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ABSTRACT. There is a need to develop an optimization tool that can be applied in the feasibility study of a hybrid renewable energy 
system to find the optimal capacity of different renewable energy resources and support the decision makers in their performance 
investigation. A multi-objective function which minimizes the Levelized Cost of Energy (LCOE) and Loss of Load Probability Index (LLPI) 
but maximizes the novel Energy Match Ratio (EMR) was formulated. Simulation-based optimization method combined with ε-constraint 
technique was developed to solve the multi-objective optimization problem. In the study, ten-year hourly electrical load demand, using 
the end-use model, is estimated for the communities. The performance of the developed algorithm was evaluated and validated using 
Hybrid Optimization Model for Electric Renewables (HOMER®) optimization software. The developed algorithm minimized the LCOE by 
6.27% and LLPI by 167% when compared with the values of LCOE ($0.444/kWh) and LLPI (0.000880) obtained from the HOMER® 
optimization tool. Also, the LCOE with the proposed approach was calculated at $0.417/kWh, which is lower than the $0.444/kWh obtained 
from HOMER®. From environmental perspective, it is found that while 141,370.66 kg of CO2 is saved in the base year, 183,206.51 kg of 
CO2 is saved in the ninth year. The study concluded that the approach is computationally efficient and performed better than HOMER® 
for this particular problem. The proposed approach could be adopted for carrying out feasibility studies and design of HRES for Off-Grid 
electrification, especially in the rural areas where access to the grid electricity is limited. 
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1. Introduction 

The global concerns of climate change which is largely due 
to increase in consumption of fossil fuels as a result of the 
rising global electrical energy demand is one of the factors 
liable for the worldwide awareness in the use of renewable 
energy resources for rural electrification (Ahmadi et al. 
2018; Sadeghzadeh et al. 2019). Furthermore, a 
comprehensive survey of the open literature (Lan et al. 
2015; Cho and Kleit 2015; Zhao et al. 2015; Zakeri and Syri 
2015) has established that application of battery bank in 
absorbing excess energy is among the utmost efficient 
answers to guarantee the stability, affordability and 
reliability of power supply. Additionally, the Kyoto 
Protocol voted in year 1997, compels the industrialized 
countries to minimize their greenhouse gases emissions to 
a threshold. These factors, among others, contribute to the 
amplified infiltration of non-fossil based energy sources in 
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our power system today. Unfortunately, the unpredictable 
nature of most non-fossil based energy resources and high 
cost associated with single renewable energy source has 
made it uneconomical to meet up with the required hourly 
energy demand.  

In this direction, a hybrid renewable energy system 
which is a grouping of at least two renewable energy 
technologies is an exceptional key for the energization of 
rural settlements to satisfy the hourly energy demand 
reliably and economically. Hybrid energy systems are 
crucial sources of energy for commercial users such as 
shops, schools (primary and secondary) and clinics in off-
grid rural communities. The major goal of the system is to 
deliver a reliable 24-hour quality electric power in rural 
communities daily. However, the major challenge with 
HRES is the optimal sizing of its major components to 
attain a design that is technically and economically 
feasible. The more the number of the components 
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involved, the more the complexity in the design of the 
HRES as a result of the random characteristic of the 
renewable energy resources and the trade-off between 
system reliability and cost.  

In the past, efforts have been made to explore a 
moderately straight-forward technique for designing a 
HRES using different multi-objective optimization 
methods. Generally, optimization techniques both 
traditional and modern are classified into three groups. 
They are the traditional optimization techniques, the 
intelligence search, and the non-quantity approaches to 
resolve any indecisions exist in both the objectives and 
constraints (Zhu 2015). A number of these optimization 
approaches employed for HRES shall be reported in 
details in the coming paragraphs.  Zahraee et al. (2016) 
presented a comprehensive review and evaluation of 
various available artificial intelligence approaches for the 
optimal sizing of HRES, some of which are discussed here 
(Mohamed 2016).  

The prominent advantages of PSO such as easiness, 
efficacy and cheap computational cost, has made it to gain 
weighty popularity and developments (Gao et al. 2015). In 
latest ages, numeral of researchers has improved PSO to 
tackle numerous HRES optimization problems. For 
example, Amer et al. (2013) applied PSO to determine the 
optimal size of the components of a HRES containing wind 
turbine, solar PV module and loads typical of residential 
buildings. Similarly, Boonbumroong et al. (2011) employed 
PSO to determine the configuration with minimum life-
cycle cost of a stand-alone PV/wind/diesel system to supply 
a certain load just as PSO algorithm was employed in 
(Bashir & Sadeh 2011; Kaviani et al. 2009; Ardakani et al. 
2010; Bashir & Sadeh 2012; Askarzadey et al. 2015) for 
optimum sizing of HRES comprising different renewable 
energy components. Again, Hakimi & Moghaddas (2009) 
utilized PSO to select the configuration with minimum 
total cost of a detached hybrid energy system which 
considers electrolyzers and an anaerobic reactor as part of 
the HRES components. Also, an optimization problem for 
a HRES of solar PV and wind energy capacity coordination 
for a time-of-use rate industrial user, was solved using 
PSO (Lee & Chen 2009).  

Similarly, Wang & Singh (2009) used multi-objective 
PSO algorithm to calculate the optimal capacity of a 
hybrid PV/wind/battery energy system which minimizes 
cost, emission while maximizes reliability, without 
tackling the issues of load management. Yet, Borhanazad 
et al. (2014) intended a micro-grid scheme, involving wind 
and PV system as a primary energy sources with battery 
bank to absorb excess generated energy and diesel 
generator for emergency situation, via multi-objective 
particle swarm optimization (MOPSO). Additionally, 
Masoud & Tarek (2014) presented a dynamic multi-
objective particle swarm optimization (DMOPSO) 
technique for the selection of the optimal configuration for 
HRES. In the same vein, Fodhil et al. (2019) suggested a 
combination of Particle Swarm Optimization (PSO) and ε-
constraint method to reduce the overall cost of the system, 
net load, and CO2 emissions as it optimizes a standalone 
hybrid PV-diesel-battery energy system to satisfy the 
required energy demand of 20 households. 

Numerous authors have used related multi-objective 
evolutionary algorithms and other techniques for an 
appropriate sizing of different components of HRES. A 
number of these optimization approaches employed by 
different authors for HRES shall be briefly reported as 

follows. Katsigiannis et al. (2010) modeled a multi-
objective optimization approach to produce a Pareto front 
to reduce the sum of energy cost and overall emissions of 
a HRES throughout its lifespan by means of non-
dominated sorting genetic algorithm (NSGA). Das et al. 
(2019) carried out a study to obtain a technical and 
economical optimal design of an off-grid hybrid energy 
systems comprises of solar photovoltaic, biogas generator, 
pumped storage hydro and battery energy storage system 
using metaheuristic optimization methods for a wireless 
transmitter station located in India. The results of water 
cycle algorithm and moth-flame optimization were 
appraised and compared with Genetic Algorithm.  

Forough & Roshandel (2017) presented a multi-
objective receding horizon optimization (MO-RHO) 
method to obtain the best arrangement of HRES involving 
solar PV, wind turbine, battery bank and diesel generator. 
Bourennani et al. (2015) presented optimal design of 
HRES using the state-of-the-art multi-objective 
optimization (MOO) metaheuristics, just as Kaabeche & 
Bakelli (2019) considered ant lion optimizer algorithm 
(ALO), Grey Wolf optimizer algorithm (GWO), Krill Herd 
algorithm (KH) and Jaya algorithm for the same purpose. 
To lessen the total annualized cost of the system in the 
face of power balance constraint, Hadidian-Moghaddam et 
al. (2016) recommended a procedure for the best 
arrangement of a stand-alone hybrid PV/wind/battery 
power generation system (HPWGS) using a Grey Wolf 
Optimizer. In the same vein, utilizing a discrete version of 
harmony search (HS), Maleki & Askarzadeh (2014) 
carried out the modeling and optimal sizing of a 
PV/wind/diesel/battery hybrid scheme for an off-grid 
application.  

Ren et al. (2018) formulated a multi-criteria 
optimization approach for investment strategy and 
administration of the operation a hybrid energy system. 
The non-dominated sorting genetic algorithm II (NSGA-
II) was used to solve the problem. Similarly, Kamjoo et al. 
(2016) presented the use of NSGA-II algorithm for the 
design of a HRES containing wind turbine, solar PV and 
battery with the aim of reducing the scheme whole cost 
but maximizing the scheme reliability. In the same vein, 
Huang et al. (2019) presented this same NSGA-II to 
produce the Pareto set for optimization of a stand-alone 
PV-hydrogen-retired EV battery hybrid energy system. 
The authors proposed the reuse of aged electric vehicle 
batteries (REVBs) as a renewable energy system.  
An approach for sizing of hybrid plants, through 
implementation of a momentary simulation model joined 
with an evolutionary algorithm, was presented by (Starke 
et al. 2018). The simulation module was used for a case 
study bearing in mind the features of the location in the 
northern Chile.  

Roberts et al. (2018) suggested the use of a 
probabilistic simulation-based MOO method to tackle the 
optimal combination of the components of the hybrid 
power systems. Abdelkader et al. (2018) proposed the 
application of the multi-objective genetic algorithm to size 
a PV/Wind Hybrid Energy Storage System (HESS) which 
minimizes loss of power supply probability (LPSP) and the 
total cost of energy (TCE). Perera et al. (2013) focused 
their work on hybridizing MOO techniques with a multi-
criterion decision making (MCDM) method to help the 
decision makers in designing HRES. On the other hand, 
Suhane et al. (2016) presented Ant colony optimization 
technique for sizing and performance analysis of a 



Int. Journal of Renewable Energy Development 10 (4) 2021: 667-686 
  P a g e  |  

	

IJRED-ISSN: 2252-4940.Copyright © 2021. The Authors. Published by CBIORE 

669 

standalone HRES comprising wind turbine and solar 
photovoltaic system for an un-electrified rural settlement 
in central region of India. 

Jadidbonab et al. (2020) proposed a novel model of the 
energy hub, known as the virtual energy hub (VEH). The 
proposed VEH is operated, according to the different 
energy carriers and facilities in addition to maximizing of 
its revenue by participation on the various local energy 
markets. Gholinejad et al. (2020) presented a hierarchical 
energy management system (HEMS) for multiple home 
energy hubs in the neighbourhood grid (MHEHNG) with 
the objectives of maximizing economic profit and shaving 
the peak of upstream grid. In addition, simulator was 
implemented in the MATLAB/GUI software environment 
to enable the performance evaluation of the HEMS.  

Nazari-Heris et al. (2020) proposed a multi-objective 
two-stage stochastic unit commitment scheme for 
integrated gas and electricity networks by considering 
P2G technology and demand response (DR) programs in 
addition to high penetration of wind turbines. Marzband 
et al. (2018) presented a smart Transactive energy (TE) 
framework with objective of ensuring that home 
microgrids (H-MGs) can cooperate with each other in a 
multiple H-MG system by establishing alliances for 
gaining competitiveness in the market.  

The technique of multi-objective-techno-economic-
environmental optimization is proposed for planning 
electric vehicle charging/discharging was presented by 
Das et al. (2020). The modelling and optimization of 
energy cost for the end users, battery degradation as well 
as grid interaction and CO2 emissions in the home micro-
grid context were carried out while ensuring frequency 
regulation. Mirzaei et al. (2019) proposed three solutions 
to overcome the challenges of gas system constraints and 
the uncertainty of wind power which are: 1) using 
information-gap decision theory (IGDT) based robust 
approach to tackle the uncertainty produced by the 
intrinsic nature of wind power; 2) Incorporation of 
compressed air energy storage (CAES), and demand 
response (DR) in day-ahead scheduling; and 3) considering 
flexible ramping products so as to guarantee dependable 
operations. 

Tregambi et al. (2021) presented the modelling of a 
concentrated solar power (CSP)/photovoltaics hybrid 
power plant for capturing carbon dioxide and exploitation 
through calcium looping and methanation. The integrated 
procedure was studied via model computations. 
Mahmoudi et al.  (2021) focused their work on the sizing 
of a hybrid energy system comprising of solar photovoltaic 
modules and wind conversion energy systems 
plus/without the storage backup system to lessen 
economic costs and increase reliability. A novel technique 
was proposed according to the integration of fuzzy logic 
controller and harmony search algorithm. Wu et al.  (2021) 
proposed the synergetic relations of electricity, thermal 
and gas energy flows, in which the biogas-solar-wind 
complementarities are fully considered and the digester 
heating is applied to provide an appropriate temperature 
for biogas production from anaerobic digestion. A 
multitasking multi-objective optimization algorithm, MO-
MFEA-II was proposed to handle the problem. Singh and 
Bansal (2019) presented reformed electric system cascade 
analysis (RESCA) method for optimization of HRES 
comprising of wind energy conversion system (WECS), 
solar photovoltaic (PV) system, battery energy storage 
system, and non-renewable sources. 

Apart from the aforementioned classical and advanced 
optimization techniques, the most extensively software 
employed for optimal sizing of HRES is HOMER software. 
Other alternative software tools used for optimization of 
HRES include HYBRIDS, HYBRID2, RET Screen, 
TRNSYS, IHOGA, etc. HOMER is more or less a freely 
available software application created by the National 
Renewable Energy Laboratory in the United States in 
1993. It is used for design and evaluation of different 
options of HRES comprising different distributed energy 
resources, taking into account technical and financial 
considerations. 

Several researchers (Kamel & Dahl 2005; Khan et al. 
2005; Shaahid & Elhadidy 2007; Limmeechokchai & 
Chawana 2007; Himri et al. 2008; Dalton et al. 2008; Nfah 
et al. 2008; Weis & Ilinca 2008; Setiawan et al. 2009; 
Kusakana et al. 2009; Demiroren & Yilmaz 2009; Abdul 
Razak et al. 2010; Aziz et al. 2019; Ariyo et al. 2018) have 
used the software to either perform techno-economic 
optimisation analysis of a proposed HRES or to validate 
their own developed method using it as a reference. For 
example, Aziz et al. (2019) used HOMER optimization 
software for techno-economic and environmental 
evaluation of various hybrid systems to satisfy the 
electricity needs of a conventional rural village in Iraq 
while (Ariyo et al. 2018) employed it only to validate the 
proposed method. Tsai et al. (2020) investigated the 
techno-economic feasibility analysis of stand-alone diesel 
system, stand-alone PV/storage system, PV/diesel hybrid 
system, PV/diesel/storage hybrid system for the Pratas 
island in Taiwan. The Hybrid Optimization Models for 
Energy Resources (HOMER) was employed to simulate 
the techno-economics of the indicated hybrid energy 
systems. However, one major limitation to the use of 
HOMER is its failure to tailor the mathematical modelling 
and the sizing technique for optimization as desired by the 
user-defined constraints and modelling equations 
(Shaahid & Elhadidy 2007). 

In the related literature, there is absence of studies 
that reflect the trade-off between system levelized cost of 
energy, system reliability and the novel energy match 
ratio. Additionally, there are not sufficient algorithms 
developed to handle the stochastic analysis of the design 
process of HRES by incorporating operating spinning 
reserve. Furthermore, existing tools do not deal with 
producing energy simultaneously for different types of 
electrical energy user class. The focus of the current 
research work is therefore to adopt the simulation-based 
optimization method combined with ε-constraint 
technique. Literature has revealed that the simulation-
based optimization method is a developing technique 
which mongrelizes optimization techniques into 
simulation evaluation. PSO is preferred because of its ease 
of implementation as it requires few parameters to be 
changed. It is equally capable of tackling tough cost 
functions with many local minima, thereby overcoming 
the shortcoming of the metaheuristics, which cannot 
assure a global optimal solution (Kamjoo et al. 2016). The 
ε-constraint technique is a special method that is usually 
used to turn a number of objective functions to constraints 
bounded by given target levels (εi) while the preferred 
objective function is chosen to be optimized. The non-
dominated results to the optimization problem can be 
found by changing the εi. However, despite the existing 
works in the design and optimization of HRES in the 
energy community, the proposed approach in this study is 



Citation: Oladeji, A.S., Akorede, M.F., Aliyu, S., Mohammed, A.A., and Salami, A.W. (2021) Simulation –Based Optimization of Hybrid Renewable Energy System for Off-Grid 
Rural Electrification. Int. Journal of Renewable Energy Development, 10(4), 667-686, doi: 10.14710/ijred.2021.31316 
P a g e  |  
 

IJRED-ISSN: 2252-4940.Copyright © 2021. The Authors. Published by CBIORE 

670 

to further demonstrate a contribution to the existing 
knowledge. 

The present work considers three objective functions, 
namely: minimization of the levelized cost of energy 
(LCOE), minimization of loss-of-load probability index 
(LLPI) and maximization of a novel energy match ratio 
(EMR). The proposed approach also incorporates the 
spinning operating reserve so as to achieve a practical 
compromise among the objective functions. By definition, 
the spinning operating reserve is the spare generating 
capacity that is available to the grid by intensifying the 
electric power output of generators that are already linked 
to the power network. The goal of the ε-constraint 
technique in this study is to minimize the LCOE while 
LLPI and EMR are taken as constraints bound within the 
permissible limits. One of the main benefits of the 
proposed approach is computational efficiency since it 
does not require the unnecessary maneuver of ranking 
and dual comparison which are computationally complex 
(Sharafi and El-Mekkawy 2014). A case study is conducted 
for a group of rural settlements in Nigeria. 
Notwithstanding, the proposed approach could be adopted 
in carrying out feasibility studies and design of HRES for 
off-grid applications in any location on the globe having 
potentials for solar PV system and small hydropower.  

To completely eliminate emissions associated with 
diesel engine generator, this study does not consider diesel 
generator in its scheme, more so as rural dwellers are 
hardly financially buoyant to cope with the running and 
repair cost of diesel generator. Instead, the study has 
incorporated the spinning operating reserve and 
maximization of energy match ratio to achieve a HRES 
with 100% renewable energy resources. The proposed 
HRES equally considers incorporation of small 
hydropower, which is missing in virtually all the existing 
works. The roadmap for the remainder of this paper is 
illustrated as follows. The mathematical models for 
different components of the HRES are presented in 
Section 2. The essence is to evaluate the energy potential 
of each of the components as well as the electrical load 
demand. Section 3 is dedicated to the description of the 
multi-objective problem formulation. The solution 
approach as it applies to the problem at hand is exhibited 
in Section 4. The results to different scenarios of the 
optimization problem are given in Section 5 while the 
conclusion is presented in Section 6. 

2. Materials and methods 

2.1 Models for hybrid energy system components 

Modelling of the considered components of the 
proposed hybrid energy system is described in this section. 
The proposed hybrid energy system which comprises small 
hydropower generating set, solar PV array, storage 
batteries, charge controller, and bidirectional DC/AC 
power inverter, is represented in Fig. 1. In order to explore 
how possible change of the capacity with the 
corresponding cost per unit of input parameters may 
influence the optimal solution produced by the proposed 
solution approach under a specific number of assumptions, 
three different scenarios were considered. 

2.1.1 Modelling of energy from small hydropower  

Hydro-electric power is the power acquired from the 
energy of flowing water. The potential energy of water can 
be harnessed by converting it into kinetic energy which is 
transformed to mechanical energy by permitting the water 
to run across the water turbine runner. The mechanical 
energy is then used to spin a generator connected to the 
shaft of hydraulic turbine. The net head, Hnt (m) is 
estimated using Eqn. (1). Meanwhile, the developed layout 
for various losses from forebay to the power house is 
represented in Fig. 2.  
 

𝐻"# = 𝐻%& − (ℎ* + ℎ#& + ℎ, + ℎ-.            (1)
  
where: 

• 𝐻%& is gross head (m), 
• ℎ* is a frictional loss (m), 
• ℎ#& is a trash rack loss (m), 
• ℎ, is losses due to bend (m), and 
• ℎ- is outlet losses (m). 

 The electrical power developed by a single small 
hydropower generating unit ( ) is given in Eqn. (2) as: 

 
                                                                                
(2)                                                                         

 
where: 

• 𝜌 is the density of water in kg/m3, 
• 𝜂#1 is the efficiency of turbine,   
• 𝜂% is the efficiency of generator,  
• 𝑄345 is the minimum discharge of the selected 

hydro turbine, and  
• 𝑄678 is the peak discharge of the selected hydro 

turbine. 

The total hourly energy production from the total number 
of small hydropower generating unit system (𝐸#;<=) can be 
calculated by Eqn. (3) as: 

𝐸#;<= = 𝐸#? × 𝑁;<=                              (3) 

Where: 
• 𝑁;<= is the optimal number of small hydro turbine 

generating units to be determined by 
optimization algorithm, and 

• 𝐸#? is the energy generated by a single small 
hydropower generating unit.  

The annual energy generated from the total number of 
small hydropower generating unit system (𝐸;<=BC ) can be 
calculated by Eqn. (4). 
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Fig. 1 Illustration of the Proposed Hybrid Energy System. 

 
 

 
Fig. 2 Developed Layout for various Losses from Forebay to Power House. 

 
 
2.1.2 Modelling of energy from solar photovoltaic system 

The yield power of a solar photovoltaic panel at any period 
is relative to the solar solation value at that particular 
time. The electrical power produced at time t by a single 
solar PV is calculated as given in Eqn. (5) (Borhanazad 
2014). 
                                                                                               

   (5)                                                                                                                             

where	𝑃F= is rated power, 𝐺#His solar insolation at a time t 
(W/m2), 𝐺&I*H  is 1000 W/m2, 𝑇&I*  is 25oC, 𝐾# is -3.7 x 10-3 

(1/oC), 𝑇76, is the ambient temperature (oC). 

The total hourly energy production from the total number 
of PV system (𝐸#=L) can be calculated by Eqn. (6) as: 
 
                                                  (6)                                                          

where 𝑁=L is the optimal number of solar PV. 

The total number of PV modules (𝑁=L) can be calculated 
by Eqn. (7), whereas the number of solar modules in series 
configuration can be calculated using Eqn. (8).  

𝑁=L = 𝑁=L? × 𝑁=L
M                                                          (7)   

                                                                                                                           

𝑁=L? = LNOP
LQR

                                     (8)                                                    

where 𝑉,1? is the DC bus voltage, 𝑉=L is the nominal 
voltage of a single PV, and	𝑁𝑃𝑉

𝑝  is the total number of 
modules in parallel.  

By incorporating the spinning operating reserve, the 
total hourly energy production from the total number of 
PV system (𝐸#U=L) can be calculated from Eqn. (9), just as 
the annual energy production from the total number of 
solar modules (𝐸=LBC) can be calculated by Eqn. (10).  
 
                                                                                          (9) 
 
 
                                                                                         (10) 
 

2.1.3 Modelling of electrical load demand 

The hourly electrical loads (𝐿𝐷#) can be expressed by Eqn. 
(11).  
 
  𝐿𝐷# =X 𝑁Y

1
Y × (∑;&[\ [(𝑃Y,& × 𝑛Y,& × 𝛥𝑡) + (𝑃Y,&

?,b × 𝑛Y,&
?,b ×

𝛥𝑡)])           (11) 

where :  

å
=

=

=
8760

1

t

t

OPV
t

AN
PV EE

)(%)( PV
tPV

p
t

OPV
t EPVNEE ´+´=

)]))0256.0(((1[ ref
I
tambtI

ref

I
t

RP
p
t TGTK

G
GPP -´++´´=

PV
p
t

PV
t NEE ´=



Citation: Oladeji, A.S., Akorede, M.F., Aliyu, S., Mohammed, A.A., and Salami, A.W. (2021) Simulation –Based Optimization of Hybrid Renewable Energy System for Off-Grid 
Rural Electrification. Int. Journal of Renewable Energy Development, 10(4), 667-686, doi: 10.14710/ijred.2021.31316 
P a g e  |  
 

IJRED-ISSN: 2252-4940.Copyright © 2021. The Authors. Published by CBIORE 

672 

• 𝑃Y,& is the power used by a device r in a particular 
defined consumer sort q,   

• 𝑛Y,& is total of appliances r in a defined consumer 
sort q, 

• S is the overall electrical appliances considered,  
• 𝑛Y,&

?,b is number of electrical device r in a defined 
consumer sort q in standby, and 

• 𝑃Y,&
?,b is the electrical power that is consumed by a 

device r in a defined user sort q in standby. 

Incorporating the spinning operating reserve, the 
total hourly electrical energy demand (𝐸#U=) can be 
calculated by Eqn. (12). The classes of consumer 
considered in this study are residential and small 
commercial consumers. 

𝐸#U= = 𝐿𝐷# + (%𝐿 × 𝐿𝐷#)                                                    (12) 
 
where %𝐿 is the electrical load operating reserve.  
 

2.1.4 Modelling of battery output energy 

As a results of the intermittency characteristics of 
the non-fossil based energy sources, the battery is utilized 
as the energy storage scheme to regulate any excess or 
shortage energy produced. The utmost size of the battery 
bank that is needed to satisfy the load demand is 
calculated using Eqn. (13). 

𝐸,7#3ef = ghQ×ij
(iUi)klm×nNop×nqrs

                                             (13)       
                                                                                    
Where:  

• 𝐷B means days of autonomy, which is usually 
between 2-5 days,  

• (𝐷𝑂𝐷)3ef is the utmost depth-of-discharge for the 
battery,  

• 𝜂,7# is the efficiency of battery, and 
• 𝜂u"v is the efficiency of inverter.  

Similarly, the lowest state-of-charge of battery bank 
(𝐸,7#345) is calculated by the (𝐷𝑂𝐷)3ef as shown in Eqn. (14). 
The quantity of batteries (𝑁,7#) can be calculated by Eqn. 
(15). 

𝐸,7#345 = (1 − (𝐷𝑂𝐷)3ef) × 𝐶,7#             (14)         
                                                       
𝑁,7# = 𝑁,7#? × 𝑁,7#

M                                         (15)                                                                                                                       
 
 Where:  

• 𝑁,7# is the quantity of batteries, a decision 
variable to be determined by optimization 
algorithm, and  

• 𝑁,7#
M  is the quantity of batteries in parallel. 

If adequate energy is delivered by generation sources 
then, the net energy would charge the batteries. The 
energy that is available for battery charging at time t is 
given in Eqn. (16). 

𝐸#,7# = 𝐸#y\,7# + (𝐸#;<= + 𝐸#U=L − 𝐸#U=) × 𝜂z{7 × 𝜂z%z            (16)             

Where:  
• 𝐸#,7# and 𝐸#y\,7# are the state-of-charge of the 

battery at time t and t-1 respectively,  
• 𝜂z{7 is the charging efficiency of the battery bank,  
• 𝜂z%z is the efficiency of the charge controller. and  
• 𝐸#U= is the total electrical energy demand at time 

t by incorporating operating reserve.  

However, in the event that the available generated 
energy fails to deliver adequate energy to balance the load, 
then, the batteries will be discharged according to Eqn. 
(17). The net load demand (𝐸#C|) to be supplied by the 
battery is given in Eqn. (18). 

 
𝐸#,7# = 𝐸#y\,7# − 𝐸#C|/(𝜂~z{ × 𝜂u"v)                              (17)       
                                                                                        
𝐸#C| = 𝐸#U= − (𝐸#;<= + 𝐸#U=L)                                       (18)                                                                                

Where:  
• 𝜂~z{ is the battery discharge	efficiency,  and 
• 𝜂u"v is the efficiency of inverter. 

2.2 Problem formulation  

The optimization problem is expressed as a multi-
objective task with three objective functions and 
constraints. 
 

2.2.1 The objective functions  

The objective functions considered in this study are 
minimization of levelized cost of energy (LCOE), 
minimization of loss-of-load probability index (LLPI) and 
maximization of energy match ratio (EMR). The decision 
variables are	[𝑁𝑆𝐻𝑃, 𝑁 ,𝑃𝑉 𝑁𝑏𝑎𝑡] where	𝑁𝑆𝐻𝑃,	𝑁𝑃𝑉, 𝑁,7#, are 
numbers of small hydropower generating unit, numbers of 
solar photovoltaic modules, and number of batteries 
respectively. 
 

2.2.1.1 Minimization of levelized cost of energy (LCOE) 

LCOE is the cost per unit of electrical energy in kWh. 
It can be stated as the ratio of annualized cost of the HES 
to the overall yearly electrical energy produced by the 
system. It is formulated in this work as an economic 
indicator. The annual energy produced from all the 
sources is evaluated using Eqn. (19). 
 
𝐸Bg� = 𝐸;<=BC + 𝐸=LBC                      (19)                                      
                                                                                                                       
where 𝐸Bg�,𝐸;<=BC , 𝑎𝑛𝑑  𝐸=LBC  are the total annual energy 
generations from all the generation resources, total 
annual generation from small hydropower generating 
system, total annual energy generation from solar 
photovoltaic generators respectively. The (TAC) includes 
the annualized capital cost (ANCC), yearly cost of 
operation and maintenance	(𝐴𝑂𝑀𝐶 ) , yearly  cost of  
replacement (ANRC). The total annualized cost of the 
system (𝑇𝐴𝐶) can be calculated with the expression in 
Eqn. (20). 
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             (20)                                                                                      
 
where:  

• 𝐶H,;<=,	𝐶𝐼,𝑃𝑉, 𝐶H,,7#, 𝐶H,u"v, 𝐶H,z%z, are the per capital 
cost per unit of small hydropower generating 
unit, solar panel, battery, bidirectional power 
inverter, charge controller,  

• 𝐶𝑅𝐹 is capital recovery factor,  
• 𝑆𝐹𝐹 is sinking fund factor,  
• 𝐶;<=6#" is maintenance cost per kWh for SHP,  
• 𝐶=L6#" is maintenance cost per kWh for PV,  
• 𝐶&,7# is the cost of replacing a unit of battery, and 
• 𝑅,7# is the number of times the battery will be 

replaced. 

The capital recovery factor (CRF) could be defined as the 
annual loan payment on $1 borrowed for R years at 
interest rate i. Its expression is presented in Eqn. (21). 

                                                                 (21)   

                                                                                                                                
Where:  

• R is the life span of the system which has been 
taken to be the life span of the solar PV, as a 
result of its expected lengthy life span in 
comparison to other components,  

• i is the interest proportion.  

The interest proportion comprises of nominal interest 
rate (ir) and inflation rate (f) as given in Eqn. (22). 

𝑖 = (u&y*)
(u&�*)

                                (22)
                          
The sinking fund factor which is a ratio to determine the 
future values of a runs of identical cash movements is 
expressed in Eqn (23).  

𝑆𝐹𝐹(𝑖, 𝑅) = u
(\�u)�y\

                                           (23)                                      
                    
The 𝐿𝐶𝑂𝐸 is given in Eqn. (24) as:  

𝐿𝐶𝑂𝐸 = �B�
gj��

� $
��{

�                                 (24) 

Where:  
• 𝐸Bg� = 𝑓(𝑁;<=, 𝑁=L, 𝑁,7#)               (25)          

2.2.1.2 Minimization of loss-of-load probability index  

The loss of load for respective time period within 
one year is given in Eqn. (26). 

   (26) 

It is so desired in this study to minimize this function so 
as to maximize the availability of power supply to the 
customers.                                                                                                                          
 
2.2.1.3 Maximization of energy match ratio  

The EMR between the demand and the supply profile is 
formulated as described by the expression given in Eqn. 
(27). It is a novel expression formulated in this study to 
match the demand with the supply, moment by moment. 

 

   (27)                               
 
where: 

• , and                                                       (28)                                                                                                                     

•                                               (29)        

                                                                                    
The EMR is interpreted as presented below: 
 

• |EMR|=1 Perfect linear relationship between 
energy from renewable resources and load 
demand 

• 0.5≤|EMR|<1 Stronger relationship between 
energy from renewable resources and load 
demand   

• 0<|EMR|≤0.49 Weak relationship between 
energy from renewable resources and load 
demand 

• |EMR|=0 No linear relationship between energy 
from renewable resources and load demand 

 
2.3 System constraints 

The objective functions formulated in the foregoing 
subsection are subjected to technical constraints that are 
needed to meet in order to generate feasible solutions to 
the problem. The following constraints are considered in 
the study. 

a. The 𝐿𝐿𝑃𝐼 should be less than or equal to the 
maximum allowable 𝐿𝐿𝑃𝐼 as shown in Eqn. (30). 
𝐿𝐿𝑃𝐼 ≤ 𝜀||=H                                                                 (30) 

b. The EMR should be greater than or equal 
allowable EMR ratio as shown in Eqn. (31). 

𝐸𝑀𝑅 ≥ 𝜀g�F                                                               (31)       
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c. The hourly charge status of the battery is given 
in Eqn. (32). 

𝐸,7#345 ≤ 𝐸#,7# ≤ 𝐸,7#3ef                                             (32)  

Where: 𝐸,7#345,𝐸#,7#, 𝐸,7#3ef are minimum state of 
charge, present state of charge and maximum 
state of charge of the battery respectively. 

d. Other constraints of the system are given in Eqn 
(33). 

                                  �
0 ≤ 𝑁;<= ≤ 𝑁;<=3ef

0 ≤ 𝑁=L
M ≤ 𝑁=L,3ef

M

0 ≤ 𝑁,7#
M ≤ 𝑁,7#,3ef

M
                        (33)         

 

2. 3. The solution approach 

In the last years, several attempts have been made 
on the optimal sizing of an HRES by using either 
optimization or simulation methods. The single objective 
agenda is the commonest practice that had been 
implemented by the majorities of researchers in the 
previous studies in which economic criterion was the most 
objective considered as the evaluation metric. However, it 
is of most importance to considered additional criteria like 
emission effect (if diesel generator is considered as one of 
the components), reliability investigation and matching of 
hourly energy production with hourly energy consumption 
in the design procedure of HRES. Mostly, open literature 
has shown that there are none or very few studies that 
simultaneously offer reliability, energy match ratio (EMR) 
and economic investigation by incorporating operating 
reserve for an HRES design. Furthermore, several of the 
reported optimization approaches in the literature are 
applied to design a building/certain areas energy supply 
system with renewable energy ratio (RER) of 100% but, 
they did not find the best configuration between system 
cost of energy, reliability and EMR. In general, the major 
idea of this work is to propose an optimal sizing approach 
to practically harness the full potential of the renewable 
energy resources. The employed solution tool adopts 
simulation-based optimization approaches to acquire the 
most favourable combination of the examined HRES 
components.  

The design problem has been expressed as a 
nonlinear constrained MOO problem while a simulation-
based Multi-Objective Particle Swarm Optimization 
method is used to tackle the formulated problem. Using 
simulation modelling, all systems features and 
imprecisions can be confined precisely in comparison with 
other modelling techniques (Sharafi & ELMekkawy 2014). 
Nevertheless, simulation is not capable to be used as an 
independent tool to generate an optimal design of the 
system. As an, alternative, optimization techniques 
required a clear mathematical description of the system. 
A complex system required a complex task when 
formulating a mathematical model since, there is this 
possibility that the studied system has a high dimensional 
space. Consequently, hybridizing simulation model with 
an optimization approach will overwhelm their 
limitations. In other words, it will enable the modelling of 
the complex features of the system and also returning the 
optimal solution in realistic time.  

The first step of the proposed MOO sizing technique 
for a Hybrid Energy System comprises of a simulation 
procedure to investigate in case a certain configuration, 
containing a particular number of each of the system 
components, meets up with the load demand requirements 
for the period of one year. The time series hourly data for 
water discharge, solar irradiation and required load 
demand of the case study are used to simulate the system 
hourly.  

The PSO algorithm will accommodate the 
constraints, decision variables and the fitness.  Each 
particle stands for a prospective solution to the 
optimization problem. 𝐿𝐶𝑂𝐸that is specified by the design 
variables is considered as the fitness of particles for 
evaluation. In addition, the individual particle randomly 
produced should fulfil the constraints of the model. After 
initialization of population of particles by PSO, every 
particle was sent to the simulation module to review its 
practicality. The simulation model was run for the period 
of one year in order to examine the performance of each 
particle. LLPI and EMR were calculated in the simulation 
module for the HES. Thereafter, the values of EMR and 
𝐿𝐿𝑃𝐼 are fed back to the optimization algorithm to review 
if the particle fulfils the constraints otherwise it will be 
adjusted and fed back to the simulation module to re-
examine its practicality. 

The second step involves an approach utilizing PSO, 
which vigorously quests for the system configuration that 
minimizes the system LCOE and LLPI, but maximizes 
EMR when subject to the condition set in the preceding 
step.  The other vital input for the system optimization are 
the capital costs per unit, replacement costs per unit, 
operation and maintenance costs per unit of each 
component. The feasible particles, after initialization will 
then be assessed in the PSO algorithms according to their 
fitness. A stopping condition will then be applied, but, if it 
is not satisfied, each particle is updated for the next 
generation in the context of the PSO algorithm. 
Thereafter, the particles will then be fed back to the 
simulation module for reconsideration of their feasibility. 
Then, the simulation outcome will be fed back to the 
optimization algorithm for assessment. This chain will be 
concluded once the stopping criterion has been satisfied. 
After terminating the cycle and all system’s component 
combinations have been sized optimally as explained 
above, then the combination with the minimum LCOE, 
LLPI and highest EMR will then be displayed as the 
overall optimal result. The block diagram depicting the 
proposed approach is represented in Fig. 3. The flowchart 
of algorithm simulating the hourly operation of the system 
is shown in Fig. 4. 
 

2. 3.1 Simulation of the system operation 

Combine dispatch strategy which is based on battery 
charging and discharging strategies was used for an 
hourly simulation for the 8760 time steps. The dispatch 
strategy is a control algorithm for the interaction among 
various system components. The main requirements of the 
proposed power management strategy for the HES are to 
meet up with the varying load demand under variable 
weather conditions and to manage the power flow while 
ensuring efficient operation of the different energy 
systems. The control system is necessary for the selection 
of energy source, monitoring of battery working level and 
protections of the components.  
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Fig. 3 The proposed simulation-based optimization approach 

 

 
Table 1 
The PSO parameters used for the study 

Parameter Value 
Cognitive constant (𝒄𝟏) 2 

Social constant (𝒄𝟐) 2 

Maximum number of iteration (𝒌𝐦𝐚𝐱) 20 

Population size 50 

Maximum inertial weight factor (𝒘𝐦𝐚𝐱) 0.9 

Minimum inertial factor (𝒘𝐦𝐢𝐧) 0.2 

Inertial weight factor (𝒘) 	𝑤 = 𝑤3ef −
§klmy§k¨©

�klm
× 𝑁� 

where 𝑁�  is the current iteration number 

 

 

2.3.2 Optimization approaches 

2.3.2.1 Particle swarm optimization algorithm 

PSO is a swarm intelligence which belongs to a class of 
algorithm called meta-heuristic. It is a technique that was 
demonstrated by Kennedy and Eberhart in year 1995 (Lan 
et al. 2015; Coello 2007; Kennedy & Eberhart 1995; 
Eberhart & Kennedy 1995; Kaveh et al. 2013). The 
Particle Swarm Optimization method (PSO) is majorly 
employed to address an optimization problem by virtue of 
its numerous benefits above the other methods, 
particularly for achieving the minimum Levelized Cost of 

Energy (LCE) with a satisfactory range of the production 
paying attention to the losses between the generation and 
demand sides; the optimization problem  which comprises 
of objective functions and constraints is formulated taking 
in consideration fitness values sensitivity in particle 
swarm process. The outcome of the simulation runs 
confirmed that PSO is the encouraging optimization 
method owing to its capability to attain the global 
optimum with relative simplicity and computational 
proficiency contrasted with the customary optimization 
methods. Metaheuristics may not assure that a globally 
best result can be obtained on some class of problems. In 
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PSO, a group of particles called swarm is produced 
haphazardly. Every single particle in the population is a 
possible answer to the optimization problem. The 𝑖#{ likely 
solution in the population can be denoted by a D-
dimensional vector, 𝑋u = (𝑥u\, 𝑥u¬, . . . , 𝑥ui)�. Likewise, the 
velocity can be characterized by additional D-dimensional 
vector	𝑉𝑖 = (𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝐷)𝑇. The previously best position 
visited by this 𝑖#{ particle is given by	𝑃𝑖 =
°𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝐷±

𝑇
, if g represents the index of the best 

particle in the population  and superscripts k stands for 
the iteration integer. The swarm is updated based on the 
Eqns. (34) -(35).  

𝑥u~��\ = 𝑥u~� + 𝛥𝑡𝑣u~��\                                                                 (34)                      
       
 𝑣u~��\ = 𝑤 ∗ 𝑣u~� + 𝑐\ ∗ 𝑟\� ∗ (𝑝u~� − 𝑥u~� )/𝛥𝑡 + 𝑐¬ ∗ 𝑟¬� ∗ (𝑝%~� −
𝑥u~� )/𝛥𝑡           (35)     
 

where: 
• 𝑑 = 1,2,3, . . . 𝐷;	𝑖 = 1,2,3, . . . 𝑁  is the size of 

the swarm, 
• is the inertia weight, 
• 𝛥𝑡 is the time step, 
•  𝑐\ and 𝑐¬ are “self-confidence” and “swarm 

confidence” respectively, 
•  𝑟\and 𝑟¬ are random numbers, evenly 

distributed in [0,1], and  
• k is iteration number.  

The first iteration will be ended after modifying the 
positions and velocities for the subsequent time step (k + 
1). Coherently, the process will be executed continuously 
till when a determined stopping criterion is accomplished. 
The critical parameters required for PSO algorithm are 
swarm size, ω, cognitive and social parameters	𝑐1,	𝑐2. 
These are the required parameters needed to be initialized 
by the users before the beginning of execution. Based on 
the literature survey, the appropriate values for these 
parameters are presented in Table 1. 

2.3.2.2 The ε-constraint method 

The ε-constraint technique is a simple multi-objective 
optimization approach that can be used simply by 
selecting one objective to be optimized and the additional 
ones are regarded as constraints bound by defining target 
levels	(𝜀𝑖) (Sharafi & ELMekkawy 2014). As the target 
levels are being varied, the non-dominated solutions of the 
optimization problem can be determined.  Considering the 
MOP as shown in Eqn. (36): 
 
𝑀𝑖𝑛 {𝑓\(𝑥), 𝑓¬(𝑥), . . . 𝑓�(𝑥)}               (36)     
                                                                                                         
where, 𝑥 is decision vector, 𝑓u(𝑖 = 1,2, . . . 𝑘) represent the 
criteria. A given solution 𝑥∗ is supposed to be a non-
dominated solution if there is no any other possible 
solution 𝑥 such that	𝑓𝑖(𝑥) ≤ 𝑓𝑖(𝑥

∗) for all 𝑖 = 1,2, . . . 𝑘 and 

at least one inequality is strict. Considering the ε-
constraint approach, if 𝑓¹(𝑥), 𝑗 ∈ {1, 2, . . . 𝑘} is the criterion 
preferred to be optimized, and	𝑓𝑖(𝑥) is the objective 
selected as the constraint (Sharafi & ELMekkawy 2014).  

𝑀𝑖𝑛 𝑓¹(𝑥)            𝑗 ∈ {1, . . . , 𝑘}                      (37) 

   Subject to 

 
𝑓u(𝑥) ≤ 𝜀u      ∀𝑖 ∈ {1, . . . , 𝑘}, 𝑖 ≠ 𝑗,  𝑥 ∈ 𝑆     (38)                                   
      
where  is the solution space.  LCOE is selected as the 
objective function to be optimized while LLPI and EMR 
are integrated as inequality constraints in the modes: 
𝐿𝐿𝑃𝐼 ≤ 𝜀||= and 𝐸𝑀𝑅 ≥ 𝜀g�F.  
 

2.4 Description of case study and data acquisition   

Nigeria has an enormous potential for renewable 
energy which still remains largely unused. Virtually all 
the regions in the country are blessed with sufficient 
renewable energy resources which can satisfy energy need 
of the country if it is economically and properly harnessed. 
The remarkable sources are solar energy, biomass, 
geothermal, wind, hydropower, hydrokinetic energies 
among others. The average solar irradiance in the country 
falls between 3.5-7.0 kWh/m2/day, while the wind speed 
ranges from 2 - 4 m/s at 10 m height, as recognized small 
hydropower has a potential of 735 MW (Sambo 2009). 
Akuru et al. (2017) emphasize the promising renewable 
energy sources which are vital to solve the persistent 
problem of electricity generation in Nigeria. It was 
recommended that individuals can take the lead in driving 
the evolution from traditional based electricity generation 
to 100% renewable energy rather than reliance on 
government always. 

The ten-year hourly electricity load profile is 
estimated for the cluster of the three communities in 
Nigeria using the end-use modelling technique as 
presented in Figs. 5(a) and (b) for the dry and rainy 
seasons respectively. Also, the hourly water discharge of 
the river under consideration was estimated by installing 
a water gauge station at a determined location to gauge 
the daily water level for one year. The correlation between 
measured velocity and the geometry of the channel was 
used to transform water gauges to discharges as shown in 
Fig. 6. Flow probe with model number FP211 was used to 
measure the velocity of the water whereas the Digital 
Elevation Model (DEM) was utilized to indicate the 
proposed locations of diversion weir, forebay and power 
house in order to determine the net head. The hourly solar 
irradiance and temperature data for year for ten years 
were acquired from the Nigeria Meteorological Station, 
Ilorin International Airport, as presented in Figs. 7 and 8 
respectively. Techno-economic data for all components 
considered are represented in Tables 2 to 4. The small 
hydropower energy, load demand and solar energy are 
considered to be invariable during a time-step of 1 hour 
and the system DC bus voltage has a value of 240 volts. 

 

N

w

S



Int. Journal of Renewable Energy Development 10 (4) 2021: 667-686 
  P a g e  |  

	

IJRED-ISSN: 2252-4940.Copyright © 2021. The Authors. Published by CBIORE 

677 

 

Fig.4 Flowchart of the Algorithm Simulating the Dispatch Strategy using ε-Constraint Method. 

 

Table 2 
Technical Specifications and the Capital Costs of a Sharp Solar PV modules 

System parameters Values 
Rated power per unit (𝑷𝑵y𝑷𝑽) (W) 200 

Rated voltage (𝑽𝑷𝑽) (V) 24 

Maximum power voltage (V) 36.5 

Cost per unit ($) 115.52 

BOS Cost (50% of unit cost) ($) 57.76 

Capital cost per unit (𝑪𝑰,𝑷𝑽) ($) 173.28 

Lifespan of the module (years) 25 

 
Start  

Get the input hourly: 
load data, hydro data 
and techno economic 
data’s of standard 
components available 

                                    t=t+1 

               Calculate 𝐸𝑡𝑆𝐻𝑃 + 𝐸𝑡𝑂𝑃𝑉 Eqn. (3) +Eqn. (6) 

 

Calculate 	𝐸𝑡𝑁𝐿  Eqn. (18) 

 

Is	𝐸𝑡𝑁𝐿 = 0? 

YES 

A NO 

Is	𝐸𝑡𝑁𝐿 > 0? 

Discharge the battery. Calculate new 
state of charge. Eqn. (17) 

YES 

NO 

Is	E𝑡bat = 𝐸𝑏𝑎𝑡𝑚𝑖𝑛? 

YES 

Calculate LLPI Eqn. (26) 

Calculate EMR Eqn. (27) 

NO 

Charge the battery. Calculate new 
state of charge. Eqn. (16)  

Is	E𝑡bat =
𝐸𝑏𝑎𝑡𝑚𝑎𝑥 ? 

NO 

YES 

E𝑡
dump = 𝐸𝑡

𝑐𝑔𝑐−𝑜𝑢𝑡 − (𝐸𝑏𝑎𝑡𝑚𝑎𝑥
− 	E𝑡bat )	 

Is	𝑡 =
8760? 

Simulation successful  

YES 

NO 

C 

C 

Initialization t=0 

A 

End 

B 

Calculate LLPI Eqn. (26) 

Calculate EMR Eqn. (27) 

 

Is	𝑡 =
8760? 

B
a 

YES 

C 

NO 

|𝐸𝑀𝑅| ≥ 0.75 

Are:	𝐿𝐿𝑃𝐼 ≤ 0.0001 

YES 

C 

NO 

|𝐸𝑀𝑅| ≥ 0.75 

Are:	𝐿𝐿𝑃𝐼 ≤ 0.0001 

C 

YES 

NO 
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                                                          (a) 

 
                                                      (b) 

Fig. 5(a) and b Ten-year forecasted hourly load demand for the 
dry season (November – April) and rainy season (May-October) 

 
Fig. 6 Hourly variation of discharge in the river for one year 
(January - December, 2017) 
 

 
Fig. 7 Average hourly solar insolation data (2010-2016). 
 

 
Fig. 8 Average hourly temperature data (2010-2016) 
 
 
 
 
Table 3 
Technical specifications and the capital costs of the energy 
storage system 

System parameters Values 

Ah per battery 100 

Voltage per battery (𝑽𝒏) (V) 12 

Energy size of each battery[ 𝑬𝒏= (𝑽𝒏 × 𝑨𝒉/
𝟏𝟎𝟎𝟎)] 

1.2 

Cost per unit ($) 206.28 

BOS Cost (2% of unit cost) ($) 4.13 

Capital cost per unit (𝑪𝑰,𝒃𝒂𝒕) of battery ($) 210.41 

Replacement cost per battery (𝑪𝒓𝒆𝒑,𝒃𝒂𝒕) ($) 206.28 

Charging efficiency 0.89 

Discharging efficiency 1.00 

Lifespan (years) 4 
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Table 4  
Other parameters 

Description  Data 

PV Regulator 
Efficiency of PV regulator 
PV regulator cost 

 
0.95 

2000US$ 
GL760-LM-40 Small Hydropower Generating System (Kaplan turbine and permanent magnet 
generator complete set) 

 

Capital cost per unit (𝑪𝑰,𝑺𝑯𝑷) (Maria et al., 2017) 62,000US$ 
Efficiency of turbine ( 𝜼𝒕𝒖)  91% 
Efficiency of generator (𝜼𝒈) 95% 
Net Head (𝑯𝒏)  
Gross head (𝑯) 
Discharge (𝑸𝒃) 

7.63 m 
8 m 

0.8 m3/s 
BZP 50kW 240V DC battery input hybrid inverter with 3-phase output  

Efficiency  0.92 
Life span 25 years 
Capital cost (𝑪𝑰,𝒊𝒏𝒗) 8000 US$ 
Input DC bus voltage (𝑽𝒃𝒖𝒔) 240V DC 

Economic parameters  
Nominal interest rate ir (%) (CBN, 2017) 14 
Inflation rate f (%) (CBN, 2017) 

Operating Reserve 
15.4  

Load (%L) 10% of 𝐸#| 
PV (%PV) 20% of 𝐸#=L 

 

Table 5 
Optimal size of components for scenarios 1 to 4 

Scenarios 
Number of Components  Values of Objective Functions 

𝑵𝒃𝒂𝒕 𝑵𝑷𝑽 𝑵𝑺𝑯𝑷 𝑵𝒃𝒂𝒕
𝒑  𝑵𝑷𝑽

𝒑   𝑳𝑪𝑶𝑬  ($) 𝑳𝑳𝑷𝑰 |𝑬𝑴𝑹| 

1 40 570 4 2 57  0.41739 0.00004731 0.75 
2 40 640 5 2 64  0.41724 0.00009851 0.75 
3 40 640 5 2 64  0.41718 0.00009851 0.75 
4 40 770 2 5 77  0.417 0.00007921 0.75 

 

3. Results and Discussion 

3.1 Solution approach 

The solution approach is implemented in MATLAB 
programming setting in a 2.3 GHz dual core processor. It 
is implemented to design a hybrid energy systems 
comprising of small hydropower/PV panels/batteries to 
generate electricity for the group of three un-electrified 
off-grid rural settlements located in North Central Region, 
Nigeria. Since a hybrid energy system usually lasts more 
than 5 years, the projected 10th year annual load profile is 
used. The optimal solution produced by the proposed ε-
constraint approach is given in Table 5. In this table, the 
best founded result is shown as the minimum LCOE and 
LLPI, and maximum EMR for the allowable values of 
LLPI and EMR as $0.41739/kWh, 0.00004731 and 0.75 
respectively. 

In order to explore how possible change of the 
capacity per unit of input parameters may influence the 
optimal solution produced by the optimization algorithm 
under a specific number of assumptions, three Scenarios 
were considered. They are 130 Ah battery with 250 Wp PV 
for Scenario 2, 150 Ah battery with 280 Wp PV for 
Scenario 3 and 200 ah with 300 Wp PV for Scenario 4. The 
capital cost per unit of solar PV for Scenarios 2 to 4 are 
$127.89/unit, $156.77/unit and $169.15/unit respectively. 
Also, the capital cost and replacement cost per unit of 
battery for Scenario 2 to 4 are $241.27/unit and 

$236.54/unit, $263.71/unit and $258.54/unit, $392.76/unit 
and $385.06/unit respectively. The results of Scenarios 2 
to 4 are also presented in Table 5.  For all the Scenarios 
considered, it is observed that a minimum of two number 
of small hydropower is considered to meet up with the 
hourly load demand. Scenario 1 which has the lower 
capacity per unit of PV and battery has the highest LCOE 
given as $0.41739/kWh for 𝐿𝐿𝑃𝐼 ≤ 0.0001 and 𝑅g� ≥ 0.75 
while Scenario 4 with highest capacity per unit of PV and 
battery has the lowest 𝐿𝐶𝑂𝐸 given as $0.417/kWh for 
𝐿𝐿𝑃𝐼 ≤ 0.0001 and 𝐸𝑀𝑅 ≥ 0.75. 

The percentage of contribution of individual 
component to the overall energy supply systems in the 
ninth year over one year for Scenarios 1 to 4 using the 
proposed approach is represented in Fig. 9. The 
percentage of participation of solar PV is the highest in all 
the scenarios considered followed by the small hydropower 
and lastly the battery banks. This implies that the peak 
sun hours (PSH) which is defined as the duration in hours 
at 1 kW/m2 insolation level needed to produce energy that 
is corresponding to the overall energy per day for the 
location is greater than 3. The contribution of solar PV and 
small hydropower in Scenarios 1 to 4 are 92%, 92%, 94%, 
95% and 7%, 7%, 6%, 5% respectively. Scenario 4 with the 
lowest 𝐿𝐶𝑂𝐸 has the highest percentage of solar PV 
contribution and the lowest small hydropower 
contribution. This further implies from Fig. 9 as shown 
from Scenarios 1 to 4 that the cost of energy for PV is 
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cheaper as compared to that of small hydropower. The 
outcome also shows little contribution of battery energy 
storage system as shown in Fig. 9 for all the Scenarios. 
One major reason for this low contribution can be as a 
result of the incorporation of hourly spinning operating 
reserve and high cost of battery. In short, Solar PV 
production has a substantial effect on the storage capacity 
and the small hydropower production as it contributed 
highest power hourly for all the Scenarios as shown in Fig. 
10 (a)-(d). The capacity of the components as evident in 
Tables 5 and 6 is enough to meet up with the hourly 
electrical load demand. 

3.2 Validation of results with HOMER software 

The same set of input data was utilized to implement 
the multi-objective optimization problem with HOMER 
optimization software. Different configuration schemes of 
the proposed hybrid energy systems are displayed in Fig. 
11 as the output results of HOMER are represented in 
Table 6. It can be observed in the table that the small 
hydropower was selected in each of the scenarios 
throughout the year. The LCOE for Scenarios 1 - 4 were 
found to be $0.777/kWh, $0.420/kWh, $0.43/kWh, 
$0.444/kWh. The Scenario 1 which has the lowest capacity 
per unit of PV and battery has the highest LCOE while 
Scenario 2 which also has the lower capacity of PV and 
battery has the lowest LCOE 

 

 
 
Fig. 9 Percentage contribution of each component to the overall 
energy supply  
 
 

 

 

 

 

Fig. 10 (a)-(d) Hourly power contribution of Solar PV for 
Scenarios 1-4 

Scenario 1 Scenario 2 

Scenario 3 Scenario 4 

(a)  Scenario 
1 

(b)   Scenario 2 

(c)			Scenario	3	

(d)			Scenario	4	
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Fig. 11 Different scenarios of hybrid energy system simulated in HOMER software 
 

Table 6 
Optimal size of components using HOMER for scenarios 1 to 4 

Scenarios Capacity  of Components  Values of Objective Functions 
𝑵𝒃𝒂𝒕 𝑷𝑷𝑽 (kW) 𝑷𝑺𝑯𝑷 (kW) 𝑵𝒃𝒂𝒕

𝒑  𝑷𝒊𝒏𝒗(kW)  𝑳𝑪𝑶𝑬  ($)  𝑳𝑳𝑷𝑰 
1 960 142 206 48 28.80  0.777 0.00083 
2 540 162 206 27 33.50  0.420 0.000898 
3 720 119 206 36 35.2  0.43 0.000827 
4 360 162 206 18 33.9  0.444 0.000880 

3.3 Comparison of results  

Both the proposed and Homer optimization methods 
were presented and tested using the same input data. The 
hourly performance simulation of the components of the 
hybrid renewable energy system is calculated under “the 
combined dispatch strategies” i.e battery charging and 
discharging strategies. The economic results of the system 
from HOMER system are described in Table 4. The cost of 
the PV subsystem is the leading cost as a result of its 
highest hourly power contribution from the overall energy 
mix followed by the small hydropower and lastly the 
battery bank in both cases. The comparative investigation 
shows that the optimal configuration of the proposed 
methodology is more cost effective than HOMER system. 
The levelized cost of energy is 0.417$/kWh for the 
simulation-based optimization approach combined with ε-
constraint method and 0.444 $/kWh for HOMER. It is also 
found that the proposed optimization approach has lower 

than HOMER system. Homer does not consider the 
number of units of generating sources rather it considers 

the capacity in kW which increases the annual excess 
electricity generation. 

Homer can determine renewable energy ratio but it 
cannot maximize coincidence of hourly load profile to 
demand profile so as to minimize the participation of 
energy storage. Homer also lacks flexibility in setting up 
of constraints. HOMER does not consider the effect of 
DOD of the battery which has a significant role in lifetime 
of the battery bank.  

3.4 Environmental benefits 

Literature has established that the fossil fuel-based 
electricity generation approaches are one of the major 
sources of anthropogenetic carbon dioxide emissions to the 
airspace (Azoumah et al. 2011; Ballat & Ballat 2010). The 
yearly electrical energy required for the group of the three 
rural settlements in the base year (0 year) is estimated as 
176,713.32 kWh and 229,008.14 kWh in the ninth year 
using end-use modelling technique. Electrical energy 
saving for 1 kWh will produce 0.8 ~ 0.9 kg CO2 (Kamal 
2012).  

LLPI

Scenario	1		 Scenario	2		

Scenario	3		 Scenario	4		
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Fig. 12 Estimated annual emissions for 10 years 

From environmental perspective, 141,370.66 kg of 
CO2 and 183,206.51 kg of CO2 would be saved in the base 
and ninth year respectively by using renewable sources as 
against grid extension to the communities from the 
nearest gird, which imposes more demand from the 
central generators. The estimated annual emissions that 
would, therefore, be saved from the atmosphere, using the 
renewable resources to supply electricity needs of the 
proposed rural communities from base year to ninth year 
are represented in Fig. 12.  

3.5 Carbon credit 

Carbon credit is a certification that is issued to an 
organization to emit permissibly a definite amount of 
carbon dioxide and the variation, if available can be 
negotiated if the full grant is not achieved. In simpler 
term, the higher the emissions the higher the expenses, 
and the lower the carbon emissions the higher the credits 
that can be sold or exchanged. This emission is now 
becoming a product that helps people, countries, 
consultants and even farmers to make billions of dollars. 
For business purposes, one certified emission reduction 
(CER) is corresponding to one metric ton of CO2 (tCO2) 
emissions. Likewise, based on GEF approximation, 1 
MWh will generate 0.8t of CO2. The CERs can be marketed 
secretly or in the international market at the normal 
market worth. At the moment the worth for carbon 
emissions is $9.90/t of CO2, revenue of $1399.5 and 
$1,813.7 will be obtained in the base and ninth year 
respectively as presented in Fig. 13. 

 
Fig. 13 Carbon benefit earned between base and ninth year. 

4. Conclusion 

In this paper, a unique and simple method is presented to 
optimize the size of a hybrid renewable energy system. 
The ε-constraint method has been applied to minimize two 
objectives namely levelized cost of energy, loss-of-load 
probability index and to maximize one objective named 
energy match ratio. The suggested tool used a PSO-based 
simulation method to solve the formulated multi-objective 
optimization problem. The primary advantage of the 
proposed approach is its simplicity which leads to 
computational efficiency. 

The proposed approach was utilized to design a 
hybrid energy system, which comprised small 
hydropower, solar PV and battery storage system for a 
group of three off-grid rural settlements as a case study. 
The ε-constraint approach was applied under a specific 
number of assumptions for four different scenarios. The 
outcomes from the proposed method were validated with 
those obtained using HOMER optimization software with 
the same input data set and assumptions. It was found 
that the proposed approach showed more dynamism and 
coherence in choosing different components relative to 
HOMER software. The levelized cost of energy was 
cheaper with the proposed method than that from 
HOMER software. Since a basic constraint for the 
optimization of a hybrid energy system is to continuously 
satisfy the load request, this was achieved excellently in 
the proposed approach as the loss-of-load probability index 
was lower than that obtained from the HOMER software. 
The proposed approach can be adopted in carrying out 
viability studies and the design of hybrid energy systems 
for off-grid rural communities with solar and hydropower 
potentials in any location on the globe.   

The outcomes of these study are briefly listed as 
follows:(i)Proposing a method based on ε-constraint 
method for optimal design of HRES including solar 
photovoltaic system, small hydropower generators and 
battery energy storage devices, (ii) The beautiful features 
of this proposed approach are its simplicity and the 
moderately less computational effort, (iii)Performing a 
multi-objective optimization methodology to consider a 
novel energy match ratio as an objective function when 
optimizing the design of off-grid rural areas electrical 
energy supply system, (iv) Integrating spinning operating 
reserve in renewable energy resource and load demand 
when sizing an off-grid rural areas electrical energy 
supply system. To be specific, the unpredictability in solar 
radiation, water flow, temperature and load demand are 
simultaneously considered in the sizing procedure of 
HRESs. 

The energy generation to the rural communities 
under study was considered completely as electrical 
energy, but it may possibly be more effective to divide the 
load demand into heat and electrical demands and use 
different approaches to satisfy each. The feasibility of 
combining other renewable sources of energy such as 
geothermal and hydrokinetic sources may be considered in 
future researches. In addition, more optimization criteria 
to minimize excess electricity generation, maximize 
system reliability are needed to be considered in future 
research works. 
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Nomenclature 

𝐸Bg�  Annual energy generated from all the 
sources 

𝐶𝑅𝐹   Capital recovery factor  
𝜂,7#    Efficiency of battery 
𝜂u"v   Efficiency of inverter 
𝜂z%z   Efficiency of the charge controller 
𝑔  Index of the best particle in the population 

(swarm)    
𝑖𝑟   Nominal interest rate  
𝑐\   Self-confidence 
𝐸#y\,7#   State-of-charge of the battery at time t-1  
𝑐¬   Swarm confidence 
(𝐷𝑂𝐷)3ef  Maximum depth-of-discharge of battery bank 
𝑇76,  Ambient temperature 
𝐸;<=BC  Annual energy generated from total number 

of hydropower generating unit 
𝐸=LBC Annual energy production from the total 

number of solar modules 
𝑖  Annual interest rate 
𝜂~z{  Battery discharging	efficiency 
ℎ,  Bend losses 
𝜂z{7  Battery bank charging efficiency 
𝐶&,7#  Per unit battery replacement cost  
𝑉,1?  DC bus voltage 
𝜂%  Efficiency of the generator 
𝜂#1  Efficiency of the turbine 
%𝐿  Electrical load operating reserve 
𝑃#
M Electrical power generated at time t by a 

single PV panel 
𝐸#? Energy generated by a single small 

hydropower generating unit 
𝐸#
M  Energy generated by a single solar PV 

𝐸𝑀𝑅  Energy Match Ratio 
ℎ*  Frictional losses 
𝐻%  Gross head 
𝐿𝐷#   Hourly electrical loads (𝐿𝐷#) 
𝑓  Inflation rate  

  Iteration number 
𝐿𝐿𝑃𝐼  Loss-of-load probability index 
𝐶=L6#"  Maintenance cost per kWh for PV 
𝐶;<=6#" Maintenance cost per kWh for small       

hydropower 
𝑄3ef  Maximum flow rate of the selected turbine 
𝑄345  Minimum flow rate of the selected turbine 
𝐸,7#345  Minimum state-of-charge of battery bank 
𝐻"  Net head  
𝑉=L  Nominal voltage of a single PV 
𝑁,7#
M   Number of batteries in parallel 

𝑁,7#   Number of batteries 
𝐷B Number of days of autonomy, which is 

usually between 2-5 days 
𝑛Y& Number of devices of appliance r in user 

class	𝑞   
𝑛Y&
?,b Number of devices of appliance r in user 

class on standby 
𝑁;<= Number of small hydropower generating 

units 
𝑁=L  Number of solar photovoltaic panels 
𝑁=L
M   Number of solar PV in parallel 

𝑁=L?   Number of solar PV in series 
𝑅,7#   Number of times of battery replacement 
ℎ-  Outlet losses 
𝐶H,,7#  Per capital cost per unit of battery  
𝐶H,z%z Per capital cost per unit of charge controller 
𝐶H,;<= Per capital cost per unit of small hydropower 

generating unit 
𝐶H,=L  Per capital cost per unit of solar PV  
𝑃Y&  Power consumed by appliance r in user class 

𝑞 

𝐺&I* Radiation of the solar PV at Standard Test 
Condition 

 Random number uniformly distributed in 

[0,1] 
 Random number uniformly distributed in 

[0,1] 
𝑃=L  Rated power of single solar PV under 

reference conditions 
𝑆𝐹𝐹   Sinking fund factor 
𝐺#   Solar radiation at a time t 
𝜌  Specific weight of the water 
𝑃Y&
?,b Standby power consumed by appliance  in 

user class 𝑞 
𝐸#,7#  State-of-charge of the battery at time t 
𝑅 System life period which is equal to the life 

of the PV panel  
𝑇&I*  Temperature of the solar PV at Standard 

Test Condition 
𝛥𝑡  Time step of 1 hour 
𝑇𝐴𝐶  Total annualized cost of the system  
𝐸#U= Total electrical energy demand at time t by 

incorporating operating reserve. 
𝐸#;<= Total hourly energy production from number 

of small hydropower unit 
𝐸#=L Total hourly energy production from the 

total number of solar PV 
ℎ#&   Trash rack losses 
𝐿𝐶𝑂𝐸  Levelized cost of energy 
𝐶H,u"v Per capital cost per unit of bidirectional 

power inverter 
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