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ABSTRACT. In this paper, multi-objective economic-environmental solar-wind-thermal power scheduling model is developed. This model 
is optimized for five test systems. First test system is based upon a purely thermal power generating system. Its problem is formulated 
to satisfy the three conflicting objectives: (i) fuel cost, (ii) 𝑁𝑂#  emission, and (iii) 𝑆𝑂% emission. The second, third and fourth test system 
considers integrated solar-thermal, wind-thermal and solar-wind-thermal power systems, respectively for optimal scheduling. 
Uncertainty costs are also considered in the renewable power based systems. These four test systems are examined for five power demands 
i.e. 200 MW, 225 MW, 250 MW, 275 MW, & 300 MW. Fifth test system is also deployed upon a renewable-thermal power scheduling. The 
effects of variation in number of thermal generators on fuel cost and 𝑆𝑂% emission are perceived, for a power demand of 400 MW. The 
value of fuel cost (4067.98 Rs/h) and 𝑆𝑂% emission (2,441.05 kg/h) is reduced to 3,232.94 Rs/h and 1,939.30 kg/h, respectively, when number 
of thermal generators are reduced from four to two. The 𝛼-constrained simplex method (ACSM) is used for simulation and the results are 
compared with simplex method (SM). The results clearly depict the dominance of ACSM over SM in almost all the fields. 
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1. Introduction 

Some issues regarding fossil fuels like cost, environmental 
factors, limited resources and rise in power demand etc. 
have started overweighing their abilities like higher 
energy density and efficiency etc. In the past decades, 
researchers started exploring its options. Renewable 
Energy Resources (RER) have so much power that 
perhaps one day they can carry all the weight on their 
tubers. But till now, because of their spasmodic nature, it 
is difficult to rely completely on RER. Therefore, 
integrated systems are the only option left. 

Mondal et al. (2013) presented multi-objective economic 
emission load dispatch solution using gravitational search 
algorithm and considering wind power penetration. 
Hetzer et al. (2008) have suggested an economic dispatch 
model incorporating wind power. Dubey et al. (2015a) 
tested hybrid flower pollination algorithm with time-
varying fuzzy selection mechanism for wind integrated 
multi-objective dynamic economic dispatch. Kayalvizhi 
and Kumar (2018) have formed stochastic optimal power 
flow in presence of wind generations by using harmony 
search algorithm. Damodaran and Kumar (2018) 
suggested hydro-thermal-wind generation scheduling 
considering economic and environmental factors with 
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heuristic algorithms. Li and Kuri (2005) have presented 
generation scheduling system with wind power. Panda 
and Tripathy (2016) explored solution of wind integrated 
thermal generation system for environmental optimal 
power flow with hybrid algorithm. Tan et al. (2019) have 
worked on optimal scheduling of hydro-PV-wind hybrid 
system considering CHP and BESS coordination. Tyagi et 
al. (2016) have formulated economic load dispatch of wind-
solar-thermal system using backtracking search 
algorithm. Saxena and Ganguli (2015) have worked on solar 
and wind power estimation and economic load dispatch 
using firefly algorithm. Mondal et al. (2012) found solution 
of cost constrained emission dispatch problems 
considering wind power generation. They have used 
gravitational search algorithm. Takahama and Sakai 
(2005) worked on constrained optimization by applying 
the α-constrained method to the nonlinear simplex method 
with mutations. Gangwar and Chishti (2014) have used 
hybrid simplex method for economic load dispatch. Reddy 
et al. (2016) have demonstrated optimal operation of 
microgrid using hybrid differential evolution and harmony 
search algorithm. Reddy (2017a) worked on optimal 
scheduling of wind-thermal power system using clustered 
adaptive teaching learning based optimization. Reddy 
(2017b) suggested optimization of renewable energy 
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resources in hybrid energy systems. Mohamad et al. (2019) 
have worked on hybrid optimization technique for short 
term wind-solar-hydrothermal generation scheduling. He 
et al. (2019) have elaborated integrated scheduling of 
hydro, thermal and wind power with spinning reserve. 
Vaderobli et al. (2020) investigated optimization under 
uncertainty to reduce the cost of energy for parabolic 
trough solar power plants with different weather 
conditions. Correa-Jullian et al. (2020) have suggested 
operation scheduling in a solar thermal system: a 
reinforcement learning based framework. Nguyen et al. 
(2020) have demonstrated optimal scheduling of large 
scale wind-hydro-thermal systems with fixed head short 
term model.  

In this paper, α-Constrained Simplex Method (ACSM) 
is suggested for optimal scheduling of solar-wind-thermal 
integrated system. This meta-heuristic technique is a 
combination of other modes like Nelder and Mead’s 
nonlinear simplex method, mathematical methods, 
evolutionary method, α-constrained method etc. 
(Takahama and Sakai 2005). It is comprised after 
performing three major improvements in an ordinary 
simplex method (SM) i.e. (i) using α-level comparisons 
instead of ordinary comparisons, (ii) executing mutations 
of worst points, (iii) creating multi-simplexes instead of a 
single simplex. ACSM is a very precise, stable and fast 
technique. Its reliability has been investigated on five test 
systems.  

2. Multi Objective Problem Formulation 

In this paper, three conflicting objectives of thermal, solar 
and wind power systems have been considered. These 
economic environmental objectives are: 

(i). Cost (fuel cost of thermal generating system, 
overall costs of wind and solar systems) 

(ii). 𝑁𝑂# pollutant emission 
(iii). 𝑆𝑂% pollutant emission  

Second and third objectives are purely related to thermal 
generation system. 

2.1 Economy objective 

The economy objective of solar-wind-thermal integrated 
system (Kothari and Dhillon 2011; Dubey et al. 2015b; 
Sinha et al. 2003; Wood and Wollenberg 2006) is: 
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45
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Where: 

• 𝐺𝑡 : number of thermal generators 
• 𝐺𝑤 : number of wind generators 
• 𝐺𝑠 : number of solar units 
• 𝑃-. : the power output of 𝑖5G thermal generator in 

MW 
• 𝑎-., 𝑏-.	 and 𝑐-. are cost coefficients of 𝑖5G thermal 

generator 
• 𝑊89 : the wind power cost of 𝑗5G wind generator 
• 𝑊;< : the solar power cost of 𝑘5G solar unit 

2.2 Environmental objectives 

𝑁𝑂# and 𝑆𝑂% emissions are given as quadratic functions of 
thermal power output. 𝑁𝑂# emission can be evaluated as 
(Kothari and Dhillon 2011): 
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Where:  

• 𝑑(.	, 𝑒(. and 𝑓(. are 𝑁𝑂# emission coefficients of 𝑖5G 
thermal generator. 

 
𝑆𝑂% emission can be given by (Kothari and Dhillon 2011): 
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Where: 

• 𝑑%., 𝑒%. and 𝑓%. are 𝑆𝑂% emission coefficients of 𝑖5G 
thermal generator. 

2.3 Multi-objective optimization problem   

Minimize[𝐹(,𝐹%,𝐹Q]- 
 
Subject to: 
 
1. The equality constraint (Saxena and Ganguly 2015; 
Reddy 2017a): 
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Where: 

• 𝑃89 and 𝑃;< are scheduled powers of 𝑗5G wind farm 
and 𝑘5G solar unit (MW) 

• 𝑃T is power demand (MW) 
• 𝑃U is transmission losses (MW) 

 
2. Power generation limits on thermal, wind and solar 
units (Saxena and Ganguly 2015; Reddy 2017a): 
 
𝑃-.VWX ≤ 𝑃-. ≤ 𝑃-.VZ[

(𝑖 = 1,2,⋯ ,𝐺𝑡) (5) 
 

0 ≤ 𝑃89 ≤ 𝑃8`9(𝑗 = 1,2,⋯ , 𝐺𝑤) (6) 
 

0 ≤ 𝑃;< ≤ 𝑃;`<(𝑘 = 1,2,⋯ , 𝐺𝑠) (7) 
 
Where: 

• 𝑃-.VWX and 𝑃-.VZ[ are lower and upper limits of 
power output of 𝑖5G thermal generator in MW, 
respectively 

• 𝑃8`9 is rated power output of 𝑗5G wind farm in MW 
• 𝑃;`< is rated power output of 𝑘5G solar unit in MW 

2.4 Model of solar power uncertainty 

Sun is continuously generating heat by thermo-nuclear 
fusion reactions, in which hydrogen atoms are converted 
into helium atoms and the evolved energy is radiated in 
all directions. Earth and its atmosphere is continuously 
receiving 1.7 × 10(d W of radiations (Singal 2006). It is a 
very small fraction of total energy radiated by the sun. The 
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quantity and quality of radiations that reaches the earth 
depends upon the geographical location and weather 
conditions of a particular area. The power output of solar 
unit can be expressed as (Tan et al. 2019): 
 

𝑃ef; = 		 𝑃g`𝐼-
(1+	𝑘e(𝑇j 	−	𝑇l))

𝐼;j
 (8) 

 
Where: 

• 𝑃g` : the rated power of solar unit (MW) 
• 𝑇j : the operating temperature (℃) 
• 𝑇l : the reference temperature (℃) 
• 𝑘e : the temperature coefficient (/℃) 
• 𝐼;j : maximum value of solar radiations incident 

under standard conditions (MJ/m2 -h) 
 
The hourly beam solar radiations incident on an inclined 
plane at northern hemisphere (Singal 2006) is: 
 
𝐼- = 	

𝐼n cos𝜃j
cos𝜃  (9) 

  

=
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(cos𝛿 cos𝜔 cos∅ + sin∅ cos𝛿)  (10) 

 
Where: 

• 𝛽( ∶ 	Ø± 15° 
• 𝐼n : hourly beam solar radiation incident on a 

horizontal plane(MJ/m2-h) 
• Ø : geographical latitude (°) 
• θ : angle of incidence of beam solar radiation on 

horizontal plane (°) 
• 𝜃j : angle of incidence of beam solar radiation on 

tilted solar collector towards equator (°) 
• β1 : angle of tilt of solar collector (°) 
• δ : sun’s declination (°) 
• ω : hour angel (°) 
• d : the day of the year 

 
Angle of sun’s declination can be calculated as (Singal, 
2009): 
 

𝛿 = 23.45°𝑆𝑖𝑛�
360(284+ 𝑑)

365 � (10.1) 

 
Due to uncertain behavior of solar radiations, the total 
operating solar power cost consists of two parts i.e. (i) 
direct cost (ii) uncertainty cost. Uncertainty cost 
comprises (a) overestimation cost (b) underestimation 
cost. Therefore, total operating cost of solar power is given 
as: 
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Where: 

• 𝐸;< : the direct cost function of 𝑘5G solar units 
• 𝐸�;< : the overestimation cost function of 𝑘5G solar 

units 
• 𝐸�;< : the underestimation cost function of 𝑘5G 

solar units 

Direct cost is a linear cost function of scheduled solar 
power. It can be determined as: 

 

Direct cost	=	*(𝐸j<𝑃;<)
4;

<6(

 (12) 

 
Where: 

• 	𝐸j< : the direct cost coefficient of 𝑘5Gsolar unit. 
 
If the available solar power is less than the estimated 
value then operator has to purchase some power from any 
different source. This extra cost is called overestimation 
cost and it can be calculated as: 
 

Overestimation cost	=	*+𝐸�j<(𝑃;< − 𝑃ef;<)3
4;

<6(

 (12.1) 

 
Where: 

• 𝐸�;< : the overestimation cost coefficient of 𝑘5G 
solar unit. 

 
If the available solar power is more than the estimated 
value then extra power is wasted. Therefore, operator has 
to compensate the supplier’s cost. This compensated value 
is called underestimation cost and it can be evaluated as: 
 

Underestimation cost =	*+𝐸�j<(𝑃ef;< − 𝑃;<)3
4;

<6(

 (12.2) 

 
Where: 

• 𝐸�;< : the underestimation cost coefficient of 𝑘5G 
solar unit. 

2.5 Model of wind power uncertainty 

Output power of wind generators depends upon wind 
strength of the particular area, which is completely 
unpredictable. Therefore, it is not possible to accurately 
forecast wind characteristics. Weibull distribution density 
factor can be used to analyze wind data. Wind speed 
frequency distribution can display a clear picture of wind 
energy potential in a specific area. It can be formulated as 
(Reddy et al. 2016; Reddy 2017b): 
 

𝐹f =	�
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Where: 

• 𝑘: the Weibull shape factor 
• 𝑐: the Weibull scale factor 
• 𝑣: the annual average speed in m/sec 

 
The wind power generated at different wind velocities can 
be expressed as (Reddy et al. 2016): 

 

𝑃ef8 =

⎩
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Where: 

• 𝑣.: cut in speed of wind generator in m/sec 
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• 𝑣l: rated speed of wind generator in m/sec 
• 𝑣�: cut out speed of wind generator in m/sec 

 
It means that wind power is zero, when wind speed is less 
than cut in speed or greater than cut out speed. Wind 
power becomes equal to rated power of 𝑗5G wind generator, 
when wind speed lies between rated wind speed and cut 
out speed. The probability of wind power can be calculated 
as (Saxena and Ganguly 2015): 
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Where: 

• 𝜌 = f
f¢

  and  𝐼	 = (f¢�fW	)
fW

 

Also, the total operating cost of wind power composes of 
(1) direct cost, (2) uncertainty cost. The direct cost of wind 
power generation is (Reddy et al. 2016; Reddy 2017a): 
𝐶𝑑𝑗 =	𝐶¤9𝑃89 (16) 

Where: 
• 𝐶¤9 is direct cost coefficient of 𝑗5G wind generator. 

 
Further the conditions for uncertainty are verified to 
obtain uncertainty cost. If available wind power is less 
than scheduled wind power, then overestimation cost is 
(Reddy 2017a; Kayalvizhi and Kumar 2018): 
 

𝐶𝑜𝑗 =	𝐶�89 ¥ (𝑃89

¦89

¡

− 𝑃ef8)	𝑓(𝑃ef8)𝑑(𝑃ef8) (17) 

 
Where: 

• 𝐶�89 : the overestimation cost coefficient of 𝑗5G 
wind generator.  

When available wind power is more than scheduled wind 
power, then underestimation cost is (Kayalvizhi & Kumar 
2018): 
 

𝐶𝑢𝑗 = 𝐶¨89 ¥ (𝑃ef8

¦89

¡

− 𝑃89)𝑓(𝑃ef8)𝑑(𝑃ef8) (18) 

 
Where: 

• 𝐶¨89 : the underestimation cost coefficient of 𝑗5G 
wind generator.  
 

Total wind generation cost =  
direct cost + uncertainty cost (19) 

 
In this paper, uncertainty cost of wind power is 
determined after verifying the uncertainty conditions. In 

case of overestimation of wind power, only overestimation 
cost is calculated as uncertainty cost and in case of 
underestimation of wind power, only underestimation cost 
is evaluated as uncertainty cost. 

2.6 Transmission losses 

System transmission losses are evaluated by using Kron’s 
approximated loss formula through B-coefficients.  In this 
paper, transmission losses are calculated separately for 
thermal, solar and wind systems and then added together. 
If 𝑃U-, 𝑃Ug and 𝑃U8 are losses due to thermal, solar and wind 
systems and 𝐵.9  are the B-coefficients, then (Kothari & 
Dhillon 2011): 
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Total transmission losses of the system are: 
 
𝑃U = 𝑃U- + 𝑃U; + 𝑃U8 (23) 

3. Solution Methodology  

In 1965, Nelder and Mead fabricated nonlinear Simplex 
Method (SM), which is a direct search technique for 
function minimization. In this method for ‘n’ objectives, 
n+1 points are searched for a search space ‘S’ to create a 
non-zero initial volume simplex. If 𝑋­ denotes each vertex 
of the simplex (where y = 1, 2, ……, n+1), then worst point 
(least desirable point) of initial simplex is found. Then 
using fixed rules, new simplex is formed from old simplex 
in such a way that navigates search away from worst point 
in the simplex. The entire process is explored by using 
three operations i.e. reflection, expansion & contraction. 
This activity continues until the simplex is sufficiently 
converged.  

SM has many limitations, therefore ACSM has been 
introduced (Takahami and Sakai 2005). This is a modified 
form of SM as given below: 

(a). Replacement of ordinary comparisons by 𝛼-level 
comparisons: 

Ordinary comparisons of SM are replaced by 
𝛼-level comparisons to convert an 
unconstrained optimization technique to a 
constrained optimization technique. Here, 
constraint violations and objective functions 
are treated separately. That is, points are 
compared on the basis of their constraint 
violation. 

(b). Use of boundary mutations and multi- simplexes: 
Sometimes during reduction process of 
simplex, few points around the boundary of 
feasible region are omitted. Therefore the 
boundary mutation of the worst point and 
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multi-simplexes are used to search the 
borderline of feasible region in ACSM. 

3.1 Algorithm of ACSM 

Let 𝑥 = [	𝑋(,𝑋%,……… ,𝑋¯]- is an n-dimensional vector of 
decision variables and feasible solutions exists in the 
search space ‘S’. Consider 𝑓(𝑥) is the objective function. 
Let expansion factor 𝛾 > 1, contraction factor 𝑏 ∈ (0,1), 
tolerance limit 𝜀 = 0.001 and mutation rate 𝑃n ∈ (0 − 1). 
Following points describes this algorithm of α-constrained 
simplex method: 
 

1). Population Generation: 
Generate initial population 𝑁	(> 𝑛 + 1), in the 
form of search points. n+1 points are required to 
compose one simplex. However, to generate 
more than one simplex, N number of points are 
required. 

2). Evaluation of Points: 
Find 𝑋³(best point/ most desirable point), 𝑋G 
(worst point/ least desirable point) and 𝑋; (next 
to worst point/ second worst point) from the 
following equations: 
 

𝑋³ = 𝑎𝑟𝑔𝑚𝑖𝑛. 	𝑓+𝑥.3 
 

𝑋G = 𝑎𝑟𝑔𝑚𝑎𝑥. 	𝑓+𝑥.3 
 

𝑋µ = 𝑎𝑟𝑔𝑚𝑎𝑥.¶G 	𝑓+𝑥.3 
 

3). Mutation of worst point:  
Produce random number 𝑅 and update 𝑋G as: 
 

𝑋G = ·𝑋
³ + 𝑅(𝑋G − 𝑋³) ; 𝑅¯ ≥ 𝑃n

𝑋G − 𝑅(𝑋G − 𝑋³) 							; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

4). Formulation of initial simplex: 
Omit the worst point 𝑋G and create initial 
simplex using n+1 points. 

5). Calculation of centroid: 
To find a new search point in place of worst 
point, centroid of other points (excluding worst 
point) is calculated as: 
 

𝑋¡ =
1

𝑛 + 1*𝑋.
¯¹(

.6(

.¶G

 

6). Calculation of reflected point: 
To find the reflected point, the worst point is 
reflected about the centroid (with the help of 𝛼 
obtained from Eq. 24). It is given as: 
 

𝑋l = (1+ 𝛼)𝑋¡ − 𝛼𝑋G 
 

7). 𝛼 −level comparisons: 
(i). If 𝑋lis better than the best point i.e. 

𝑓+𝑋l, 𝜇¤(𝑋l)3 <» 𝑓 �𝑋³, 𝜇¤(𝑋³)�, then go to 
step (ii), else go to step (iii).  Here 𝜇¤(𝑥) is the 
satisfaction level of membership function 
(Eq. 26). 

(ii). Calculate expansion point 𝑋¼ as: 
 

𝑋¼ = 𝛾𝑋l + (1 − 𝛾)𝑋¡ 
 

If 𝑋¼ is better than 𝑋³, then 𝑋G = 𝑋¼, else 𝑋G= 
𝑋l and go back to step 2. 

(iii). If 𝑋l is better than or equal to 𝑋;, then 𝑋G = 
𝑋l and go back to step 2, else go to step (iv). 

(iv). If 𝑋l is better than 𝑋G, then 𝑋G = 𝑋l. 
(v). Evaluate contraction point 𝑋j: 

 
𝑋j = 𝑏𝑋G + (1− 𝑏)𝑋¡ 

 
If 𝑋j is better than 𝑋G, then 𝑋G = 𝑋j, 
otherwise  

 
𝑋G = 𝑏𝑋G + (1 − 𝑏)𝑋³ 

 
and go back to step 2. 

 
8). Stopping criterion: 

If abs (𝑓³ − 𝑓G) ≤ 𝜀 then go to step 9, else go to 
step 2. 

9). Stop. 

3.2 Calculation of alpha–𝛼 

Generally, it is not required to control the 𝛼-level. For 
constrained problems, which are based on lexicographic 
order, value of 𝛼-level is set to 1. But for the problems 
having very small feasible regions (such as problems with 
equality constrained), controlled α value gives good 
solutions. Its value lies between 0–1. It can be found as 
(Takahama and Sakai 2005): 
 
 

𝛼(𝑡) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧
1
2
�𝑚𝑎𝑥 �𝜇¤(𝑋.)� +

1
𝑁
* 𝜇¤(𝑋.)

½

.6(
� 		 ; 𝑡 = 0																						

(1 − 𝛽)𝛼(𝑡 − 1) + 𝛽	; 0 < 𝑡 ≤
𝑇¾e#
2

and(𝑡𝑚𝑜𝑑𝑇») = 0

𝛼(𝑡 − 1)																						; 0 < 𝑡 ≤
𝑇¾e#
2

and(𝑡𝑚𝑜𝑑𝑇») ≠ 0	

1																																				; 𝑡 >
𝑇¾e#
2

 

(24) 
 

Where: 

• t : the number of iterations 
• 𝑇¾e#: the maximum number of iterations  

The value of α can be controlled by using β = 0.03 and 𝑇» = 
50. The first value of 𝛼 is the average of the best 
satisfaction level and average of all satisfaction levels. 
Now the minimum constraint violation solutions are 
obtained as:  

(a) the value of α is updated as per (24) for the 
condition the number of iterations (t) are multiple 
of 𝑇».  

(b) the value of α is set to be 1 for the condition the 
(t) exceeds -VZ[

%
. 

4. Decision Making 

It is assumed that decision making has an inexplicit 
nature and fuzzy goals for objective functions (Kothari and 
Dhillon 2011; Dhillon et al. 2002). To find the most 
suitable solution from the non-inferior solutions the fuzzy 
satisfying method is used. Fuzzy goal for each objective 
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function is set by defining their membership functions, 
which are assumed to be strictly monotonically decreasing 
and continuous functions.  Their membership values vary 
from 0–1. The value ‘0’ of membership function means 
incompatibility, whereas value ‘1’ designates complete 
compatibility. It is defined as (Kothari and Dhillon 2011; 
Reddy et al. 2011; Reddy et al. 2015): 
 

µ(Fi) =

⎩
⎪
⎨

⎪
⎧ 1																		 ; 	𝐹. ≤ 𝐹.¾.¯

𝐹.¾e# − 𝐹.
𝐹.¾e# − 𝐹.¾.¯

; 𝐹.¾.¯ < 𝐹. < 𝐹.¾e#

0																 ; 𝐹𝑖 ≥ 𝐹.¾e#

 

(25) 
i=1,2,...M 

 
Here: 

• 𝐹., 𝐹.¾e# and 𝐹.¾.¯  are the objective function, 
maximum value of objective function and 
minimum value of objective function, 
respectively.  

 
For completion of each non dominated solution, in 
satisfying the objectives, addition of all the values of 
membership functions is required (for k number of non-

dominated solutions). The efficacy of each non dominated 
solution can be rated with respect to all non-dominated 
solutions by normalizing its values of its total addition. It 
is given by (Kothari and Dhillon 2011; Reddy et al. 2011; 
Reddy et al. 2015):  
 

𝜇¤< =
∑ 𝜇+𝐹.<3Â
.6(

∑ ∑ 𝜇+𝐹.<3Â
.6(

Ã
<6(

 (26) 

 
The function 𝜇¤< can be considered as a membership 

function of non-dominated solution to a fuzzy set. It is 
called fuzzy cardinal priority ranking of the non-
dominated solutions. 

5. Test Systems and Results 

To illustrate the credibility of suggested method, following 
five test systems have been observed by using FORTRAN 
90 programming language (Mayo 1995). First test system 
is purely thermal generation system, where as others are 
integrated with renewable systems. These systems are 
categorized as: 
 

 
 
Table 1 
The characteristic fuel cost, 𝑁𝑂#  emission and 𝑆𝑂% emission functions of four thermal generators 

Fuel cost (Rs/h) equations  𝑵𝑶𝒙 emission (kg/h) equations SO2 emission (kg/h) equations 
F11 = 0.002035 P2T1 + 8.43205 PT1  + 
85.6348 

F21 = 0.006323 P2T1 – 0.38128 PT1  + 
80.9019 

F31 = 0.001206 P2T1 + 5.05928 PT1  + 51.3778 

F12 = 0.003866 P2T2 + 6.41031 PT2 + 
303.7780 

F22 = 0.006483 P2T2 – 0.79027 PT2 +  
28.8249 

F32 = 0.002320 P2T2 + 3.84624  PT2 + 
182.2605 

F13 = 0.005963 P2T3 + 6.91559 PT3 + 
202.0258 

F23 = 0.006181 P2T3 – 0.39077 PT3 + 
50.3808 

F33 = 0.003578 P2T3 + 4.14938 PT3 + 121.2133 

F14 = 0.001345 P2T4 + 8.30154 PT4 + 
274.2241 

F24 = 0.006732 P2T4 – 2.39928 PT4 + 
610.2535 

F34 = 0.000813 P2T4 + 4.97641 PT4 + 165.3433 

 
 
Table 2  
Solution of power scheduling problem with three thermal generators using ACSM 

Output variables 200 MW 225 MW 250 MW 275 MW 300 MW 
𝑃-( (MW) 68.12 76.73 85.31 93.96 102.71 
𝑃-% (MW) 67.74 76.35 84.93 93.58 102.33 
𝑃-Q (MW) 66.98 75.59 84.16 92.81 101.56 
Min fuel cost - Gt1 (Rs/h) 661.07 736.17 811.26 887.35 964.56 
Min fuel cost - Gt2 (Rs/h) 750.31 811.06 870.50 931.88 994.51 
Min fuel cost - Gt3 (Rs/h) 692.00 758.85 826.32 895.29 965.90 
BCS fuel cost - Gt1 (Rs/h) 669.53 744.68 819.82 895.95 973.22 
BCS fuel cost - Gt2 (Rs/h) 755.81 815.80 876.12 937.57 1000.27 
BCS fuel cost - Gt3 (Rs/h) 692.00 758.85 826.32 895.29 965.90 
BCS total fuel cost (Rs/h) 2117.36 2319.35 2522.27 2728.82 2939.40 
Min 𝑁𝑂#  emission (kg/h) Gt1 83.81 88.31 93.72 100.12 107.55 
Min 𝑁𝑂#  emission (kg/h) Gt2 04.97 06.19 8.26 11.31 15.42 
Min 𝑁𝑂#  emission (kg/h) Gt3 50.38 50.38 50.38 67.36 50.38 
BCS 𝑁𝑂#  emission (kg/h) - Gt1 84.27 88.87 94.39 100.90 108.45 
BCS 𝑁𝑂#  emission (kg/h) - Gt2 5.04 6.28 8.47 11.64 15.84 
BCS  𝑁𝑂#  emission (kg/h) - Gt3 51.93 56.16 61.27 67.36 74.45 
BCS Total 𝑁𝑂#  emission (kg/h) 141.25 151.31 164.14 179.91 198.74 
Min.𝑆𝑂% emission (kg/h) - Gt1 396.57 441.61 486.65 532.28 578.58 
Min.𝑆𝑂% emission (kg/h) - Gt2 450.18 488.35 522.79 561.04 596.71 
Min.𝑆𝑂% emission (kg/h) - Gt3 415.20 455.31 495.79 537.17 580.35 
BCS 𝑆𝑂% emission (kg/h) - Gt1 401.65 446.72 491.78 537.44 1763.49 
BCS 𝑆𝑂% emission (kg/h) - Gt2 453.48 489.48 525.67 562.54 583.78 
BCS 𝑆𝑂% emission (kg/h) - Gt3 415.20 455.31 495.79 537.17 600.16 
BCS total 𝑆𝑂% emission (kg/h)  1270.34 1391.52 1513.25 1637.16 579.54 
Transmission losses (MW) 2.80 3.55 4.40 5.34 6.39 
Simulation time(sec) 0.51 0.51 0.51 0.52 0.52 

 



Int. Journal of Renewable Energy Development 10(1) 2021:47-59 
  P a g e  |  

	

IJRED-ISSN:2252-4940. Copyright © 2021. The Authors. Published by CBIORE 

53 

Table 3 
Solution of power scheduling problem with three thermal generators using SM 

Output Variables 200 MW 225 MW 250 MW 275 MW 300 MW 

𝑃-( (MW) 68.19 76.81 85.39 94.06 102.82 
𝑃-% (MW) 67.81 76.43 85.01 93.68 102.43 
𝑃-Q (MW) 67.04 75.66 84.24 92.91 101.66 
Min fuel cost - Gt1 (Rs/h) 661.73 736.90 812.07 888.23 965.52 
Min fuel cost - Gt2 (Rs/h) 751.06 811.87 871.37 932.81 995.51 
Min fuel cost - Gt3 (Rs/h) 692.69 759.61 827.14 896.18 966.87 
BCS fuel cost - Gt1 (Rs/h) 670.20 745.43 820.64 896.85 974.20 
BCS fuel cost - Gt2 (Rs/h) 756.57 816.62 877.00 938.51 1,001.27 
BCS fuel cost - Gt3 (Rs/h) 692.69 759.61 827.14 896.18 966.87 
BCS total fuel cost (Rs/h) 2,119.47 2,321.67 2,524.79 2,731.55 2,942.34 
Min. 𝑁𝑂#  emission (kg/h) - Gt1 83.89 88.39 93.81 100.22 107.66 
Min. 𝑁𝑂#  emission (kg/h) - Gt2 04.98 06.20 08.27 11.32 15.43 
Min. 𝑁𝑂#  emission (kg/h) - Gt3 50.43 50.63 50.43 67.42 50.43 
BCS 𝑁𝑂#  emission (kg/h) - Gt1 84.35 88.96 94.49 101.00 108.55 
BCS 𝑁𝑂#  emission (kg/h) - Gt2 05.04 06.28 08.47 11.65 15.86 
BCS  𝑁𝑂#  emission (kg/h) - Gt3 51.99 56.21 61.33 67.42 74.52 
BCS total 𝑁𝑂#  emission (kg/h) 141.39 151.47 164.30 180.09 198.94 
Min 𝑆𝑂% emission (kg/h) - Gt1 396.97 442.05 487.14 532.81 579.16 
Min 𝑆𝑂% emission (kg/h) - Gt2 450.63 488.84 523.32 561.60 596.59 
Min 𝑆𝑂% emission (kg/h) - Gt3 415.61 455.77 496.28 537.71 580.93 
BCS 𝑆𝑂% emission (kg/h) - Gt1 402.05 447.17 492.27 537.98 584.36 
BCS 𝑆𝑂% emission (kg/h) - Gt2 453.94 489.97 526.20 563.10 600.76 
BCS 𝑆𝑂% emission (kg/h) - Gt3 415.61 455.77 496.28 537.71 580.12 
BCS Total𝑆𝑂% emission (kg/h)  1,271.61 1,392.91 1,514.77 1,638.80 1,765.25 
Transmission losses (MW) 2.80 3.56 4.40 5.35 6.39 
Simulation time (sec) 0.60 0.60 0.62 0.62 0.62 

 
• Power scheduling with three thermal generators 
• Power scheduling with three thermal generators 

and two wind farms 
• Power scheduling with three thermal generators 

and two solar units 
• Power scheduling with three thermal generators, 

one solar unit and one wind farm 
• Power scheduling of a composite system  

5.1 Test system 1 

It comprises multi-objective thermal power scheduling 
which minimizes fuel costs and emissions (𝑁𝑂#, 𝑆𝑂%) 
simultaneously. This system contains three thermal 
generators i.e. 𝐺𝑡1, 𝐺𝑡2		and 𝐺𝑡3. Their fuel costs and 
emission (𝑁𝑂#, 𝑆𝑂%) functions are given in Table 1. 
Minimum and maximum generation limits for each 
generator are considered as 10 MW and 250 MW, 
respectively. Problem is solved for five different power 
demands (200 MW, 225 MW, 250 MW, 275 MW and 300 
MW) using ACSM. Values for the 𝛼 are calculated by using 
Eq. 24. Minimum & best compromised solutions (BCS) of 
fuel costs and emissions (𝑁𝑂#, 𝑆𝑂%) are evaluated from Eq. 
(1) to Eq. (3), respectively. Transmission losses are 
computed by using Eq. 20. Results from Table 2 show that 
most of the time the values of minimum output variables 
are either equal to BCS values or the differences between 
them are very narrow. It happens because, to find the 
optimal solution, initially simplex is spanned by multiple 
search points but when it is gradually reduced, the better 
points are observed inside the simplex. Therefore, at the 
end when simplex is sufficiently reduced, high quality 
solutions are observed. The above problem is then solved 
by utilizing an ordinary SM. Minimum fuel costs, BCS fuel 
costs, minimum values of emissions	(𝑁𝑂#, 𝑆𝑂%) and BCS 
emissions (𝑁𝑂#, 𝑆𝑂%) are calculated for each generator as 

well as for the whole system. The results are depicted in 
Table 3. 

 
 

 
Fig. 1 Comparison of Fuel Costs using ACSM & SM 

 

 
Fig. 2 Comparison of 𝑁𝑂#emission using ACSM & SM 

0

1000

2000

3000

200 225 250 275 300

Fu
el

 C
os

t (
Rs

/h
)

Power Demand in MW

ACSM SM

0

50

100

150

200

200 225 250 275 300

Em
is

si
on

 (k
g/

h)

Power Demand in MW

ACSM SM



Citation: Kaur, S., Brar, Y.S., Dhillon, J.S. (2021) Optimal Scheduling of Solar-Wind-Thermal Integrated System Using α-Constrained Simplex Method. Int. Journal of Renewable 
Energy Development, 10(1), 47-59, doi: 10.14710/ijred.2021.32245 
P a g e  | 
 

IJRED-ISSN:2252-4940. Copyright © 2021. The Authors. Published by CBIORE 

54 

Fig. 1 presents the comparison of fuel costs using ACSM 
and SM at various power demands for test system 1. 
ACSM shows its superiority over SM for each individual 
power demand through the length of the bars. It can be 
seen clearly that difference between the values of fuel cost 
is increasing continuously with the rise in power demand. 
Fig. 2 compares values of emissions (𝑁𝑂#) evaluated by 
ACSM and SM. It has been proved that ACSM has 
overpowered SM with better out-turns in less time. 
Outcomes clearly depict the supremacy of ACSM over SM. 

5.2 Test system 2 

It involves power scheduling of solar-thermal integrated 
system. The system has three thermal and two solar units. 
It is considered that solar units are placed at New Delhi 
(India) and time is taken as 1 pm of 15th day of June. The 
geographical latitude is 28.6°, hour angle is 15° and 
radiation per hour on a horizontal plane is 2.5 MJ/m2-h. 
Parameters of solar units are given in Table 4 (Tyagi et al. 
2016; Saxena and Ganguly 2015; Singal 2009). 

As the 15th day of June is the 166th day of the year, so 
angle for sun’s declination can be calculated from Eq. 
(10.1). The hourly beam solar radiations incident on an 
inclined plane is evaluated from Eq. (10). Then available 
power from solar units is calculated by using Eq. (8). Total 
operating cost of the solar power, direct cost, 
overestimation cost and underestimation cost are 
computed from Eqs. (11), (12), (12.1) and (12.2), 
respectively. 

The effect of overestimation and underestimation can 
be clearly found from Table 5. If the available solar power 
is less than scheduled solar power then overestimation 

cost has positive value and underestimation cost has 
negative value and vice versa. Fig. 3 displays variations of 
direct cost, overestimation cost and underestimation cost 
of solar power system with solar scheduled power. It can 
be seen that the direct cost and the overestimation cost are 
enhancing, while the underestimation cost is decreasing 
linearly with increase in solar scheduled power. From Eqs. 
(12.1) and (12.2), it can be found that the overestimation 
cost and the under-estimation cost depends upon the 
difference between scheduled solar power and available 
solar power. When both the powers become equal to each 
other (and = 29.295 MW), the value of both uncertainty 
costs becomes zero and total cost depends only upon direct 
cost. 
 
Table 4  
Parameters of solar units (PV) 

Solar system variables Specifications 
Capacity of each solar unit  30 MW 
Temperature coefficient - Ka −4.7e−3 /℃ 
Reference temperature - TR 25 ℃ 
Geographical latitude - Ø 28.6° N (For New Delhi)  
Sun’s declination over the year −23.45° to 23.45° 
hour angle - ω −15° (at 1 PM) 
Angle of tilt of solar collector - β1 20° 
Coefficient of direct cost  5.0 Rs/kWh 
Coefficient of the underestimation 
cost  

17.28 Rs/kWh 

Coefficient of the overestimation 
cost 

12.28 Rs/kWh 

Radiation per hour on a horizontal 
plane 

2.5 MJ/m2-h 

Angle of sun’s declination 23.3° 

 
Table 5  
Solution of power scheduling problem with three thermal generators and two solar units using ACSM 

Output variables 200 MW 225 MW 250 MW 275 MW 300 MW 
𝑃-( (MW) 47.58 56.17 64.63 73.66 82.46 
𝑃-% (MW) 48.08 55.81 64.97 73.27 82.23 
𝑃-Q (MW) 47.54 56.15 65.02 73.63 82.89 
𝑃;( (MW) 28.67 29.27 28.92 28.85 28.45 
𝑃;% (MW) 29.87 29.89 29.32 29.35 28.57 
BCS fuel cost - Gt1 (Rs/h) 491.45 565.73 639.17 717.80 794.84 
BCS fuel cost - Gt2 (Rs/h) 620.98 673.62 736.61 794.26 857.08 
BCS fuel cost - Gt3 (Rs/h) 544.27 609.15 676.95 743.59 816.25 
BCS total fuel Cost (Rs/h) 1,656.71 1,848.50 2,052.73 2,255.66 2,468.17 
BCS 𝑁𝑂#  emission (kg/h) - Gt1 77.07 79.43 82.67 87.12 92.46 
BCS 𝑁𝑂#  emission (kg/h) - Gt2 5.81 4.91 4.84 5.72 7.67 
BCS 𝑁𝑂#  emission (kg/h) - Gt3 45.77 47.92 51.10 55.12 60.45 
BCS Total  𝑁𝑂#  emission (kg/h) 128.66 132.27 138.62 147.97 160.59 
BCS 𝑆𝑂% emission (kg/h) - Gt1 294.83 339.39 383.44 430.60 476.80 
BCS 𝑆𝑂% emission (kg/h) - Gt2 372.58 404.17 441.96 476.55 514.24 
BCS 𝑆𝑂% emission (kg/h) - Gt3 326.56 365.49 406.17 446.15 489.75 
BCS Total 𝑆𝑂% emission (kg/h)  993.98 1,109.05 1,231.57 1,353.31 1,480.80 
Solar power available (MW) 29.29 29.29 29.29 29.29 29.29 
Direct cost 𝑃g( (Rs/h) 143,351.85 146,351.65 144,649.45 144,275.50 142,259.95 
Direct cost 𝑃g% (Rs/h) 149,351.00 149,467.90 146,614.65 146,788.65 142,878.35 
Total direct cost (Rs/h) 29,2702.85 29,5819.55 291,264.10 291,064.15 285,138.30 
Underestimation cost 𝑃g( (Rs/h) 10,793.54 426.29 6309.04 7,601.39 14,567.25 
Underestimation cost 𝑃g% (Rs/h) −9,939.54 −10,343.52 −482.58 −1,083.95 12,429.95 
Total Underestimation cost (Rs/h) 854.00 −,9917.22 5,826.45 6,517.44 26,997.20 
Overestimation cost 𝑃;( (Rs/h) −7,670.40 −302.94 −4,483.50 −5,401.91 −10,352.19 
Overestimation cost 𝑃;% (Rs/h) 7,063.51 7,350.60 342.94 770.31 −8,833.32 
Total overestimation Cost (Rs/h) −606.89 7,047.65 −4,140.56 −4,631.60 −19,185.51 
Total cost (Rs/h)- Gs1 146,474.98 146,474.99 146,474.98 146,474.97 146,475.01 
Total cost (Rs/h)- Gs2 146,474.97 146,474.98 146,475.01 146,475.00 146,474.97 
Total solar generation cost (Rs/h) 292,949.95 292,949.98 292,949.99 292,949.98 292,949.98 
Transmission losses (MW) 1.75 2.27 2.91 3.64 4.47 
Simulation time (Sec) 0.82 0.82 0.84 0.84 0.84 
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Fig. 3 Variation of solar direct cost, overestimation cost and underestimation cost with scheduled solar power 

 
 
5.3 Test System 3 

It includes a multi-objective power scheduling of wind 
thermal integrated system. This system contains total five 
generators i.e. three thermal generators and two wind 
farms. To observe the wind character, Weibull distribution 
density factor is taken. Values of shape factor ‘k’ and scale 
factor ‘c’ are taken as 1 and 15 m/sec respectively. 
Parameters of wind generators are given in the Table 6. 
Power available from wind generator is found by using Eq. 
(14) and probability of wind power is computed by using 
Eq. (15). Direct cost of wind power is obtained from Eq. 
(16). To calculate the wind uncertainty cost, conditions of 
overestimation or underestimation are verified. If 
scheduled wind power is greater than actual wind power 
then overestimation cost is determined from Eq. (17) and 
if scheduled wind power is less than actual wind power 
then underestimation cost is evaluated from Eq. (18). 
Total operating cost of wind power is found from Eq. (19). 

Results of the system are presented in the Table 7. 
Uncertainty cost of wind depends upon the condition of 
overestimation or underestimation. Total wind power cost 
is the sum of direct cost and wind uncertainty cost. Fig. 4 
conveys variation of wind direct cost and wind uncertainty 
cost with wind scheduled power. Direct cost rises with rise 

in wind scheduled power, whereas wind uncertainty cost 
is falling down as the wind scheduled power is getting 
closer to available wind power. In this paper, operating 
wind speed is considered as 15 m/sec, therefore the 
available wind power is 30 MW. Uncertainty cost is 
directly proportional to the difference between available 
wind power and scheduled wind power (Eq. 17 and Eq. 18). 
When scheduled power becomes equal to 30 MW, 
uncertainty cost becomes zero and overall cost depends 
only upon direct wind cost (Eq. 19). 
 
 
 
Table 6   
Parameters of wind generators 

Wind system variables Specifications 
Capacity of each wind farm   30 MW 
Cut in velocity 𝑣. 3.5 m/sec 
Cut out velocity 𝑣� 25 m/sec 
Rated speed 𝑣l 15 m/sec 
Scale factor 𝑐 15 m/sec 
Shape factor 𝑘 1 
Coefficient of direct cost 4.89 Rs/kWh 
Coefficient of underestimation cost  17.28 Rs/kWh 
Coefficient of overestimation cost 12.28 Rs/kWh 

 
 

 
Fig. 4 Variation of wind power costs (Rs/h) with wind scheduled power (MW) 
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Table 7 
Solution of power scheduling problem with three thermal generators and two wind generators using ACSM 

Output Variables 200 MW 225 MW 250 MW 275 MW 300 MW 
𝑃-( (MW) 48.15 56.88 65.10 73.66 82.46 
𝑃-% (MW) 47.80 56.51 64.72 73.27 82.22 
𝑃-Q (MW) 48.12 56.85 65.07 73.63 82.88 
𝑃8( (MW) 28.53 28.32 28.74 28.85 28.45 
𝑃8% (MW) 29.21 28.92 29.29 29.35 28.57 
BCS fuel cost - Gt1 (Rs/h) 496.37 571.85 643.19 717.80 794.78 
BCS fuel cost - Gt2 (Rs/h) 619.05 678.42 734.88 794.26 857.03 
BCS fuel cost - Gt3 (Rs/h) 548.67 614.50 677.31 743.59 816.20 
BCS total fuel cost (Rs/h) 1,664.10 1,864.77 2,055.40 2,255.66 2,468.02 
BCS 𝑁𝑂#  emission (kg/h) - Gt1 77.20 79.67 82.87 87.12 92.45 
BCS 𝑁𝑂#Emission (kg/h) - Gt2 5.86 4.86 4.83 5.72 7.67 
BCS 𝑁𝑂#  emission (kg/h) - Gt3 45.89 48.14 51.12 55.12 60.45 
BCS total 𝑁𝑂#  emission (kg/h) 128.95 132.68 138.83 147.97 160.58 
BCS 𝑆𝑂% emission (kg/h) - Gt1 297.78 343.06 385.85 430.60 476.77 
BCS𝑆𝑂% emission (kg/h) - Gt2 371.43 407.05 440.93 476.55 514.22 
BCS 𝑆𝑂% emission (kg/h) - Gt3 329.20 368.70 406.39 446.15 489.72 
BCS total 𝑆𝑂% emission (kg/h)  998.42 1,118.81 1,233.17 1,353.31 1,480.71 
Direct cost 𝑃8( (Rs/h) 139,668.70 138,656.40 140,722.40 141,245.70 139,272.50 
Direct cost 𝑃8% (Rs/h) 143,014.80 141,608.80 143,419.00 143,706.10 139,877.90 
Total direct Cost (Rs/h) 282,683.50 280,265.20 284,141.40 284,951.80 279,150.40 
Wind uncertainty cost  𝑃8( (Rs/h) 4,537.79 5,177.48 3,871.99 3541.31 4,788.18 
Wind uncertainty cost  𝑃8% (Rs/h) 2,423.42 3,311.86 2,168.06 1,986.61 4,405.62 
Total uncertainty cost (Rs/h) 6,961.21 8,489.34 6,040.05 5,527.92 9,193.80 
Total cost (Rs/h) - Gw1 144,206.50 143,833.90 144,594.40 144,787.01 144,060.78 
Total cost (Rs/h) - Gw2 145,438.20 144,920.70 145,587.06 145,692.71 144,283.52 
Total wind generation cost (Rs/h) 289,644.71 288,754.60 290,181.46 290,479.72 288,344.30 
Transmission losses (MW) 1.75 2.30 2.91 3.64 4.47 
Simulation time (sec) 0.72 0.72 0.73 0.73 0.73 

Table 8  
Solution of power scheduling problem with three thermal generators, one solar unit and one wind generator using ACSM 

Output variables 200 MW 225 MW 250 MW 275 MW 300 MW 
𝑃-( (MW) 48.17 57.51 65.07 73.37 81.90 
𝑃-% (MW) 47.96 56.10 64.70 73.94 82.48 
𝑃-Q (MW) 48.54 55.93 65.04 73.33 81.85 
𝑃; (MW) 29.75 29.38 29.40 29.45 29.51 
𝑃8 (MW) 27.44 28.11 28.85 28.59 28.71 
BCS fuel cost - Gt1 (Rs/h) 496.55 577.34 642.97 715.30 789.89 
BCS fuel cost - Gt2 (Rs/h) 620.17 675.62 734.70 798.92 858.82 
BCS fuel cost - Gt3 (Rs/h) 551.80 607.47 677.11 741.21 808.06 
BCS total fuel cost (Rs/h) 1,668.53 1,860.44 2,054.79 2,255.44 2,456.79 
BCS 𝑁𝑂# emission (kg/h) - Gt1 77.20 79.88 82.86 86.96 92.08 
BCS 𝑁𝑂# emission (kg/h) - Gt2 5.83 4.89 4.83 5.83 7.74 
BCS 𝑁𝑂# emission (kg/h) - Gt3 45.97 47.86 51.11 54.96 59.80 
BCS total 𝑁𝑂# emission (kg/h) 129.01 132.64 138.81 147.76 159.64 
BCS 𝑆𝑂%  emission (kg/h) - Gt1 297.89 346.35 385.71 429.10 473.83 
BCS 𝑆𝑂%  emission (kg/h) - Gt2 372.10 405.37 440.82 479.35 515.29 
BCS 𝑆𝑂%  emission(kg/h)- Gt3 331.08 364.48 406.27 444.73 484.84 
BCS total 𝑆𝑂% emission (kg/h)  1,001.08 1,116.21 1,232.81 1,353.18 1,473.97 
Direct cost of 𝑃g (Rs/h) 148,755.25 146,935.95 147,030.00 147,287.60 147,579.60 
Solar uncertainty cost 𝑃g (Rs/h) −2,280.24 −460.94 −555.01 −812.59 −1,104.59 
Total solar generation cost (Rs/h) 146,475.00 146,475.00 146,474.99 146,475.00 146,475.00 
Direct cost of 𝑃8 (Rs/h) 134,354.60 137,618.20 141,236.00 139,950.90 140,576.30 
Wind uncertainty cost of 𝑃8 (Rs/h) 7,895.74 5,833.52 3,547.43 4,359.47 3,964.32 
Total wind generation cost (Rs/h) 142,250.40 143,451.70 144,783.50 144,310.40 144,540.60 
Total direct cost (Rs/h) 283,109.85 284,554.15 288,266.00 287,238.50 288,155.88 
Total uncertainty cost (Rs/h) 5,615.49 5,372.58 2,992.42 3,546.87 2,859.73 
Total solar & wind gen. cost (Rs/h) 288,725.40 289,926.70 291,258.49 290,785.40 291,015.60 
Transmission losses (MW) 1.74 2.28 2.90 3.64 4.47 
Simulation time (sec) 0.91 0.92 0.92 0.93 0.93 

 
 

5.4 Test System 4 

In this system, solar-wind-thermal power scheduling is 
performed. This system consists of total five generators i.e. 
three thermal generators, one solar unit and one wind 

farm. Specifications of all the generators, environmental 
conditions and power demands are same as taken in 
previous test systems. All the output variables of Table 8 
are calculated in the similar manner and by using same 
equations as discussed earlier. Transmission losses are 
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calculated separately for thermal, wind and solar power 
systems by using Eq. (20) to Eq. (22) respectively. Total 
transmission losses are calculated from Eq. (23). 

Table 8 depicts the results of this system. Uncertainty 
costs of both solar and wind systems are calculated 
separately and then added to get total uncertainty cost. 
Similarly, direct cost of the system is evaluated. The sum 
of total direct cost and uncertainty cost gives overall cost 
of renewable power. While doing scheduling of renewable 
power, care has been taken to have full advantage of these 
resources. That is by proper load sharing the fuel costs and 
emission pollutants can be reduced. 

5.5 Test system 5 

In this system, four thermal generators are considered 
initially. Then in each step, few of them are replaced by 
solar/wind or solar & wind generators. For each new set, 
the fuel costs & emissions are evaluated (without 
changing power demand, total number of generators and 
atmospheric conditions). The variation in fuel costs and 
emissions with the reduction in the number of thermal 
generators is obtained. For this, the following four cases 
are observed: 

Case I. All four thermal generators are used 
Case II. One thermal generator is replaced by one 

solar unit 
Case III. One thermal generator is replaced by one 

wind farm 
Case IV. Two thermal generators are replaced by one 

solar unit and one wind farm. 
All the required data and conditions used for this system 
are same as used in previous test systems. In the first case, 
all four thermal generators of Table 1 are used. In second 
and third cases last thermal generator of the Table 1 is 
replaced by solar unit/wind farm, one by one. In fourth 
case, the bottom two generators of Table 1 are replaced by 
one solar unit and one wind farm. Fuel costs and emissions 
are found out for all four cases and all the observations are 
put down in Table 9. Power demand is considered as 400 
MW. 

Fig. 5 as well as the results that came from the first 
case to the last shows a decline in the values of fuel costs 
and 𝑆𝑂% emissions. As the power available for the wind 
system (30 MW) is slightly more than the power of solar 
system (29.295 MW), so powers are scheduled to 

individual systems accordingly. Due to this, a very small 
difference in fuel costs is appearing in case II and case III. 
In case IV, solar and wind systems has shared 59.20593 
MW power load by replacing two thermal generators. So, 
the difference between fuel cost and 𝑆𝑂% emissions is more 
as compared to the previous cases. 

Therefore it is proved that the values of fuel cost 
(4067.98 Rs/h) and 𝑆𝑂% emission (2,441.05 kg/h) reduced 
to 3,232.94 Rs/h and 1,939.30 kg/h, respectively, when 
number of thermal generators reduced from four to two, in 
this test system. 

6. Comparisons 
In this paper, values of direct cost coefficients of wind are 
taken lesser than the direct cost coefficients of solar 
system. After comparing the results of test systems 2, 3, 
and 4, it seems that for almost similar power scheduling, 
wind generation is better in terms of overall cost. But few 
technical problems tend to limit its attractiveness. For 
instance, it is an intermittent source of energy which 
generates variable powers. Therefore, it must be used 
along with other appropriate power generation system. 
Also, coefficients of solar, wind uncertainty costs and 
direct costs can vary from state to state in the same 
country, so their tariffs will also vary. 

In test system 5, it has been proved that fuel costs and 
emissions depend upon the number of thermal generators. 
For the same demand and total number of generators, if 
number of thermal generators are reduced, the fuel costs 
and 𝑆𝑂%) emissions drastically fall in their respective 
values. Even now renewable power has been put in a very 
small quantity as compared to the thermal power, yet its 
effect is prominent, as described in this paper. Therefore, 
RER needs to be utilized in more quantity and more 
wisely. This will reduce the use of fossil fuels in power 
generation system gradually.    

RER are the lowest cost source of power generation in 
most parts of the world. Average electricity cost of solar 
generation has fallen into fossil fuel cost range globally 
from 2014 onwards. In many states of India, costs of 
solar/wind systems are lesser than thermal power systems 
too. Solar project like Rewa (750 MW, Madhya Pradesh, 
India) and wind project like Muppandal (1500 MW, Tamil 
Nadu, India) are being encouraged due to low solar/ wind 
power costs in India.  

 
 
 
 
Table 9 
Solution of composite system using ACSM 

Output variables Case I Case II Case III Case IV 

𝑃-( (MW) 102.06 137.19 136.58 178.92 
𝑃-% (MW) 101.85 137.70 137.48 178.78 
𝑃-Q (MW) 101.67 136.60 137.43 – 
𝑃-Ç (MW) 102.23 – – – 
𝑃;  (MW) – 29.16 – 29.25 
𝑃8  (MW) – – 29.47 29.94 
Total fuel cost (Rs/h) 4,067.98 3,798.65 3,798.51 3,232.93 
Total 𝑁𝑂#  emission (kg/h) 633.31 302.89 302.91 309.87 
Total 𝑆𝑂% emission (kg/h) 2,441.05 2,278.92 2,278.84 1,939.30 
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Fig. 5 Variation of fuel costs with each case for test system 5 

 

7. Conclusion 

In this paper, a multi-objective solar-wind-thermal power 
scheduling problem was designed, which simultaneously 
satisfies economic (fuel cost and operating costs of RER 
system) and emission (𝑁𝑂#	&	𝑆𝑂%) constraints. The 
problem was optimized by using ACSM and the results are 
collated with SM. 

The wind data was discerned with Weibull Distribution 
Density Function. The solar data of New Delhi (India) was 
considered for the framed scheduling problem. The 
available power of RER system depends upon topography 
and meteorology of the considered place, which is 
evaluated as 29.295 MW (for solar system) and 30 MW (for 
wind system), for the scrutinized conditions. On the basis 
of the value of available power, a remarkable decline is 
observed in the value of fuel cost. It was found 2117.36 
Rs/h (for purely thermal system), 1656.71 Rs/h (for solar-
thermal system), 1664.10 Rs/h (for wind-thermal system) 
and 1668.53 Rs/h (for solar-wind-thermal system), for 200 
MW power demand. Similar turn down is noted in the 
values of emissions (𝑁𝑂#	&	𝑆𝑂%). To reduce the 
intermittency of RER based power system, the adequate 
permutations of generating units (RER and thermal 
system) are required. The solution of the suggested model 
demonstrates that the undetermined behavior of RER 
based power systems is lessened for the integrated 
systems. 

The outcomes of the presented problem intelligibly 
represent the primacy of ACSM over SM. The values of 
fuel cost, emissions (𝑁𝑂#	&	𝑆𝑂%), transmission losses and 
simulation time are observed as 2319.35 Rs/h, 151.31kg/h 
& 1391.52 kg/h, 3.55 kg/h and 0.51sec, respectively, when 
the problem is examined by using ACSM (for 225 MW 
power demand). When the same problem is inspected with 
SM the values of these variables are obtained as 2,321.67 
Rs/h, 151.47 kg/h, 1,392.91kg/h, 3.56 MW and 0.60 sec. 
The better out-turns have proved that the ACSM is a 
powerful tool for solving constrained optimization 
problems. For decision making, fuzzy cardinal priority 
ranking of non-dominating solutions was used. Its 
amalgamation with ACSM provides fine precision and 
solidity to the system to yield high computational 
efficiencies.  
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