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ABSTRACT. This study evaluated thermodynamically the performance of conversion of palm kernel shells into combustible gas through 
gasification technology for aggregate heating in a hot-mixed asphalt production plant by developing a thermodynamic model using 
licensed Aspen Plus v.11 software. The effects of the equivalence ratio (ER) in the gasification process and the amount of combustion air 
to combustible gas to attain the required aggregate temperature were investigated. The thermodynamic model showed a good agreement 
with the experimental results based H2 and CO contain in producer gas which provided by maximum root mean square errors value of 
8.82 and 6.42 respectively. Gasification of 30–35 kg of palm kernel shells in a fixed-bed gasifier reactor using air as a gasifying agent at 
an ER of 0.325–0.350 generated gaseous fuel for heating 1 ton of aggregate to a temperature of 180–200°C with combustion excess air 
10%–20%. ©2020. CBIORE-IJRED. All rights reserved 
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1. Introduction 

In recent years, the utilization of renewable energy has 
received more attention due to the depletion of fossil fuels. 
Almost all sectors in terms of industry, civilization and 
transportation still relies on various fossil fuels as their 
main energy sources. According to Indonesia Presidential 
Decree No. 79 of 2014 for a national energy mix policy, the 
total contribution of new and renewable fuels as the main 
energy source shall be 23 % by 2025. For this reason, many 
research have been conducted to discover potential 
renewable energy resources (Cheng & Hu, 2010); 
(Erinofiardi et al., 2017); (Ki, Kurniawan, Lin, Ju, & 
Ismadji, 2013); (Nasruddin et al., 2016); (Silitonga et al., 
2011). As reported, the renewable energy resource in 
Indonesia with the most potential is palm oil (Indrawan et 
al., 2017), as Indonesia’s palm oil production supplies 
almost 62% of the world’s palm oil demand (Febriansyah, 
Setiawan, Suryopratomo, & Setiawan, 2014). Meanwhile, 
the production of 1-ton palm oil can produce many types 
of solid waste, such as 0.3 ton of palm kernel shell (PKS), 
1-ton of empty fruit bunch (EFB), or 0.7 ton of palm 
mesocarp fiber (PMF) (Husain, Zainac, & Abdullah, 2002). 
PKS has the highest calorific value compared to the other 
solid wastes (PKS: ± 15 MJ/kg; EFB: ± 5 MJ/kg; PMF: ± 11 
MJ/kg) and can potentially be used to replace fossil fuels 
as the main energy source for many purposes. Recently, 
some PKS, together with PMF, has been used as a fuel for 
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boilers to produce heating steam and electricity, but some 
is exported outside Indonesia (Wirawan, 2007). 

Asphalt Mixing Plant (AMP) industries that support 
highway construction are likely to use PKS for the heating 
of aggregates before mixing with hot asphalt through 
gasification technology. Traditionally, this heat is 
supplied by many types of fossil fuel combustion. It is 
obvious that increasing highway construction activities 
require more energy for aggregate heating. Every ton of 
hot-mixed asphalt (HMA) consumes about 315 MJ or 
approximately 7.6–11.41 L of diesel fuel (Kristjánsdóttir, 
Muench, Michael, & Burke, 2007). PKS gasification offers 
a flexible and reliable technology to minimize the 
dependence on fossil fuel for producing HMA. With a total 
production of 34.71 million tons of palm oil in 2018, around 
11.5 million tons of PKS also will be available for fuel 
substitution in AMP industries in Indonesia (Husain et 
al., 2002). A block diagram of a proposed AMP process 
production system combined with a PKS gasification unit 
is shown in Figure 1. 

PKS enters the gasifier from the belt conveyor and 
screw feeder. A limited amount of air as a gasifying 
medium is also added into the gasifier to produce 
combustible gas with typical composition: 19.5% H2; 22.3% 
CO; 3.07% CH4; 12.4% CO2; and 3.46% H2O (Kirsanovs et 
al., 2017). The gas should be cooled to condense the water 
content and cleaned to remove unwanted particulates by 
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feeding the gas into a water scrubber. The purpose is to 
maintain the calorific value of the gas. If there is water 
(vapor) and undesired particulates in the gas, the calorific 
value of the gas decreases. At the same time, aggregate 
from the stockpile is fed into the rotary dryer and heated 
to the required temperature. The heat is generated as the 
result of combustion between the producer gas and 
combustion air. After heating, hot aggregate is mixed with 
the hot asphalt to produce the HMA. In order to deliver 
good quality HMA, a temperature of 150–200 °C should be 
achieved (Peinado, de Vega, García-Hernando, & 
Marugán-Cruz, 2011). Thus, the optimum operating 
condition of the gasification and heating processes should 
be controlled properly.  

 

 
Fig. 1 Block Flow diagram of PKS gasification for aggregate 

heating in AMP 
 

 
There are two equilibrium approaches widely used for 

thermodynamic modelling: a stoichiometric method based 
on chemical reaction equilibrium constants and (Żogała, 
2014). In this study, the non-stochiometric equilibrium 
approach was used for gasification process modelling 
because the several complicated chemical reactions that 
take place in the process (Table 1). By using this approach, 
these reactions and their equilibrium constants are not 
considered in the model (Baruah & Baruah, 2014). Many 
investigators have reported that this approach delivers a 
good agreement between simulation and experiment 
(Doherty, Reynolds, & Kennedy, 2009); (Hannula & 
Kurkela, 2012); (Adnan, Susanto, Binous, Muraza, & 
Hossain, 2017); (Adnan & Hossain, 2018); (Puig-Gamero, 
Argudo-Santamaria, Valverde, Sánchez, & Sanchez-Silva, 
2018); (Gu, Tang, Yao, & Chen, 2018). Many similar types 
of research with special purposes, object studies, 
parameter studies, and feedstocks have been performed by 
previous investigators. A thermodynamic study of coal 
gasification in an entrained gasifier for generating 
electricity with burner type and input nozzle angle as 
parameters study has been performed (Lee et al., 2012), 
while rice straw gasification with variations in 
gasification medium and ER was also studied 

thermodynamically (Gu et al., 2018). The effects of gasifier 
temperature and ER in two fixed-bed municipal solid 
waste gasifiers was investigated to determine the most 
suitable gasification conditions (Chen, Jin, Yan, & Chi, 
2013). A thermodynamic study on microalgae gasification 
reported a relative error of less than 10% (Adnan & 
Hossain, 2018); (Adnan, Xiong, Hidayat, & Hossain, 2019). 
PKS gasification in a circulating fluidized bed gasifier was 
modelled to investigate the effects of gasifier temperature 
and steam/biomass ratio on producer gas composition 
(Hussain, Tufa, Azlan, Yusup, & Zabiri, 2016). This work 
examines the effects of equivalence ratio (ER) for 
gasification and combustion of producer gas on aggregate 
temperature by developing a thermodynamic model with 
Aspen Plus software. 
 
 
Table 1 
Typical gasification reactions at 25oC 

Reaction ∆HR° 
(kJ/kmol) 

∆GR° 
(kJ/kmol) 

Carbon reactions:   
C + CO2 ↔ 2CO +172.0 +120.00 
C + H2O ↔ CO + H2 +131.0 +91.41 
C + 2H2 ↔ CH4 -74.8 -50.50 
C + ½O2 → CO -111.0 -137.20 
Oxidation reactions:   
C + O2 → CO2 -394.0 -394.40 
CO + ½O2 → CO2 -284.0 -257.20 
CH4 + 2O2 ↔ CO2 + 2H2O -803.0 -801.12 
H2 + ½O2 ↔ H2O -242.0 -228.61 
Water-gas shift reaction:   
CO + H2O ↔ CO2 + H2 -41.2 -28.59 
Methanation reactions:   
2CO + 2H2 → CH4 + CO2 -247.0 -170.50 
CO + 3H2 ↔ CH4 + H2O -206.0 -141.91 
CO2 + 4H2 → CH4 + 2H2O -165.0 -113.32 
Steam-reforming reactions:   
CH4 + H2O ↔ CO + 3H2 +206.0 +141.91 
CH4 + ½O2 → CO + 2H2 -36.0 -86.70 

 
 
2. Materials and methods 

2.1 Model development 
 

This work develops a non-stoichiometric thermodynamic 
model of PKS gasification in a downdraft fixed-bed gasifier 
for aggregate heating with ER and combustion excess air 
as parameters. This is based on Gibbs free energy 
minimization on Eq. (1) where ni is the mole of species i 
and µi is the chemical a potential of species i which is given 
by Eq. (2). It should be defined that ∆𝐺#,%&  is the standard 
Gibbs free energy of formation of species i, R is universal 
gas constant, T is the reaction temperature, f is fugacity 
coefficient, Pi is the pressure of species i. 
 
𝐺' = ∑ 𝑛%𝜇%,

%-. 		                                                                              (1) 
  
𝜇% = ∆𝐺#,%& + 	𝑅𝑇	ln	(∅78

79
)                                                                      (2) 

 
During gasification reactions, it is assumed at ambient 
pressure that a gas ideal approach is reasonable then Eq. 
(2) is rewritten to be Eq. (3). 
 
𝜇% = ∆𝐺#,%& + 	𝑅𝑇	ln	(𝑦%)                                                                      (3) 
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with yi is mol fraction of species i in the producer gas. 
Substitution Eq. (3) to Eq. (1) results Eq. (4). 
 
𝐺' = ∑ 𝑛%,

%-. ∆𝐺#,%& +	∑ 𝑛%,
%-. 𝑅𝑇	ln	(𝑦%)           (4)                                                 

 
Eq. (4) should be differentiated towards ni and set the 
value to zero which is minimization of Gibbs energy at 
certain values of ni. This results a number of differential 
equations as many as the involved species. Elemental 
balances of carbon, hydrogen and oxygen atoms in the 
reaction system should also be constructed as expressed 
on Eq. (5) and summed over all the atoms k, it is 
rearranged into Eq. (6) where 𝑎%= is the number of k-th 
atom of element present in each species i, and Ak is total 
number of k-th atom of element in the system. 
 
∑ 𝑛%𝑎%=% = 𝐴=	                                                                            (5) 
 
∑ 𝜆== (∑ 𝑛%𝑎%=% − 𝐴=	) = 0                                                                (6) 
 
where λk is Langrange multipliers. This equation is then 
added to Eq. (4) without changing the value of Gt as 
expressed on Eq. (7). 
 
𝐹 = ∑ 𝑛%,

%-. ∆𝐺#,%& +	∑ 𝑛%,
%-. 𝑅𝑇	ln	(𝑦%) + ∑ 𝜆== (∑ 𝑛%𝑎%=% − 𝐴=	)        (7)   

                        
Furthermore, Eq. (7) should be differentiated towards 

ni and minimization of this equation created a number of 
algebraic equations. There would be 5 (five) total Gibbs 
free energy as expressed on Eq. (8) to (12) which represent 
all considered components. 
 
CH4:                                    
 ∆CD,EFG

9

HI
+ ln(𝑦JKL) +	

ME	N	LMF
HI

= 0                            (8)                                         
 
H2:                                                      
 ∆CD,FO

9

HI
+ ln(𝑦KP) +	

PMF
HI

= 0                                                             (9) 
 
CO:                                               
 ∆CD,EQ

9

HI
+ ln(𝑦JR) +	

ME	N	MQ
HI

= 0                                                          (10) 
 
CO2:                                  
 ∆CD,EQO

9

HI
+ ln(𝑦JRP)+ 	

ME	NP	MQ
HI

= 0                                                    (11) 
 
H2O:                                        
∆CD,FOQ

9

HI
+ ln(𝑦KPR) +	

PMF	N	MQ
HI

= 0                                                    (12) 
 
 

Elemental balance equations of atom carbon, hydrogen 
and oxygen should also be determined from palm kernel 
shell ultimate analysis (Table 2). The elemental balances 
of each element are formulated on Eq. (13) – (15). Finally, 
8 (eight) unknown variables namely lC, lH, lO, nCO, nH2, 
nCO2, nH2O dan nCH4 at a certain temperature could be 
determined by simultaneously solving 8 (eight) algebraic 
equations. 

C:            𝑛JKL + 𝑛JR +	𝑛JRP − 1 = 0                          (13) 
 
H:            2𝑛KP + 2𝑛KPR +	4𝑛JKL − 1,513	 = 0          (14) 
 
O:            𝑛JR + 2𝑛JRP +	𝑛KPR − 0,665 = 0                (15) 

Table 2 
Characterization of PKS 

Description 
 
Content 
 

Total Moisture (weight/weight) 13.60% 

Proximate Analysis (weight/weight dry basis):  
Moisture content 9.50% 
Volatile matter 70.50% 
Fixed carbon 18.30% 
Ash content 1.70% 

Ultimate Analysis (weight/weight dry basis)  
Carbon 47.60% 
Hydrogen 6.37% 
Oxygen 43.93% 
Nitrogen 0.31% 
Sulphur 0.09% 

High Heating Value (MJ/kg dry basis) 18.668 
 

 
The analysis of gasification process is divided into four 

stages: drying, decomposition, gasification, and 
combustion. The PKS is considered as a non-conventional 
compound with a composition based on the proximate and 
ultimate analysis. A biomass feed of 30 kg was applied in 
the simulation for the production of 1 ton of HMA. The 
PKS drying process is carried out at 105°C in the 
STOICHIOMETRY REACTOR (MODEL ID: DRY-REAC) 
to evaporate the moisture content (MC). In this reactor, 
the stoichiometric of MC in biomass was determined 
according to Eq. (16).  

 

𝑀𝐶	𝐵𝑖𝑜𝑚𝑎𝑠𝑠 = 	1/18	𝐻P𝑂     (16) 

 
The H2O formed in this reactor model is separated from 
the dry biomass by 2-phase FLASH SEPARATOR 
(MODEL ID: SEP). Water and dry shell exit the flash 
separator as top and bottom products, respectively. After 
that, the dry shell decomposes into its single components, 
C, H, O, N, S, and ash, in a YIELD REACTOR (MODEL 
ID: DECOMP). The heat needed for drying and 
decomposition are obtained from the combustion of 
biomass in the GASIFIER (MODEL ID: Q-DRY, Q-
DECOMP). The output from the YIELD REACTOR is fed 
into the RGIBSS REACTOR (MODEL ID: GASIFIER) to 
produce producer gas using limited air according to the ER 
calculation. A non-stoichiometric equilibrium approach 
applies in this gasifier by minimizing the Gibbs free 
energy. Cooling water flows around the gasifier to keep the 
temperature below the ash fusion temperature. The 
combustion of producer gas takes place in the RGIBBS 
REACTOR (MODEL ID: BURNER) to produce flue gas for 
aggregate heating at a temperature of 150–200°C, while 
combustion air is controlled appropriately. The aggregate 
is defined as a non-conventional compound, following the 
HCGEN model for general heat capacity and the 
DENGEN model for general density. Several assumptions 
are made in this simulation: steady-state operation, non-
adiabatic processes, ideal gas behavior prevailing, 
negligible tar and char formation at the high temperature 
of the gasification process, and heat loss ignored. 
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2.2 Model validation 
 
Experimental data from previous laboratory-scale 
experiments in fixed bed downdraft gasifier (Jayah, Aye, 
Fuller, & Stewart, 2003); (Gai & Dong, 2012); (Svishchev, 
Kozlov, Donskoy, & Ryzhkov, 2016); (Biagini, Barontini, & 
Tognotti, 2016); (Maneerung, Li, Li, Dai, & Wang, 2018); 
(Kuhe & Aliyu, 2015) were used to validate the model. The 
validation also conducted by experiments in the plant. By 
comparing the H2 and CO content in the producer gas as 
the result of experimental data and the model, root mean 
square error (RMSE) values were calculated to check the 
accuracy of the model (Gu et al., 2018). This value is 
defined by Eq. (17), where N represents the number of 
data. 
 

𝑅𝑀𝑆𝐸 = f	∑ (ghijk%ljm'8nopqjr8	)Os
8

,
     (17) 

 
 
ER plays a significant role in the gasification process, 

as expressed in Eq. (18). A proper ER  
 
𝐸𝑅 =	 	lprj	tu'vtr	t%k

lprj	w'p%ux%plj'k%u	t%k
      (18) 

 
 
A high ER indicates more oxidation to gasify the biomass; 
a lower ER produces more char due to pyrolysis. As 
reported by (Upadhyay, Sakhiya, Panchal, Patel, & Patel, 
2019), the optimum ER value is 0.24–0.36. Thus, in the 
present study the ER value varied from 0.25 to 0.35. By 
calculating the stoichiometric quantity of air for complete 
biomass combustion, the value of the ER can be 
determined for suitable producer gas composition for 
heating aggregate in the AMP. 
 
 

3. Results and discussion 

Figure 2 describes the developed thermodynamic model of 
PKS gasification using air as gasifying agent for heating 
aggregate using licensed Aspen Plus v.11 software which 
was developed for woody and shell biomass chemical 
characteristics feedstock. This model was applied for 
calculating H2 and CO in industrial scale (Table 3). It 
showed that RMSE values of H2 and CO are in the range 
of 0.80 – 2.15 and 0.21 – 5.83 respectively as described in 
Table 3. Using the same feedstock, flowrate and 
gasification operating conditions, the model prediction of 
H2 and CO composition in producer gas were compared 
with the experimental results of each investigator. The 
highest RMSE values of H2 and CO content in producer 
gas are 8.82 and 6.42 respectively (Table 4). These values 
are in a good agreement with similar studies (Gu et al., 
2018), (Adnan & Hossain, 2018), (Omar, Munir, Ahmad, & 
Tanveer, 2018), (Atnaw, Sulaiman, & Yusup, 2013), 
(Galindo et al., 2014); thus, the model is feasible in 
predicting H2 and CO content in the producer gas resulted 
from biomass gasification process in a downdraft gasifier 
for heating aggregate. Then, the model was also reliable 
for predicting H2 and CO content in a producer gas as the 
results of palm kernel shell gasification in an Asphalt 
Mixing Plant with capacity of 800 kg/batch (AMP-800). 

 
Table 3 
Model validation with experimental data in the plant 

Parameter run-1 run-2 run-3 

Flow rate, kg/h 250 250 250 
Air flow rate, m3 790 665 544 
Air temperature, C  44 44 43 
RMSE-H2 0.81 2.15 1.09 
RMSE-CO 0.21 2.06 5.83 

 

 
 

Fig. 2 Thermodynamic model of PKS gasification for aggregate heating 
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Table 4.  
Model validation with previous experiment 

 
 

Description (Jayah et al., 
2003) 

(Gai & Dong, 
2012) 

(Kuhe & Aliyu, 
2015) 

(Biagini et al., 
2016) 

(Svishchev et 
al., 2016) 

(Maneerung et 
al., 2018) 

Biomass Rubber Wood Corn Cob Groundnut shell Wood Pellet Wood Red Wood Pellet 

Feed rate, kg/h 20.90 - - - - - 

ER - 0.360 0.224 0.272 0.284 0.264 
Air Fuel Ratio, kg/kg 2.37 - - - - - 
RMSE-H2 0.30 4.92 0.51 7.56 1.46 8.82 
RMSE-CO 1.31 6.42 4.36 1.33 3.73 3.09 

 
 

 
Fig. 3 H2 composition in producer gas model vs experiment 
 
 
 
There are two processes that take place in aggregate 

heating: combustion of the producer gas in air and drying 
the aggregate with heat generated from producer gas 
combustion. The parameters involved in this process are 
as follows: aggregate at ambient temperature, heat 
capacity of aggregate of 0.880 kJ/kg K (Peinado et al., 
2011), heat loss is ignored, and dry combustion air is 
applied. As reported by (Jarungthammachote, 2019), the 
adiabatic flame temperature for producer gas is around 
1700°C, so in the present study, the burner temperature 
was assumed to be 1000°C. As shown in Figure 5, at an 
ER value of 0.250–0.350 with combustion excess air 10% 
Nm3, the aggregate temperature was below 150°C. This 
condition should be avoided because the aggregate 
temperature would not meet the required specification.  

Even though at an ER value of 0.250–0.350 with 
combustion excess air below stoichiometric the aggregate 
was heated to a temperature of 150–200°C; this condition 
is not ideal because perfect combustion did not occur. This 
condition causes toxic pollutants such as CO to be 
generated in the flue gas. From the model, around 0.20–
6.00 kg CO would be generated per ton of HMA produced. 
At combustion excess air 20%-30% with ER value 0.275–
0.300 is also not suitable because the aggregate 
temperature would reach over 200°C, which would affect 
the quality of the HMA produced. As reported by (Yetkin, 

Mansour, & Thomas, 2000) this higher aggregate 
temperature results in asphalt damage, construction 
problems and fume production. As can be seen in Figure 
3, the optimum operating condition for palm kernel 
gasification for heating aggregate is an ER value of 0.325–
0.350 with combustion excess air 10%–20%. The 
properties of producer gas at this ER value shown in Table 
5. At combustion excess air above 30% the aggregate 
temperature is still within the range of required 
specification, but this condition is not chosen because it 
needs more energy (0.09 kWh/ton HMA) for delivering the 
air. 
 
 

 
 

Fig. 4 CO composition in producer gas model vs experiment 
 
 
Table 4  
Producer gas properties at optimum operating condition 

Parameter ER: 0.325 ER: 0.350 

Composition:   
     H2 19.2% 17% 
     CO 19.8% 19.2% 
     CO2 9.3% 9.0% 
     N2 41.8% 43.5% 
     H2O 9.9% 11.2% 
LHV (MJ/Nm3) 4.58 4.27 
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Fig. 5 Effect of combustion excess air on aggregate temperature at various ER 

 
 
 
4. Conclusion 

The thermodynamic model of PKS gasification using a 
fixed-bed gasifier for aggregate heating in an asphalt 
mixing plant is valid in predicting the operating 
conditions of the process to meet the aggregate 
temperature target with more efficient fuel and electricity 
consumption. The calculated cold gas efficiency which is 
defined as the ratio between energy flow of producer gas 
and energy content of feedstock based on equivalence ratio 
is in the range 67%–70%, which indicates a production of 
2.6 – 2.7 Nm3 of producer gas from one kg PKS. 
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