
monthly power densities on the three sites using the six 
methods.  

 

6. Conclusion 

The purpose of this article is to determine a suitable 
method for estimating Weibull parameters for wind 
energy applications on three costal sites in West Africa. 
For this, six methods often used in the literature are 
applied to wind speed data collected at each site. These 
are: the graphical method (GPM), maximum likelihood 
method (MLM) moment method (MOM), energy pattern 
factor method (EPFM), empirical method of Justus (EMJ) 
and empirical method of Lysen (EML). Moreover, a hybrid 
method derived from EPFM and EMJ is proposed to also 
determine Weibull distribution function parameters. The 
results reveal that only GPM does not yield acceptable 
adjustment errors on the three sites and often the MLM 
has the lowest error adjustment of the distribution 
histogram of wind speeds at the three sites.  

The Weibull parameters estimated by the methods 
EMJ, EML, EPFM, MOM and HM are recommended for 
predicting wind speed average, standard deviation and 
mean wind power density on Lomé, Accra and Cotonou 
sites located in West Africa. Thus for wind energy 
applications for costal sites in West Africa, we recommend 
using: 

• MLM method to estimate Weibull parameters that 
best fit the histogram of wind frequency 
distributions; 

• HM, EMJ, EML, EPFM, MLM, or MOM method to 
estimate Weibull parameters for better prediction 
of mean wind speeds, the standard deviation and 
mean wind power density. 
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