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ABSTRACT. This paper models and analyses the dynamic response of a synchronous generator driven off-grid micro hydro power system 
using Simulink tool of MATLAB software. The results are assessed from various perspectives including regulation through no load to full 
load and overload scenarios under normal and abnormal operating conditions. The investigation under the normal conditions of no load, 
linearly changing load and full load divulges that the system operates in a satisfactory manner as generator voltage and frequency remain 
approximately constant at 1 pu. However, at full load generator voltage and frequency drop 3% and 0.5% respectively from its nominal 
values but remain within prescribed standard IEC limits. The results also expose that the abnormal conditions produced by abrupt 
changes in load, system faults and severe overload, cause the unwonted variations in the magnitude of generator parameters. Moreover, 
the study reveals that the system stability significantly enhances when the system is run at full load because the regulation time to fix 
the variations in the generator parameters; except input mechanical power; decreases, e.g. from 4.1 sec to 0.8 sec for generator voltage, 
with the increase in the loading from quarter to full load respectively at unity power factor. Further, it is also observed that the regulation 
time rises, e.g. from 0.8 sec to 1.3 sec for generator voltage, with the reduction in load power factor from unity to 0.8, respectively. Thus, 
proper protection, to cater for increased fault current at full load and power factor correction must be provided to improve the system 
stability and protection. Furthermore, it is also concluded that the over loading in any case should be strongly avoided in this type of 
system and it should never be allowed to exceed 20% of the full load value to avoid system failure.  
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1. Introduction 

Out of 7.795 billion people in the world (Sohani and 
Hoseinzadeh et al., 2021), still 840 million people have no 
access to electricity (World Bank, 2019) in which 87 
percent currently are living in isolated and rural 
settlements. The electricity coverage gap among rural and 
urban areas in many parts of the world (United Nation, 
2019) reveals that the pace of electrification to rural 
communities has remained painfully slow. This is because 
attention is usually paid to urban regions, rather than the 
rural communities. Consequently, most people residing in 
rural areas are backward in social and economic aspects 
(Akinyele et al., 2013; Akinyele et al., 2014). The foremost 
reason of this energy access gap between rural and urban 
regions, is that it is uneconomical to extend electricity grid 
infrastructure to remote communities owing to the low 
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density of population (Akinyele et al., 2015). Nowadays, 
energy is considered as the most determining factor of 
humans’ wellbeing (Kyriakopoulos et al., 2018). Therefore, 
some of the people living in the rural areas rely on diesel 
and petrol generators to fulfil their energy needs (Umar 
and Hussain, 2014). But this option is not only 
environmentally unfriendly, but also expensive to run 
(Mnassri and Leger, 2010; Woodruff, 2007). These factors, 
coupled with the desire to improve people’s living 
conditions in rural areas due to the inaccessibility to 
electricity, instigate the development of energy generation 
systems of localized nature. Electricity production locally 
as near as to the consumption site using off-grid or stand-
alone power plants through renewable energy resources 
such as hydro, solar, wind etc. is considered the most 
appropriate way to provide reliable, clean and affordable 
energy to remote communities (Brown, 2011).  
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Amongst all sources of renewable energy, hydro power 
is the most beneficial source and has negligible social and 
environmental impact, compared to other renewable 
energy forms (Arabatzis and Kyriakopoulos et al., 2017). 
Micro hydro is a type of hydroelectric power that typically 
generates from 5 kW to 100 kW of electricity using the 
natural flow of water (Hoseinzadeh et al., 2020). It is the 
low cost, small size and can be installed to serve a small 
community making its implementation more appropriate 
in the socio-political and environmental context (Nasir, 
2013). Micro hydro power (MHP) systems are usually run-
of-river systems which require very small flow of water 
with little or no requirement of water reservoir (Ali et al., 
2017a; Ali et al., 2018a; Ali et al., 2018b; Ali et al., 2018c; 
Ali and Farooq, 2019). In addition, they have high 
efficiency range in between 70 to 90 percent (by far the 
best of all renewable energy technologies), high-capacity 
factor usually greater than 50 percent (in comparison to 
the 10% for solar and 30% for wind power plant) and less 
output power variations (Nasir, 2014). 

For off-grid or stand-alone low power generation based 
upon MHP unit, the induction generator (IG) is considered 
more suitable than the synchronous one (Ion and 
Marinescu, 2013a; Ion and Marinescu, 2013b; Ion and 
Marinescu, 2012) because of its advantages like low price, 
robustness, reduced size, simple starting and 
synchronization, low maintenance, good response to faults 
and overloads and no need of external DC power supply 
when capacitors are used  for  excitation (Ion and 
Marinescu, 2011; Raza et al., 2013). However, for the low 
power range of few kW, induction machines are not 
manufactured specifically to operate as generators thus, 
series induction motors are employed as generators 
(Smith, 2008; Ion and Marinescu, 2013c). The drawback of 
the IG is the lagging power factor because the machine is 
magnetized from the stator (Ali and Farooq, 2019; Jussi, 
2006) resulting in less power availability at a given 
current in comparison to synchronous machine (Ali and 
Farooq, 2019; Reljić, 2010). In addition, it shows poor 
voltage and/or frequency regulations when used for the 
development of micro hydro power systems specifically in 
self-exited mode (Saket and Varshney, 2012; Singh and 
Tiwari, 2013; Meshram et al., 2013; Scherer et al., 2013; 
Kathirvel et al., 2015). In contrast to IG, the use of 
synchronous generator (SG) at low power generation is 
very rare as it represents a high cost compared to the 
entire system cost; making its application, sometimes, 
economically unviable (Scherer et al., 2013). Despite this 
fact, the MHP systems using SG can be considered the 
most consolidated one, because of the features associated 
with the high performance of the technologies applied on 
its control (Scherer et al., 2013; Scherer and de Camargo, 
2011; Ali et al., 2017b). Therefore, the proposed study 
considers SG for the development of an off-grid MHP 
system because of its several technical advantages over IG 
in terms of voltage control (Scherer et al., 2013; Scherer 
and de Camargo, 2011; Awad et al., 2005). 

The focus of the presented work is to examine the 
dynamic response of synchronous generator driven micro 
hydro power system working in off-grid mode under 
normal and abnormal operating conditions. The normal 
conditions considered for the investigation are no load, 
linearly changing load and full load. Transient 
disturbances due to system faults and quick changes in 
load and severe overload are considered as abnormal 

conditions in the present analysis. This paper gives the 
full detailed modeling of proposed off-grid MHP system 
deploying SG. The investigation is carried out through 
digital simulations from various perspectives including 
regulation for no load to full load and no load to overload 
scenarios using Simulink tool. Simulink is a MATLAB 
based graphical block diagramming tool. It is commonly 
being used as experimenting tool for modeling, simulating 
and analysing energy systems (Nezhad and Hoseinzadeh, 
2017). It has customizable built-in blockset libraries that 
makes it an attractive choice for hydroelectric systems’ 
modeling and research (Simani et al., 2014; Simani et al., 
2017). Alternatively, DIgSILENT PowerFactory tool can 
also be used for hydroelectric power systems’ modeling 
and simulations (Olulope et al., 2013) but Simulink is 
widely used from last two decades for the non-linear 
dynamics research in hydro power plants (Mahmoud et al., 
2004; Fang et al., 2008). As the alternate softwares also 
comply with the standards, the simulation results would 
be similar.  

2. Micro Hydro System General Layout 

The general layout of a typical micro hydro system is 
shown in Fig. 1. The basic components include the weir, 
desilting tank, penstock, turbine and generator (Michael 
and Jawahar, 2017). The water from the river or stream is 
diverted through an intake at the weir, which then enters 
to a desilting tank where impurities and debris are 
separated in it. Sometimes, a forebay tank is also located 
between the intake and penstock to store the water to 
maintain the constant head (Ali et al., 2018b). Then, water 
from the forebay tank is conveyed to a turbine through a 
pipe termed as penstock. The turbine converts the 
potential energy of the water into mechanical energy and 
the produced mechanical energy by the turbine is then 
converted into electrical energy with the help of a 
generator.  

Theoretically, the hydraulic power (𝑃"#$) available 
from a micro hydro source is determined using the 
following mathematical relation (Ali et al., 2018a; Ali and 
Farooq, 2019).  

 
𝑃"#$ = 𝜌. 𝑔. 𝑄. 𝐻 (1) 

 
Where 𝜌, 𝑔, 𝑄 and 𝐻 represent water density, gravitational 
constant, effective flow rate and head, respectively.  
 

 
Fig. 1 General layout of a typical MHP system  
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This hydraulic power is normally reduced by the 
efficiencies of the system’s components including the 
turbine and generator. When the hydraulic power in (1) is 
multiplied by overall efficiency (𝜂) of an MHP unit, gives 
the final output electrical power 𝑃 (Ali and Farooq, 2019): 
 
𝑃 = 𝜂. 𝜌. 𝑔. 𝑄. 𝐻 (2) 

3. Methodology 

3.1 System Formation and Specifications 

Fig. 2 depicts the formation of proposed off-grid MHP 
system, taken into consideration for dynamic analysis. A 
variable speed micro hydro turbine drives the DC 
excitation based synchronous generator of 400 V, 85 kVA 
capacity. The electrical power generated by the SG is then 
distributed to sparsely scattered load through a short 
power line network. 

3.2 System Modeling with its Components 

The comprehensive model considered in this paper for the 
modeling and analysis of proposed MHP system, is 
illustrated in Fig. 3. The SG is driven by variable speed 
MHP turbine and is connected to off-grid load through a 
power line. A speed governor is used to control the speed 
of the micro hydro turbine. The field voltage of the DC 
exciter is controlled by a regulator so as to supply the 
balanced power to varying load. The detailed 
mathematical representation of all the components used 
in this model is discussed in the subsequent sections. 

3.2.1 Modeling of Hydraulic Turbine with a Penstock 

Mathematically, a penstock pipe of length 𝐿 and cross-
sectional area 𝐴 is expressed in equation as (IEEE 
Working Group, 1992): 
 
𝑑𝑄
𝑑𝑡 =

(𝐻1 −𝐻 − 𝐻3)
𝑔𝐴
𝐿  (3) 

 
Where 𝐻1 and 𝐻3 are static head and head loss in penstock, 
respectively. For rated power output, the per unit 
representation of (3) is given using base flow (𝑞6789) and 
base head (ℎ6789): 
 
𝑑𝑞
𝑑𝑡 =

(1 − ℎ − ℎ3)
𝑔𝐴ℎ6789
𝐿𝑞6789

 (4) 

Where 𝑞, ℎ and ℎ3 represent per unit value of 𝑄, 𝐻 and 𝐻3, 
respectively. The (4) can also be represented with water 
time constant. While the water time constant (𝑇=) is 
mathematically expressed as (IEEE Working Group, 
1992): 
 
𝑇= =

𝐿𝑞6789
𝑔𝐴ℎ6789

 (5) 
      
Therefore, the (4) becomes as: 
 
𝑑𝑞
𝑑𝑡 =

(1 − ℎ − ℎ3)
𝑇=

 

 

(6) 
 

The hydraulic turbine is basically represented by its 
hydraulic characteristics and output mechanical power. 
The per unit flow rate through the turbine is given by 
(IEEE Working Group, 1992): 
 
𝑞 = 𝐺√ℎ (7) 

 
Where 𝐺 in (7) represents the gate position or opening. 
From a micro hydro source, the produced mechanical 
power by a turbine is the product of water effective flow 
rate and rated head, but this power is decreased by a 
factor, to account for the turbine losses.  Another 
important factor i.e., speed deviation damping effect 
𝐷𝐺𝛥𝜔, must also be included. Therefore, the turbine 
mechanical power (𝑃C) in per unit form is represented 
mathematically as (Ali and Farooq, 2019): 
 
𝑃C = 𝐴Dℎ(𝑞 − 𝑞E3) − 𝐷𝐺𝛥𝜔 (8) 

 
Where 𝐴D, 𝑞E3, 𝐷 and 𝛥𝜔 represent turbine gain, per unit 
no load flow, damping coefficient and speed deviation, 
respectively.  

The turbine gain is calculated mathematically using 
full load (𝐺F3) and no load (𝐺E3) gate positions as (Kundur, 
1994):  
 
𝐴D =

1
𝐺F3 − 𝐺E3

 (9) 

 
The model of a hydraulic system with a turbine and a 

penstock having unrestricted head and tail race is shown 
in Fig. 4, which is obtained by combining the (6) for the 
penstock, and (7) and (8) for the turbine. 

 
 

 
Fig. 2 Proposed off-grid MHP system formation 
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Fig. 4 Penstock-turbine mathematical model (Ali and Farooq, 2019) 

 

3.2.2 Modeling of Synchronous Generator 

The modeling of synchronous generator is represented 
mathematically by expressing its electrical and 
mechanical characteristics. Using dq-axis transformation 
in the rotor reference frame, the machine’s electrical part 
is represented. The equations of flux and voltage in this 
frame of reference are given as (Ahsan, 2013). 
The flux equations: 

 
𝜑$ = 𝐿$𝑖$ + 𝐿C$J𝑖′F$ + 𝑖′L$M (10) 
 
𝜑N = 𝐿N𝑖N + 𝐿CNJ𝑖′LNO + 𝑖′LNPM (11) 
 
𝜑′F$ = 𝐿C$(𝑖$ + 𝑖′L$) + 𝑖′F$J𝐿′3F$ + 𝐿C$M (12) 
 
𝜑′L$ = 𝐿C$J𝑖$ + 𝑖′F$M + 𝑖′L$(𝐿′3L$ + 𝐿C$) (13) 
 
𝜑′LNO = 𝐿CNJ𝑖N + 𝑖′LNPM + 𝑖′LNOJ𝐿′3LNO + 𝐿CNM (14) 
 
𝜑′LNP = 𝐿CNJ𝑖N + 𝑖′LNOM + 𝑖′LNPJ𝐿′3LNP + 𝐿CNM (15) 
 

The equations of voltage: 
 
𝑣$ = 𝑟8𝑖$ − 𝜔S𝜑N +

𝑑
𝑑𝑡 𝜑$ (16) 

 
𝑣N = 𝑟8𝑖N + 𝜔S𝜑$ +

𝑑
𝑑𝑡 𝜑N 

(17) 
 
𝑣′F$ = 𝑟′F$𝑖′F$ +

𝑑
𝑑𝑡 𝜑′F$ (18) 

 
𝑣′L$ = 𝑟′L$𝑖′L$ +

𝑑
𝑑𝑡 𝜑′L$ (19) 

  

𝑣′LNO = 𝑟′LNO𝑖′LNO +
𝑑
𝑑𝑡 𝜑′LNO (20) 

   
𝑣′LNP = 𝑟′LNP𝑖′LNP +

𝑑
𝑑𝑡 𝜑′LNP (21) 

 
Where quantities 𝜑, 𝐿, 𝑖, 𝑣, 𝑟 and 𝜔 from (10) to (21) 
represent the flux linkage, inductance, current, voltage, 
resistance and speed, respectively. In these quantities d-
axis, q-axis, d-axis field, d-axis magnetizing, q-axis 
magnetizing, stator and rotor components are represented 
by the subscripts 𝑑, 𝑞, 𝑓𝑑, 𝑚𝑑, 𝑚𝑞, 𝑠 and 𝑟, respectively.     
Whereas 𝑘𝑑, 𝑘𝑞1 and 𝑘𝑞2 subscripts represent the dq-axis 
components of damper winding. While dq-axis damper 
winding and d-axis field winding leakage components are 
specified by the subscripts 𝑙𝑘𝑑, 𝑙𝑘𝑞1, 𝑙𝑘𝑞2 and 𝑙𝑓𝑑, 
respectively. 

 

 
Fig. 3 Proposed MHP system’s comprehensive model 
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Fig. 5 Electro-hydraulic type PID speed governor’s mathematical model (AL Jowder, 2013) 

 
 

 
Fig. 6 Mathematical model of DC excitation system (Ali and Farooq, 2019) 

 
 

The mechanical part of the synchronous machine is 
mathematically represented by using equation of motion 
of the rotor as (Ahsan, 2013): 

 
𝑑𝜔S
𝑑𝑡 =

1
𝐽 (𝑇C − 𝑇9 − 𝐹𝜔S) (22) 

 
Where 𝑇C and 𝑇9 are the mechanical and electromagnetic   
torques respectively, 𝜔S is the speed of rotor, 𝐽 is the co-
efficient of inertia, and 𝐹 represents the friction co-
efficient. 

3.2.3 Modeling of Speed Governor 

The electro-hydraulic type PID speed governor is used for 
the proposed system as it is flexible and offers better 
performance (Ali and Farooq, 2019). Fig. 5 indicates the 
mathematical model of such type of speed governing 
system.  

The proportional-integral-derivative controller’s gains 
Kp, Ki, and Kd are chosen as per following relationships 
(IEEE Working Group, 1992): 
 
𝑅] =

1
𝐾_

= 0.625
𝑇=
𝐻  (23) 

 
𝑇c =

𝐾_
𝐾d
= 3.33𝑇= (24) 

 
𝐾_
𝐾$

>
3
𝑇=

 (25) 
   
While the values of governor time constants Ta, Tc and Td 

are set by the pressure/flow properties of the gate and its 
servos (Choo, 2007). The 𝑅]  and 𝑇c in (23) and (24) 
represent the transient droop and reset time, respectively. 

3.2.4 Modeling of Excitation System 

DC based excitation system is used for synchronous 
generator in the proposed off-grid micro hydro power 
system. Fig. 6 demonstrates the mathematical model of 
such excitation system whose basic components are a 
voltage stabilizer, a voltage regulator and a DC exciter (Ali 
and Farooq, 2019). Amongst voltage regulator time 
constants TA, TB, TC; TA is the key constant while others 
are normally small enough to be ignored (Ali and Farooq, 
2019; IEEE Std 421.5-2005, 2006).  

The field voltage (𝑉F) at the output of exciter is 
mathematically related to regulator output voltage (𝑉c) as 
(IEEE Std 421.5-2005, 2006): 
 
𝑉F =

𝑉c
𝐾h + 𝑠𝑇h

 (26) 
 
Where, 𝑇h is the exciter time constant and 𝐾h represents 
the constant related to exciter self-excitation. 

3.2.5 Modeling of Terminal Voltage Transducer and Load 
Compensator 

Fig. 7 gives the mathematical model of terminal voltage 
transducer and load compensator model, adopted from 
(IEEE Std 421.5-2005, 2006). The prime input to the 
regulator of DC excitation system is the output voltage VC 
from this model. 

 1 
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Fig. 7 Mathematical model of terminal voltage transducer and 

load compensator (IEEE Std 421.5-2005, 2006) 

3.2.6 Modeling of Remaining Components 

The remaining components of the proposed system such as 
power line and load are modeled using built in block-sets 
of SimPowerSystems library of Simulink tool of MATLAB 
software.  

4. Results 

The proposed system model is simulated to test and to  
analyse the dynamic response of the SG driven off-grid 
MHP system from various perspectives including 
regulation under steady and transient states at various 
load changing scenarios from no load to full load and from 
no load to overload during normal and abnormal operating 
conditions. The normal conditions taken for the 
investigation are no load, linearly changing load and full 
load, while the abnormal conditions include the transient 
disturbances due to quick changes in load and the faults 
on the system, and severe overload. The response of the 
system is depicted in waveforms for the magnitude of 
generator current (Ig), magnitude of generator voltage 
(Vg), magnitude of generator frequency (fg) and 
magnitude of input mechanical power (Pm) against the 
magnitude of different load changing scenarios of active 
power (PL) and reactive power (QL), in per unit (pu) form. 

4.1 Results During No Load to Full Load Scenario 

System is tested through no load to full load under normal 
operating conditions, by varying the PL (active load 
power) at unity power factor by keeping the QL (reactive 
load power) equal to zero. The simulation is carried out for 
60 seconds as depicted in Fig. 8. In the start, the generator 
is brought into motion without connecting the load i.e., 
machine is running at no load. The governor maintains the 
nominal speed, while excitation system adjusts the field 
voltage so that the generator produces nominal voltage at 
the nominal frequency. Thus, after attaining the nominal 
voltage and frequency, the load can be connected to SG. 
During no load to full load test, the QL is maintained to 0 
pu, whereas only PL is varied from 0 pu (no load) to its 
maximum value of 1 pu (full load).  

4.2 Results During No load to Overload Scenario 

System simulation is carried out for 90 sec through no load 
to overload to test its performance from regulation 
viewpoint because of the transient disturbances due to 
rapid load changes and system faults. The results of this 
testing are shown in Fig. 9. Load changes are introduced 
at 10 sec, 30 sec and 50 sec through the combination of PL 
and QL as these are the inputs to generator. The generator 
is started with no load i.e., both PL and QL are zero, 

during this period, the SG produces nominal voltage (1 pu) 
at nominal frequency (1 pu). However, in the beginning 
when the machine starts, these parameters vary around 
the respective nominal values and then stabilize rapidly 
because of the control action of excitation and governor in 
MHP system. After achieving the nominal voltage and 
frequency, the load can be applied to SG. Therefore, at 10 
sec PL increases to the half of its full load (1 pu), 
correspondingly QL increases to one-fourth (0.25 pu) of its 
full load (1 pu) at 30 sec such that the load power factor 
(PF) becomes 0.9. Congruently, at 50 sec PL raises to full 
load while QL increases to three-fourth (0.75 pu) of its 
nominal full load value, which reduces the PF of load to 
0.8 from unity. While the transient instabilities due to 
faults are created at 20 sec, 40 sec and 65 sec on a 400 V 
line for 0.1 sec by a three-phase to ground fault. However, 
to examine the behaviour of the system during overload, 
from 80 sec onward the load on the system is successively 
raised from its full load value (1 pu). 

5. Discussions 

5.1 Response Under Normal Operating Conditions 

Under normal operating conditions, the simulation results 
of Fig. 8 indicate that the system remains stable and 
operates satisfactorily as Vg and fg maintain 1 pu value 
as the load increased linearly from no load to full load. 
However; at full load there is a slight decline of 3% and 
0.5% in Vg and fg respectively which should not be a major 
issue considering the operation of system in isolated mode 
where synchronization with the grid is not reqired. In 
addition, these deviations in voltage and frequency are 
within the allowable limits of IEC standards (Nömm et al., 
2018).  

5.2 Response Under Abnormal Operating Conditions 

5.2.1 System’s Response During Quick Changes in Load 

The results of Fig. 9 reveal that the rapid changes in load 
(PL or/and QL) at 10 sec, 30 sec and 50 sec produce 
transients in the generator voltage, frequency and current 
which are regulated by the control actions of the MHP 
system. Further, it can also be seen in the waveforms that 
the generator voltage and frequency slightly fall from the 
respective nominal value during the steady state period at 
full load with 0.8 PF. Whereas, the input mechanical 
power also drops at the occurrence of these transients 
caused by rapid changes in load and then varies close to 
its nominal value in order to adjust the output electrical 
power to meet the load changes or demand. 

5.2.2 System’s Response During Faults 

The simulation results of Fig. 9 also describe the dynamic 
response of the system under the abnormal condition of 
transient disturbances caused by a three-phase to ground 
fault at 20 sec, 40 sec and 65 sec when the system is 
running in steady state. The occurrence of faults on power 
line causes the generator current to rise very high as 
depicted in the third graph of Ig and the magnitude of this 
fault current becomes very high for the transient that 
occurs when the MHP system is feeding the large load. 
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Fig. 8 System’s response under normal conditions during no load to full load scenario 

 
 

 

 

 

 

 

 
Fig. 9 System’s response under abnormal conditions during no load to overload scenario 
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Fig. 10 depicts this state of high rise in current during 
fault transient at 65 sec when the system is supplying 
power to full load. Moreover, the graph of Vg in Fig. 9 
illustrates that on the fault occurrence, the generator 
voltage drops to 0 pu and quickly restores to its steady 
state value as the fault is cleared and this situation is also 
shown in Fig. 10 at the incidence of transient at 65 sec. 
The rapid restoration of the generator voltage is because 
of the field voltage of excitation system that is controlled 
by a regulator to maintain the nominal voltage of 
generator. Besides, the frequency of the generator also 
falls on the occurrence of fault as shown in the graph of fg 
and then it oscillates around its nominal value of 1.0 pu as 
the speed governing system of MHP system normalizes it 
after the fault clearance. Whereas the graph of Pm in Fig. 
9 indicates that the input mechanical power shows a 
decline before the clearing of fault and then varies 
increasingly to reach toward its steady state value.  

5.2.3 System’s Response During Overload 

The waveforms of Fig. 9 also depict the results of 
simulation under abnormal condition of overload at 80 sec 
which expose that the MHP system cannot maintain the 
voltage and frequency, if the load is increased above its 
nominal full load value i.e., 1 pu. The first graph of PL 
shows the load increment in ramp fashion from 80 sec 
ahead. When the load active power crosses 1.2 pu, the 
generator current increases abruptly, and the voltage and 
frequency go down speedily, and at this time the input 
mechanical power takes a dip and then rises to balance the 
increasing load but again immediately drops to 0 pu and 
the system finally collapses.  

5.2.4 System’s Regulation Response During Transients 

The graphs of Fig. 9 also show that the respective 
regulation time to stabilize the generator current, 
generator voltage and generator frequency and input 
mechanical power is relatively much high for fault 
transients as compared to transients caused by load 
changes, as recorded in Table 1. Moreover, the regulation 
time for these parameters decreases with the increase in 
loading on the MHP system, while the input mechanical 
power shows the contrary behaviour to this. However, the 
regulation time for these parameters increases at load 
with lower PF as compared to the same load with unity 
PF. Furthermore, the Ig, Vg and fg graphs in Fig. 9 also 
divulge that upon transient the generator current takes 
much longer time to become steady as compared to 
generator voltage and frequency. The time of regulation 
for transient disturbances caused by system faults under 
various simulation scenarios at different loading 
conditions are summarized in the Table 2 which shows 
that the recovery time for Ig, Vg and fg decrease with the 
increase in the loading except Pm. However, the 
magnitude of the fault current increases with the rise in 
loading on the MHP system as discussed already.  

6. Conclusions and Future Research 

6.1 Technical Findings and Suggestions 

This investigation finds that the MHP system works 
satisfactorily and in a stable fashion under the normal  
operating conditions.

 

 
Fig. 10 Variations in the three-phase generator current and voltage from their nominal steady state values during the fault transient 

at 65 sec at full load 
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However, under abnormal operating conditions, the 
results depict the unwonted variations in system 
parameters include generator current, voltage, frequency 
and input mechanical power. Moreover, the respective 
regulation time to stabilize the generation parameteres is 
relatively higher for fault transients as compared to 
transients caused by load changes. Further, the regulation 
time to fix the variations in these parameters decreases 
with the increase in loading on the MHP system except 
input mechanical power that shows the contrary 
behaviour. Therefore, it is suggested to operate the SG 
driven off-grid MHP system preferably at full load. 
However, the appropriate protection scheme against the 
increased fault current must be provided to protect the 
system as the fault current increases in this type of system 
with the increase in loading. In addition, the time of 
regulation is increased when the power factor of the 
connected load on the proposed MHP system decreases 
from unity. Hence, it is recommended to provide 
appropriate PF correction to confirm the lower regulation 
times as well as fault current. This will also ensure the 
decrease in the time for which fault current flows in the 
network enhancing system stability and protection. 
Furthermore, it is also concluded that the system over 
loading equal or above the 1.2 times of the full load can 
collapse the system. Therefore, it is highly advised that 
the over loading of the system should be avoided in any 
case. 

6.2 Future Research and Scope 

The electrical energy storage (ESS) systems are the 
backbone of a stand-alone renewable power generation 
systems, which helps to provide a secure and reliable 
power supply. The operation of stand-alone or off-grid 
renewable power generation systems without energy 
storage is affected highly due to intermittent nature of 
generation and sudden load demand fluctuations. Of all 

small scale ESS options, battery based storage systems 
are considered more efficient in terms of scalability, 
efficiency, lifetime, discharge time, weight and mobility of 
the system (Kyriakopoulos et al., 2016). Thus, combining 
proposed MHP system with batteries or other possible 
ESS options suggests area for future research whose 
viability need to be explore under similar or different 
circumstances.   
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Nomenclature 

MHP Micro hydro power. 
IG Induction generator. 
SG Synchronous generator. 
Phyd Hydraulic power, W. 
ρ Water density, 1000kg/m3. 
g Acceleration due to gravity, 9.8m/s2. 
Q Water flow rate, m3/s. 
H Head at turbine admission, m. 
P Final electrical power, W. 
η Overall system efficiency. 
L Length of penstock pipe, m.  
A Penstock cross-sectional area, m2. 
Ho Static head, m. 
Hl Head loss in penstock, m. 
q Per unit representation of Q. 
h Per unit representation of H. 
hl Per unit representation of Hl. 
hbase base head, m. 
qbase Base flow, m3/s. 

Table 1 
Regulation time for transients caused by sudden changes in load and system faults 

Parameter 
Regulation Time (sec) for Transients Caused by 

Sudden Changes in Load 
Regulation Time (sec) for Transients Caused by 

System Faults 
at 0.8 PF at 0.9 PF at Unity PF at 0.8 PF at 0.9 PF at Unity PF 

Generator Current 2 5.4 3.8 2.4 6.8 5 

Generator Voltage 1.8 3 2 1.3 5.6 4.1 
Generator Frequency 2.2 3.8 3.1 2 5 3.6 
Input Mechanical Power 4 3.5 1.7 12 5.2 3.3 

 
 

Table 2 
Regulation time for transient disturbances caused by system faults at different loadings 

Parameter 

Nominal Value 
(pu) 

Regulation Time (sec) 
at Quarter Load 

Regulation Time (sec) 
at Half Load 

Regulation Time (sec) 
at Full Load 

at No 
Load 

at Full 
Load 

at 0.8 
PF 

at 0.9 
PF 

at Unity 
PF 

at 0.8 
PF 

at 0.9 
PF 

at Unity 
PF 

at 0.8 
PF 

at 0.9 
PF 

at Unity 
PF 

Generator Current 0 1 8.2 6.8 5 3.1 3.7 4.2 2.4 2.1 1.7 
Generator Voltage 1 1 6.9 5.6 4.1 2.6 2.9 3.3 1.3 1 0.8 

Generator Frequency 1 1 6.1 5 3.6 2 2.4 3 2 1.6 1.2 
Input Power (Mechanical)  0.9 0.9 7 5.2 3.3 7.8 6.7 5.3 12 10.1 7.8 
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Tw Water time constant, sec. 
G Gate position. 
D Damping coefficient. 
∆ω Speed deviation. 
Pm Per unit mechanical power. 
At Turbine gain. 
qnl Per unit no load flow. 
Gfl Full load per unit gate opening. 
Gnl No load per unit gate opening. 
φd 
φq  

Stator d and q axis flux linkage, 
respectively. 

φ’fd d axis field winding flux linkage. 
i’fd d axis field current component. 
φ’kd 
φ’kq1 
φ’kq2  

d and q axis damper winding flux linkage, 
respectively. 

L’lkd 
L’lkq1 
L’lkq2  

d and q axis damper windings leakage 
inductances. 

Ld 
Lq  

d and q axis combined leakage and 
magnetizing inductances. 

Lmd  
Lmq  

d and q axis magnetizing         
inductance. 

id 
iq  

d and q axis stator current component, 
respectively. 

L’lfd d axis field windings leakage inductance. 
i’kd 
i’kq1 
i’kq2  

d and q axis damper winding currents, 
respectively. 

v’kd 
v’kq1 

v’kq2  

d and q axis damper winding voltages, 
respectively. 

vd 
vq  

d and q axis stator voltage component. 

v’fd d axis field voltage component. 
r’fd d axis field winding resistance. 
rs stator winding resistance. 
r’kd 
r’kq1 
r’kq2  

d and q axis damper winding resistances, 
respectively. 

ωr Electrical angular speed of rotor. 
J Co-efficient of inertia. 
Tm Mechanical torque. 
Te Electromagnetic torque. 
F Co-efficient of friction. 
ωref Reference/nominal speed. 
Pref Per unit reference mechanical power. 
Pt Per unit terminal electrical power. 
Kp Proportional gain. 
Ki Integral gain. 
Kd Derivative gain. 
RP Permanent droop. 
Ta Pilot servo motor time constant. 
Tc Gate closing time or gate servo gain. 
Td Gate servo motor time constant. 
RT Transient droop. 
TR Reset time or dashpot time constant. 

VC Output of terminal voltage transducer and 
load compensation elements. 

Vref Voltage regulator reference voltage. 
VS Power system stabilizing voltage. 
VF Excitation stabilizer output voltage. 
VUEL Underexcitation limiter output. 
KA Voltage regulator gain. 
TE Exciter time constant. 

TA 

TB 
TC  

Voltage regulator time constants. 

VR 
VRmin 
VRmax  

Voltage regulator output, minimum and 
maximum voltage regulator outputs, 
respectively. 

KE Exciter constant related to self-excited field. 
Vf Exciter output voltage. 
KF Excitation control system stabilizer gain. 
TF Excitation stabilizer time constant. 
VT Terminal voltage. 
IT Terminal current. 
RC Load compensation resistive component. 
XC Load compensation reactance component. 
VC1 Compensated terminal voltage. 
TReg Regulator input filter time constant. 
PL Per unit load active power. 
QL Per unit load reactive power. 
Ig Per unit generator current. 
Vg Per unit generator voltage. 
fg Per unit generator frequency. 
Pm Per unit input mechanical power. 
PF Power factor 
ESS Electrical energy storage 
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