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ABSTRACT. With the increasing integration of decentral renewable energy systems in the residential sector, the opportunity to enhance 
the control via model predictive control is available. In this article, the main focus is to investigate the objective function of the model 
predictive controller (MPC) of an integrated thermal-electrical renewable energy system consisting of photovoltaics, solar thermal 
collectors, fuel cell along with auxiliary gas boiler and electricity grid using electrical and thermal storage in a single-family house. The 
mathematical definition of the objective function and the depth of detailing the objectives are the prime focus of this particular article. 
Four different objective functions are defined and are investigated on a day-to-day basis in the selected six representative days of the 
whole year for the single-family house in Ehingen, Germany with a white-box simulation model simulated using TRNSYS and MATLAB. 
Using the clustering technique then the six representative days are weighted extrapolated to a whole year and the outcomes of the whole 
year MPC implementation are estimated. The results show that the detailing of the mathematical model, even though is time and 
personnel consuming, does have its advantages. With the detailed objective function	𝐽#, 9% more solar thermal fraction; 32% less power-
to-heat at an expense of 32% more gas boiler usage; 6% more thermal system effectiveness along with 10% increased total self-consumption 
fraction with 16% decrease in space heating demand, 492 kWh more battery usage and 66% reduced fuel cell production is achieved by 
the MPC in comparison to the status quo controller. Except for the effectiveness of the thermal system with increased gas boiler usage, 
which occurs due to less power-to-heat, the detailed objective function in comparison to the simple mathematical definition does evidently 
increase the smartness of the MPC.  
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1. Introduction 

International energy agency (Laustsen, 2008) has already 
emphasized that around 40% of the world’s end energy is 
used for residential buildings. With the requirement of 
energy in buildings in terms of electricity, space heating 
or cooling and for domestic hot water, the system is 
complex enough and with each building being different in 
terms of their consumption pattern due to the human 
behavior or due to the building’s characteristics, the 
simple control does prove inadequate to achieve better 
efficiency. In Germany, the residential sector is dominated 
by 12.7 million single and two-family houses out of the 19 
million residential buildings (Deutsche Energie Agentur, 
DENA, 2019). Also, unlike other countries, the thermal 
energy supply to German households is still largely by 
decentral energy systems. With the increase of decentral 
renewables installed in buildings (for e.g. solar thermal 
system or a photovoltaic system), the buildings could cover 
a part of their demand by self-generation. Such prosumers 
are increasingly gaining importance and Germany’s 
energy transition and climate law aim to reduce the total 
emissions by 80-95% before 2050 in reference to 1990. 

                                                        
* Corresponding author: muthalagappan.narayanan@thu.de 

With the opportunities from artificial intelligence, 
internet of things, and other digitalization technologies, 
the decentral sector coupling can be facilitated, so as to 
have a balanced resilience. While storage systems, 
demand-side management interfaces to heat and 
transport sectors, do indeed increase complexity, they also 
increase the system’s heterogeneity and modularity 
(Acatech et al., 2020). With the increasing trend of 
decentralization of energy systems in each sector via 
renewables (e.g. a solar PV carport for electric vehicle 
charging, PV or wind for electricity production, and solar 
thermal collectors for hot water production), the role of 
decentral sector coupling is also high. At many instances, 
the inability of various standard control schemes, such as 
an on/off controller, i.e., thermostats, single input single 
output, proportional-integral (PI) and proportional 
integral derivative (PID) control in the building sector are 
showcased and the control system for buildings play an 
important role and with developments in control strategy, 
around 10-20% of the energy use can be reduced 
(Laustsen, 2008). With the growing trend of decentral 
renewable thermal energy systems (e.g. solar thermal 
with an auxiliary gas boiler or photovoltaics with heat 
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pump) and renewable electrical energy systems 
(photovoltaics with battery or micro wind turbines or 
micro combined heat and power) in single-family houses, 
the potential to decentral sector coupling is made possible. 
Thus, more sophisticated advanced control for such a 
hybrid renewable thermal-electrical home energy system 
is required. In addition, with advanced control, the use of 
decentral sector coupling could be enhanced. Moreover, 
energy management becomes more efficient and effective 
by planning its production via complex control strategies 
making the system adaptive to the demand of the building 
and the consumer. In the Energiefortschrittbericht 
(Bundesministerium für Wirtschaft und Energie (BMWi), 
2019) (Energy Progress Report), Prognos 2020 (Prognos 
AG et al., 2020), Energieeffizienz Strategie Gebäude 
(Bundesministerium für Wirtschaft und Energie (BMWi), 
2015) (Energy Efficiency Strategy in Buildings) and 
several instances, the need for intelligent control of hybrid 
renewable energy systems (thermal and electrical) which 
promotes optimal integration of renewables in residential 
buildings along with decentral sector coupling is 
emphasized. 

One such advanced control is model predictive control 
where a digital twin of the real system is created and used 
to predict the future outcomes with the feed-in of predicted 
disturbances and the desired objectives with the allowed 
boundary conditions. Model predictive controller (MPC) 
does the optimal control with some predictions and is a 
non-optimal advanced control which makes the best of the 
situation even though it is not optimal (e.g. heating the 
building by using electricity when PV is working with 
certain boundary conditions)(Reynders et al., 2013; 
Thieblemont et al., 2017). 

MPC is already widely used in the automotive sector 
and supply chain management. The importance of 
advanced controls in building heating and for the 
integration of renewable systems is already well versed. 
The implementation of MPC on just heating was already 
implemented by (Sturzenegger et al. 2016; Zakula, 2013; 
Görtler and Beigelböck 2010; Jungwirth 2014) and for 
energy systems components alone; as examples, heat 
pump in (Pichler et al., 2017), thermal storage in 
(Thieblemont et al., 2017; Yu et al., 2015), solar thermal 
system in ( Pichler et al., 2014; Pintaldi et al., 2019; Serale 
et al., 2018; Zemann et al., 2020) and electrical system 
with PV and battery in (Alibabaei et al., 2016; Khakimova 
et al., 2017; Ostadijafari et al., 2019). But a combination 
of them all together as a system with decentral sector 
coupling of the electrical and the thermal system with the 
buildings is still open. Also, another barrier for MPC is its 
obligation to customization for that particular case. 
Therefore, the universalization of the MPC to be adaptive 
to different building standards is necessary.  

In the previous research (Narayanan et al., 2020), the 
authors have created a simulation framework to simulate 
a white-box model predictive controller for an integrated 
thermal-electrical renewable energy system for a single-
family house. The created simulation framework was then 
used in (Narayanan, 2020) to identify an evaluation 
method to evaluate the MPC equivalent to a year via six-
day MPC analysis and implementing a corrected 
weighted-extrapolation.  

One disadvantage of the MPC is that the intelligence 
of the system has to be brought to a mathematical form by 

an experienced user which is time and resource-
consuming. The final quest of the author is to investigate 
the ways to universalize the MPC. But initially, the 
objective function has to be configured to perfection for one 
single case. In (Narayanan, 2020; Narayanan et al., 2020), 
there were small discrepancies in the results where the 
MPC results were a bit off from the desired global 
optimum solution.  

Also in the previous literature (for e.g. Badanjak & 
Bogdanović, 2019; Kuboth et al., 2019; Pichler et al., 2014), 
it can be seen that until now, the optimization with 
economic MPC is given priority and in this particular 
article, the aim is to define an objective function with the 
aim of increasing the decentral renewable energy supply 
fraction and to increase the self-supply of the demands 
when also increasing the effectivity of the energy use. A 
sophisticated objective function to serve this purpose is 
defined and then configured to study the sensitivity of the 
objective function in an MPC in this article. Thus, the 
authors decided to investigate different details of objective 
function aiming for the same goal (increased renewable 
fraction and decentral system self-consumption). This 
paper focuses explicitly on investigating different 
objective functions of the MPC and ways to improve the 
results of the MPC and if very detailed models are 
necessary. The same energy system with the same MPC 
as in (Narayanan et al., 2020) is taken for this system and 
is briefly explained in Section 2.1. Then in Section 2.3 and 
2.4, the selected objective functions for the investigation 
are explained following which in Section 2.5, the method 
of results extrapolation into an annual scale is explained. 
In Section 3, the outcomes are shown, compared, and 
discussed in detail. Finally, in Section 4 and Section 5, the 
results are discussed and concluded.  

2. Methodology 

2.1. Energy system 

For this study, a single-family house (Julia 1-3 - 
Dammann-Haus, 2018) according to Sonnenhaus 
standard (a voluntary standard which requires a 
minimum of 50% solar fraction of the total thermal loads 
in the building (Sonnenhauskriterien für Wohngebäude, 
2014)) with the following characteristics:  

 
Fig. 1 Energy system (Narayanan et al., 2020) 
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• With space heating demand of 9504 kWh/a and 
domestic hot water demand of 4000 kWh/a  

• Electrical loads according to VDI 4655 of a four-
person household - 4140 kWh/a  

• 26 m2 solar thermal collectors with 7 kW auxiliary 
gas boiler coupled to 2 m3 stratified thermal storage 

• 2.94 kW photovoltaic system with 6.75 kW lithium-
ion battery storage and a 2 kWel natural gas 
powered micro SOFC (solid oxide fuel cell) CHP 

• Power-to-heat conversion implemented via heating 
elements with maximum 4 kW input into thermal 
storage to feed-in excess decentral produced 
electricity and the remaining is exported to the grid 

 

2.2. Model Predictive Controller 

A time-varying deterministic discrete-time model MPC 
framework for a whitebox Building-HVAC system was 
developed in (Narayanan et al., 2020). As shown in Fig. 1, 
the MPC first requires the disturbances forecast (weather 
and occupancy) and for this article, this is taken as 100% 
accuracy. Then, the MPC awaits input of the setpoint 
constraints, for example, the desired room temperature, 
required space heating inlet temperature, storage 
auxiliary setpoint temperature. There could also be other 
state constraints such as battery fractional state of charge, 
maximum heating power, etc. which don’t directly affect 
the setpoints but indirectly do. Along with these inputs, 
the MPC runs the Building-HVAC system model, a digital 
twin of the real plant, a whitebox model created in 
TRNSYS and aims to reduce the objective function fitness 
value. The objective function as developed in (Narayanan 
et al., 2020), is to maximize the renewable energy fraction 
for the given time horizon while satisfying the given 
constraints of space heating (SH) as a soft constraint; 
DHW and electricity demand as hard constraints. The 
optimizer in this article is implemented in MATLAB 
environment as shown in Fig. 2 and calls the 24-hour 
TRNSYS model via DOS to iterate and find the best case 

manipulated variable inputs that acquire the best 
objective function fitness value.  The best-case u is then 
sent further to the real Building-HVAC system (for this 
study also a sequential TRNSYS model). In real 
applications, the occupancy and weather prediction do 
have a certain error which tends to be measured 
disturbances along with the unmeasured disturbances, 
which cannot be identified by the system model due to 
model accuracy or due to behavioral change of the system 
components or users. A control horizon of 24 hours is taken 
with the same 24-hour prediction horizon and a minimum 
control timestep of 15 minutes.  

The optimizer as developed in (Narayanan et al., 2020) 
with particle swarm optimization (PSO) algorithm using 
swarm size as 50 and functional tolerance as 1x10-5 is used 
for the case study in this article. As the TRNSYS model 
takes ca. 3-10 seconds for one iteration, a maximum 
optimization time of 12 hours for the MPC optimization 
has to be assigned and the compromise of not finding the 
global optimum has to be taken, so as to not run the 
optimizer for an unrealistic duration for an optimization 
problem with 24-hour control horizon. Moreover, as the 
initial point of the optimization, the previous horizon’s 
optimum solution is taken.  

2.3. Manipulated variables 

The MPC optimizer as mentioned before changes the 
manipulated variables, u, so that the best objective 
function fitness value is acquired. As enlisted in Table 1, 
the gas boiler maximum power control, fuel cell CHP 
electrical power setpoint, power-to-heat maximum power 
control, active battery charging control and active battery 
discharging control are the manipulated variables. The 
gas boiler is controlled every 15 minutes as a continuous 
floating-point variable (0 to 1) by the MPC. If the auxiliary 
volume temperature is less than the desired setpoint, the 
MPC input allows the gas boiler and the respective pump 
for storage feed-in to be activated.  

 
 

 
Fig. 2. Whitebox TRNSYS-MATLAB model predictive controller simulation framework (Narayanan, 2020)
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Table 1  
Boundary conditions for the respective manipulated variable 

Manipulated 
Variable 

Control 
Timestep 

Control 
Input Type 

Control Input 
Value 

Gas boiler heat 
rate control  

15-
minute Continuous 0….1 

Battery charge 
control 1-hour Binary 0 or 1 
Battery discharge 
control  1-hour Binary 0 or 1 
Fuel cell CHP 
electrical power 
setpoint  

3-hour Integer 500W/1000W/ 
1500W/2000W 

Power-to-heat 
control 

15-
minute Continuous 0….1 

The battery on the other hand is controlled by an on-
off binary signal (0 or 1) from the MPC in one-hour control 
timestep. The battery is controlled both for charging and 
discharging, so as the MPC can decide if the battery 
should be charged right away when PV produces 
electricity or to wait till there is no load demand and also 
to decide if the battery should be discharged right away 
when the PV and FC-CHP production are deficient or to 
supply the peak loads in the latter part of the day. As here 
the taken SOFC-CHP needs 30 hours to switch on and up 
to 30 minutes to reach the new setpoint, a full shutdown 
of the FC-CHP is not aforethought. The MPC control time 
step is defined as 3 hours and is varied between 500 W, 
1000 W, 1500 W, and 2000 W.  

Alike gas boiler control, the power-to-heat control also 
is considered as a continuous floating-point variable (0 to 

1) and the single input sent by the MPC is then locally in 
TRNSYS used to control the three heating elements 
installed at the top (1 kW), middle (2 kW) and bottom (1 
kW) of the thermal storage, assumed to be controlled by a 
thyristor for a step-free control of the three heating 
elements. All the unused electricity after the battery 
control, load supply, and power-to-heat supply will be 
exported into the grid. 

2.4. Objective Function 

The aim of the objective function is to increase not 
only the usage of the non-controllable renewables, 
especially the use of solar thermal and photovoltaic, but 
also to reduce the auxiliary energy, gas boiler in the 
thermal side and the grid on the electrical side, and to also 
enhance self-consumption in the electrical side by 
reducing the grid import. It should at the same time not 
compromise the comfort in the space heating and always 
satisfying the DHW requirements, thereby effectively 
reducing the heat losses in the thermal storage. Also, the 
active control of the FC-CHP to optimize the power-to-heat 
and make sure the power-to-heat doesn’t take up the space 
of the solar thermal contribution in the thermal storage is 
necessary. Similarly, battery storage should also be 
managed effectively. Thus, an overall goal for the given 
time horizon as a maximization problem is to increase 
renewable energy, and as a minimization problem is to 
reduce the usage of gas boiler input, grid import and 
reduce the grid export.  
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Abbreviations used in Equation (1) and Equation (2) explained after Equation (7)  

subject to  

𝜌 = 𝜌lC + 𝜌#Cm + 𝜌HI (3) 

𝜌lC = no 𝛼3𝑇crrs_lHu − 𝑇crrsA
==BC

&C
, 	 𝑇crrsN?: − 𝑇crrs − 1 > 0

0									, 	 𝑇crrsN?: − 𝑇crrs − 1 ≤ 0
 (4) 

𝜌#Cm = no 𝛽3𝑇#Cm_lHu − 𝑇#CmA
	=BC

&C
, 	 𝑇#CmN?: − 𝑇#Cm − 2 > 0

0									, 	 𝑇#CmN?: − 𝑇#Cm − 2 ≤ 0
 (5) 

𝜌HI = 𝛾 M𝑃HI@JKL − 𝑃HINONP@JKLQ (6) 

where 𝛼 = 30; 𝛽 = 1000; 𝛾 = 1000; µZ+_ = 1500; µacd#_~_�rcu  = 2000  
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As shown in Equation (1), the objective function can 
be defined as a maximization problem where a sum of the 
integrated daily renewable thermal fraction plus the 
integrated daily renewable electricity fraction along with 
the daily decentral system self-utilization and an added 
integral penalty (𝜌) if the hard and soft output constraints 
are not satisfied. The penalty function is shown in 
Equation (3), (4), (5), and (6). As described in (Narayanan 
et al., 2020), the space heating load penalty (𝜌lC) is the 
most important and is a soft constraint, thus is defined as 
a quadratic penalty function (Nocedal & Wright, 2006) to 
penalize the constraint violation with increasing severity 
in case of a positive temperature difference between real 
room temperature and set room temperature. Similarly, 
the DHW penalty function (𝜌#Cm) is calculated for the 
simulation, but in a real implementation, this is 
unnecessary, but as for the simulation, it is used so that 
the objective function does not end up in an unfeasible 
optimized solution. Then a simple penalty function 

(𝜌HI)	with constant ϒ is also defined for electricity demand. 
But due to the simplicity in terms of mathematical 
optimization, the same optimization goal should be 
defined as a minimization function as shown in Equation 
(2), Variation A (𝐽Z), to reduce the auxiliary energy usage.  

One of the limitations of the MPC is that the objective 
function plays an important role in the amount of 
intelligence and smartness of the control optimization. 
And with multi-objective optimizations, when not Pareto 
(non-inferior solutions via objective function vector in 
which an improvement in one objective requires a 
degradation in another), the weightage of the functions 
does play an important role. To study the robustness and 
sensitivity of the objective function, the simple 
minimization function, Equation (2), Variation A (𝐽Z), was 
further detailed to a complex function as shown in 
Equation (7), Variation B (𝐽�), weighted multi-objective 
function incurring a penalty for the use of auxiliary energy 
and bonus for the use of the renewable function.  
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where 𝛼 = 30; 𝛽 = 1000; 𝛾 = 1000; µab = 500; µacd#_�s�rcu = 1000; µacd#_~_�rcu = 2000; µ�~_uC  = 9; 
µ�~_HI = 15; µ5HI� = 15; µ�~_<=> = 700 

 

where, 

𝑃<G - Electrical power produced by photovoltaics at the timestep (kW) 
𝑃89?@ - Electrical power produced by fuel cell CHP at the timestep (kW) 
𝑃HI@JKL - Electrical load at the timestep (kW) 
𝑃HINONP@JKL  - Electrical power delivered to the electrical load by the decentral power system at the 

timestep (kW) 
𝑃acd#efgJh:  - Electrical power supplied by the grid to satisfy the load at the timestep (kW) 
𝑃acd#jkgJh:  

- Excess electrical power produced in the decentral power system fed into the grid at the 
timestep (kW) 

𝑄5> - Thermal heat demand of the space heating delivered at the timestep (kW) 
𝑄D>E - Thermal heat demand of the domestic hot water delivered at the timestep (kW) 
𝑄ab - Thermal heat input of the gas boiler auxiliary production at the timestep (kW) 
𝑄56 - Thermal heat input of the solar collector production at the timestep (kW) 
𝑄89:;  - Thermal heat input produced by the fuel cell CHP as auxiliary production at the timestep 

(kW) 
𝑄<=>?@  

- Electrical power of the FC CHP & PV used in thermal auxiliary production at the timestep 
(kW) 

𝑇crrs_lHu - Room setpoint temperature (°C) 
𝑇crrs - Actual room temperature (°C) 
𝑇#Cm_lHu - DHW setpoint temperature (°C) 
𝑇#Cm - Actual DHW delivery temperature (°C) 
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The objective function, Variation C (𝐽R), as in 
Equation (8) is further extended to differentiate the 
power-to-heat into its source, either PV or from FC-CHP 
and having an appropriate bonus, so as to not encourage 
the production of electricity using FC-CHP from natural 
gas and then convert it again to heat via power-to-heat. 
Also the same is done on the electrical side to differentiate 
between PV power supplied and the FC-CHP electricity 
supplied to the electrical loads and also a battery usage 
bonus is included to prioritize battery usage than to 
increase FC-CHP production. 

Additionally, to investigate whether the manipulated 
variables definition is hindering the performance of the 
battery supply, the battery discharge as a manipulated 
variable is removed from the MPC and is analyzed as 
Variation D.  

2.5. Annual Evaluation 

Further to compare the MPC, as shown by the author 
in the previous publication (Narayanan, 2020), using the 
weather of Ehingen (48.2°N) from the year 2018, six-
representative days from the 365 days were chosen via 
unsupervised hard partitional clustering using ambient 
temperature (Tamb), solar irradiation (Ghor), space heating 
demand (ESH), gas boiler demand (EGB), solar thermal 
production(EST), and power-to-heat supply (EP2H) as data 

point dimensions using k-medoids in MATLAB. An annual 
status quo simulation results of the HVAC-Building 
residential energy system are compared with the 
extrapolated yearly results from the six-day status quo 
simulation and a deviation vector of the key performance 
indicators (KPIs) are acquired. With this acquired 
deviation vector 𝜎�, the outcomes (𝐸�, weighted 
extrapolated energy value of the respective n energy 
system component in kWh/a), as shown in Equation (9), of 
the six-day MPC simulation (𝐸�,d, the daily energy value 
of the respective energy type n in kWh/day for the 
particular cluster representative day) is then extrapolated 
with the weightage of the respective cluster by the cluster 
population (𝛼d) in each of the cluster i. Other than the 
main KPIs, a balanced correction factor linear equation 
solver estimation method is used to approximate the 
energy values, as the direct correction factor powered 
weighted extrapolation is not feasible, as explained in 
(Narayanan, 2020). 

𝐸� =	𝜎��𝐸�,d ∗ 𝛼d

d

&

 (9) 

The six-representative days are chosen such that two 
days during summer, two during winter, and two during 
transition seasons are chosen as shown in Table 2.  
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(8) 

where 𝛼 = 30; 𝛽 = 1000; 𝛾 = 1000; µab = 500; µacd#_�s�rcu  = 1000; µacd#_~_�rcu  = 2000; µ�~_uC = 9; µ�~_HI = 15; µ5HI� = 15; 
µ�~�P�,<G = 700; µ�~�P�,89 = 1200; µ89?@ = 7; µbZuu	= 40; 

Table 2  
Selected representative days using clustering technique 

Representative 
Day (i) 

Cluster 
Size (𝜶𝒊) 

Date Ghor 
W/m2.day 

Tamb 
°C/day 

ESH 
kWh/day 

EST 
kWh/day 

EGB 
kWh/day 

EP2H 
kWh/day 

Day 1 99 11.01.2018 31.42 1.84 64.72 3.78 33.25 26.30 
Day 2 55 13.07.2018 293.97 21.61 0.00 10.04 0.00 8.55 
Day 3 74 11.08.2018 224.15 18.71 0.00 14.03 0.00 3.91 
Day 4 57 13.10.2018 146.58 14.22 0.00 12.29 0.00 8.65 
Day 5 53 20.10.2018 86.10 8.70 22.23 18.16 0.00 22.17 
Day 6 27 25.12.2018 127.06 7.59 57.66 9.64 38.48 24.76 
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3. Results 

Using the chosen representative days, the simulation 
of the system with MPC controller was carried out and 
the day-wise results of the MPC implementation using 

the three different objective function definitions are 
compared to the status quo controller and presented 
here.  Fig. 3 shows the overview of the thermal demand 
and supply of the system; Table 3 and Table 4 enlists the 
energy values.

 

 
Fig. 3 Heat demand and supply of the representative days in Sonnenhaus standard single-family house building with status quo controller 
and with MPC controller using PSO Optimizer 
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As Day 2 and 3 are summer, the thermal energy 
demand for space heating is nil, and only the DHW load 
(EDHW) of less than 14 kWh had to be supplied. With 
status quo controllers, the power-to-heat (EP2H) did 
though feed into the storage in the night which led to 
reduced solar thermal production even though solar 
thermal production alone was good enough on both days. 
And when using MPC, all three definitions could reduce 
the EP2H to 0 kWh/day from 8.55 kWh/day and to 0.9-1.3 
kWh/day from 3.91 kWh/day on Day 2 and 3 respectively. 
On Day 3, 𝐽� functions better than its counterpart with 
respect to EP2H. Nevertheless, in terms of the solar 
thermal contribution (EST), all three J perform better by 
increasing the solar thermal production in Day 3 and 
increasing the effectivity of the whole system by reducing 
the required total thermal energy input in Day 2.  

For Day 4 (autumn day) as shown in Table 4, the 
ambient temperature (Tamb) is high enough (Fig. 4), due 
to which the building heating is not required. Also the 
gas boiler thermal energy input is unnecessary. By 
reducing the EP2H, 𝐽� and 𝐽R could achieve relatively 
increased solar thermal production. For Day 5, due to the 
low ambient temperature, the building requires 22.2 
kWh heating on that day and using MPC only 1 kWh is 
reduced in the energy demand. But on Day 5, solar 
production is increased by 4.7 kWh uniformly by all MPC 
variations, and the power-to-heat conversion is reduced 
from 22.17 to 5.35 kWh/day in	𝐽R, slightly more than the 
others. But surprisingly, representative Day 5 does not 
require the gas boiler input. Thus highlighting the 
limitations of the clustering technique where a medoid of 
that cluster is chosen and for the autumn days, these 
tend to be the ones with no auxiliary heating 
requirement. And finally, in the winter days, Day 6 and 
Day 1, it can be seen that also the space heating 
requirements are reduced by 5 and 13 kWh/day 

respectively, and this though comes at the cost of a 
negligible amount of room temperature difference 
(without exactly matching the comfort parameter) as 
seen in Fig. 4. And on both days, the main differences in 
the thermal side of the system between the objective 
function variations can be seen.  

Especially on Day 6, one can see that there is 6 kWh 
of difference in the reduction of the EP2H supply between 
𝐽� and	𝐽#, this is due to the clear definition of penalties 
for power-to-heat differentiating PV power-to-heat and 
FC power-to-heat and not preferring the latter. EP2H is 
reduced by ca. 22 kWh/day on both Day 6 and Day 1, but 
this obviously comes at the cost of increased gas boiler 
usage than the status quo in both the days. While closely 
analyzing it, on Day 1 with	𝐽#, the gas boiler input 
requirement is reduced in comparison to 𝐽� and	𝐽R. And 
in terms of energy effectivity, also on Day 6, the total 
thermal energy input required to satisfy the loads is 
reduced from 72.88 kWh/day to 60.02 kWh/day using	𝐽#, 
10 kWh less than 	𝐽R but 	𝐽� manages even 10 kWh lesser. 

In terms of the electrical system (Fig. 5), due to the 
fuel cell CHP producing almost always more than the 
electricity demand, the power sent to the grid is always 
high in the reference case. Also, the battery usage is 
much low in the status quo. And with MPC, via reducing 
the FC-CHP production, grid export is reduced, and also 
battery usage is increased. In terms of FC-CHP 
production, only	𝐽# manages to keep it to a minimum all 
6 days, thus notably increasing the battery usage and in 
turn the direct PV use, especially in Day 6 where the 
detailed definition of the objective helps to achieve the 
desired outcome. The load demand (Eload,el) and PV 
production (EPV) remain the same and by reducing the 
FC-CHP, the grid export is enormously reduced in 
summer and autumn days.

 
 

 
Fig. 4 Temperatures of the representative days in Sonnenhaus standard single-family house building with status quo controller and with 
MPC controller using PSO Optimizer 
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Table 3  
Daily energy values (Day 1-3) in kWh/day of the representative days in reference case and with MPC implementation 

Energy (kWh/day) 

Day 1 (11.01.2018) Day 2 (13-07-2018) Day 3 (11-08-2018) 

Stat
us 

Quo 

MPC-
ObFn

B 

MPC-
ObFnC 

MPC-
ObFnD 

Status 
Quo 

MPC-
ObFnB 

MPC-
ObFnC 

MPC-
ObFnD 

Status 
Quo 

MPC-
ObFnB 

MPC-
ObFnC 

MPC-
ObFnD 

Domestic hot water 
demand (EDHW) 

12.70 12.64 12.65 12.65 13.39 13.39 13.38 13.39 7.69 7.69 7.69 7.68 

Space heating 
demand (ESH) 

64.72 55.40 54.37 51.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Solar thermal supply 
(EST) 

3.78 4.33 4.30 4.31 10.04 8.11 6.94 7.83 14.03 15.80 15.48 15.49 

Gas boiler supply 
(EGB) 

33.25 54.26 55.20 48.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Power-to-heat supply 
(EP2H) 

26.30 3.19 3.52 4.19 8.55 0.00 0.00 0.00 3.91 0.90 1.14 1.30 

Photovoltaic 
production (EPV) 

2.74 2.74 2.74 2.74 20.88 20.88 20.88 20.88 17.88 17.88 17.88 17.88 

Electrical load 
demand ( Eload,el) 

12.34 12.34 12.34 12.34 9.24 9.24 9.24 9.24 9.99 9.99 9.99 9.99 

Grid export (Egrid-exp) 0.00 0.96 0.77 0.65 38.43 22.79 22.82 22.79 39.37 17.91 17.79 17.65 

Fuel cell electricity 
supply (EFC,el) 

36.00 12.00 12.00 12.00 36.00 12.00 12.00 12.00 36.00 12.00 12.00 12.00 

Fuel cell thermal 
supply (EFC,th) 

3.19 1.06 1.06 1.06 3.19 1.06 1.06 1.06 3.19 1.06 1.06 1.06 

Battery output 
(EBatt,out) 

0.01 2.74 2.76 2.79 0.02 0.57 0.57 0.57 0.00 0.33 0.32 0.33 

Direct PV supply 
(EPV,direct) 

1.00 1.05 1.05 1.05 2.63 2.81 2.81 2.81 3.19 3.55 3.55 3.55 

Direct FC-CHP 
supply (EFC,direct) 

11.33 8.59 8.59 8.59 6.58 5.87 5.87 5.87 6.80 6.12 6.12 6.12 

PV power-to-heat 
conversion (EP2H,PV) 

1.63 0.70 0.84 1.38 1.03 0.00 0.00 0.00 1.25 0.17 0.65 0.69 

FC-CHP power-to-
heat conversion 
(EP2H,FC) 

24.67 2.49 2.68 2.80 7.51 0.00 0.00 0.00 2.66 0.72 0.49 0.61 

PV grid export  
(Egrid-exp,PV) 

0.00 0.04 0.04 0.04 16.52 16.66 16.69 16.66 12.83 12.75 12.41 12.38 

FC-CHP grid export 
(Egrid-exp,FC) 

0.00 0.92 0.73 0.61 21.90 6.13 6.13 6.13 26.54 5.15 5.38 5.27 

Grid import (Egrid-

imp) 
0.00 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

Table 4  
Daily energy values (Day 4-6) in kWh/day of the representative days in reference case and with MPC implementation 

Energy (kWh/day) 
Day 4 (13-10-2018) Day 5 (20-10-2018) Day 6 (25-12-2018) 

Status 
Quo 

MPC-
ObFnB 

MPC-
ObFnC 

MPC-
ObFnD 

Status 
Quo 

MPC-
ObFnB 

MPC-
ObFnC 

MPC-
ObFnD 

Status 
Quo 

MPC-
ObFnB 

MPC-
ObFnC 

MPC-
ObFnD 

EDHW 10.10 10.09 10.09 10.09 9.08 9.08 9.09 9.09 11.90 11.91 11.90 11.83 

ESH 0.00 0.00 0.00 0.00 22.23 21.08 21.08 21.07 57.66 50.45 52.54 52.16 

EST 12.29 13.44 16.83 16.87 18.16 22.87 22.88 22.89 9.64 9.76 9.80 9.76 

EGB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.48 23.35 35.36 46.70 

EP2H 8.65 0.50 0.21 1.13 22.17 5.46 5.54 5.35 24.76 9.40 8.65 3.56 

EPV 18.85 18.85 18.85 18.85 8.93 8.93 8.93 8.93 4.15 4.15 4.15 4.15 

Eload,el 13.89 13.89 13.89 13.89 13.89 13.89 13.89 13.89 12.34 12.34 12.34 12.34 

Egrid-exp 31.52 16.80 15.16 14.23 8.38 0.55 0.76 0.69 0.00 0.44 0.33 0.47 

EFC,el 36.00 13.50 12.00 12.00 36.00 12.00 12.00 12.00 36.00 16.50 16.50 12.00 

EFC,th 3.19 1.20 1.06 1.06 3.19 1.06 1.06 1.06 3.19 1.46 1.46 1.06 

EBatt,out 0.01 0.78 1.34 1.34 0.05 1.73 1.50 1.92 0.01 2.61 2.39 2.74 

EPV,direct 3.45 3.71 3.71 3.71 2.86 2.91 2.91 2.92 1.09 1.14 1.14 1.14 

EFC,direct 10.42 9.42 8.88 8.88 10.98 9.11 9.11 9.11 11.24 8.65 8.86 8.54 

EP2H,PV 0.63 0.21 0.02 0.90 2.41 3.10 3.05 3.01 0.00 1.93 1.33 0.57 

EP2H,FC 8.02 0.30 0.19 0.23 19.76 2.37 2.49 2.34 24.76 7.47 7.32 2.99 

Egrid-exp,PV 13.97 13.01 12.23 11.33 3.12 0.02 0.35 0.14 0.00 0.06 0.01 0.00 

Egrid-exp,FC 17.55 3.78 2.93 2.90 5.26 0.53 0.40 0.55 0.00 0.38 0.33 0.47 

Egrid-imp 0.00 0.00 0.00 0.00 0.00 0.19 0.41 0.00 0.00 0.02 0.03 0.00 
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With PV production in the daytime, the PV supplies 
the electrical load; the battery is charged (Fig. 6); and 
simultaneously, the thermal storage is fed with PV P2H 
production on Day 5. On contrary, on the other transition 
season day, Day 4, most of the PV production is fed to the 
grid in the latter part of the day, and power-to-heat is 
avoided so as to enhance the solar thermal supply when 
using MPC. In the summer days (Day 2 and Day 3), with 
no complexity, with almost no P2H, the load is easily 

supplied by the PV with minimum FC-CHP contribution. 
Since the grid import penalty is smaller than the grid 
export penalty, the optimizer decides to import a little 
from the grid instead of increasing the FC-CHP 
production on Day 1 with 𝐽� and	𝐽R, but with	𝐽#, this is 
avoided. Same trends can be seen on Day 5 and Day 6. 
This is also partially due to increased use of the battery 
with	𝐽# as evidently seen in Fig. 6. 

 

 

 
Fig. 5 Electricity demand and supply of the representative days in Sonnenhaus standard single-family house building with status quo 
controller and with MPC controller using PSO Optimizer
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Fig. 6 Fractional state of charge of the battery during the representative days in Sonnenhaus standard single-family house building with 
status quo controller and with MPC controller using PSO Optimizer 

 

With developed weighted clustering extrapolation 
in a previous article (Narayanan, 2020), the results of the 
six representative days are extrapolated, as shown in 
Equation (9). 𝐸�HZc,cH�	is the yearly simulation value of 
the reference case, 𝐸�#Z�,cH� is the yearly extrapolation of 
the reference case from six representative days, 𝐸�#Z�,�<9 
is the annual energy values extrapolation of the MPC 
from six days and with deviation 𝜎�, 𝐸�#Z�,�<9 is 
corrected. Table 5 lists the main yearly energy values. It 
can be seen that the MPC does bring in some preferred 
optimizations. With the EDHW (4000 kWh/a), EPV (4202 
kWh/a), and Eload,el (4140 kWh/a) being the same, the ESH 
reduces by 13% using 	𝐽�	from 9504 kWh/a in status quo, 
mainly due to the implementation of the predictive space 
heating and gas boiler control sequence and also due to 
the soft constraint of the building temperature (T_BUI). 
The reduction in ESH is enhanced by another 0.5% by 	𝐽R 
and another 3% by 	𝐽#. EST via MPC produces 4799 kWh/a 
at an increase by 14% compared to status quo using	𝐽#, 
showcasing 4% increase in EST due to detailed objective 

function. In terms of EP2H, uniformly 83% reduction is 
achieved by the usage of MPC controller. On contrary, 
the gas boiler production (EGB) supply is needed to be 
increased by ca. 40% in 𝐽� and 𝐽# due to the reduction of 
power-to-heat input. MPC also reduces the EFC,el by 52%, 
which in turn also reduces the grid export by 51%. 
Abnormally, using 𝐽R, gas boiler requires 10% more 
energy input. 

Since the other energy values are not feasible for a 
direct correction factor (𝜎�) powered weighted 
extrapolation, a balanced correction factor linear 
equation solver estimation method is used to 
approximate the energy values as shown in Table 6. 
Obviously, from the daily values, it could be safely said 
that the grid import and battery usage is increased. It is 
trifling to see that the battery usage with status quo 
controller was only 49 kWh/a, mainly because the FC-
CHP almost always supplies the electrical load, even in 
the evening periods. 

Table 5  
Essential yearly energy values in kWh/a in reference case and the yearly energy values in kWh/a with MPC via deviation corrected 
weighted clustering extrapolation 

 
𝑬𝒚𝒆𝒂𝒓,𝒓𝒆𝒇 

(kWh/a) 

ObFnB ObFnC ObFnD 

𝑬𝟔𝒅𝒂𝒚  
(kWh/a) 

MPC Gains 
(%) 

𝑬𝟔𝒅𝒂𝒚 
(kWh/a) 

MPC Gains 
(%) 

𝑬𝟔𝒅𝒂𝒚 
(kWh/a) 

MPC Gains 
(%) 

EDHW  3999 3994 -0.12% 3994 -0.11% 3992 -0.18% 

ESH  9504 8279 -12.90% 8231 -13.39% 7959 -16.26% 

EST  4201 4631 10.23% 4743 12.91% 4799 14.24% 

EGB  5023 6961 38.59% 7445 48.23% 7046 40.28% 

EP2H  5338 894 -83.26% 911 -82.94% 894 -83.25% 

EPV  4202 4202 0.00% 4202 0.00% 4202 0.00% 

Eload,el  4140 4140 0.00% 4140 0.00% 4140 0.00% 

Egrid-exp  7711 3896 -49.47% 3779 -51.00% 3696 -52.06% 

EFC,el  13140 4587 -65.09% 4502 -65.74% 4380 -66.67% 
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Table 6  
Secondary yearly energy values in kWh/a in reference case and the yearly energy values in kWh/a with MPC via balanced correction of 
the weighted clustering extrapolation 

 
𝑬𝒚𝒆𝒂𝒓,𝒓𝒆𝒇 
(kWh/a) 

ObFnB ObFnC ObFnD 

𝑬𝟔𝒅𝒂𝒚  
(kWh/a) 

MPC Gains 
(%) 

𝑬𝟔𝒅𝒂𝒚  
(kWh/a) 

MPC 
Gains (%) 

𝑬𝟔𝒅𝒂𝒚  
(kWh/a) 

MPC Gains 
(%) 

EFC,th 1166 407 -65.09% 399 -65.74% 389 -66.67% 

EBatt,out 49 ~494* 913.96% ~508* 942.64% ~541* 1010.5% 

EPV,direct 750 ~849* 13.14% ~849* 13.15% ~849* 13.19% 

EFC,direct 3342 ~2776* -16.94% ~2752* -17.67% ~2743* -17.92% 

EP2H,PV 663 ~472* -28.75% ~472* -28.75% ~526* -20.60% 

EP2H,FC  4675 ~331* -92.93% ~331* -92.93% ~331* -92.93% 

Egrid-exp,PV  2589 ~2300* -11.17% ~2288* -11.63% ~2222* -14.15% 

Egrid-exp,FC  5122 ~1486* -70.98% ~1481* -71.08% ~1460* -71.49% 

Egrid-imp 0 15 - 25 - 0 - 

*subject to: 
𝜎<G(PPV – PBatt,out – PPV,direct – PP2H,PV – Pgrid-exp,PV) = 0 
𝜎�=�(PP2H – PP2H,PV – PP2H,FC)= 0 
𝜎�cd#VH_�(Pgrid-exp - Pgrid-exp,PV - Pgrid-exp,FC) = 0 
𝜎IrZ#,HI(Pload,el - PBatt,out - PPV,direct – PFC,direct – Pgrid-imp) = 0 
𝜎89(PFC – PFC,direct – PP2H,FC – Pgrid-exp,FC) = 0 
 
 
However, by reducing the EFC,el, the EP2H,FC is 

reduced enormously by ca. 92% which also tends to be 
the reason for pronounced utilization of the battery to ca. 
494 kWh/a with the simple objective function and 
another 14 kWh due to	𝐽R and another 33 kWh due to 𝐽#. 
Also, the reduction of EFC,el, causes a ca. 13% increase in 
direct PV use (EPV,direct) and the introduction of a small 
penalty to use of PV as heat in 𝐽#, EP2H,PV reduces by 20%. 
The grid import, on the other hand, is estimated to 
increase from 0 kWh/a in status quo to 25 kWh/a when 𝐽R 
is used and in 𝐽#, the MPC manages without any grid 
import. Table 7 lists the energy efficiency and the key 
performance indicators on a yearly scale. It indicates a 
9% increase in solar thermal production along with a 
21% increase also in gas boiler supply fraction and a 32% 
decrease in power-to-heat supply using	𝐽#. 𝐽�	though 
requires ca. 2% less gas boiler input, does only incur a 
6.5% increase in solar thermal input fraction.  

On the electrical side of the system, a 14% decrease 
in the FC-CHP electricity supply fraction is reported. On 
the positive side, this 14% decrease in FC-CHP supply is 
made available by PV but comes only at a liability of 1% 
grid import when 𝐽� and 𝐽Ris used. For self-consumption, 
it is certain that the thermal system production is solely 
focused on 100% self-consumption. And for the electrical 
system with the implementation of MPC, a self-
consumption fraction difference of +3.5% is achieved. 
With reduced EFC,el also the consumption fraction of PV 
is increased by +10%. For the total thermal system 
supply fraction, the yearly efficiency with MPC 
(η�HZc,�<9) of 105% with a 11% reduction using 𝐽�	from 
116% in reference case is very ideal. And the effectivity 
reduces when more gas boiler input is required, as is the 
case with 𝐽R	and 𝐽#. But the trend could definitely be 
confirmed by the reduction of the loss factor (energy 
input minus energy output) in the daily energy values, 
thus indicating the effective use of the system. In terms 

of electricity supply fraction, the total 100% of the 
electricity could be supplied by the decentral system 
without grid import using	𝐽#. Overall, the total decentral 
system’s supply fraction of 99.9% for the load demands 
of this residential thermal-electrical system is achieved 
by 	𝐽� and 	𝐽R, but 	𝐽# on the other hand manages a 100% 
autonomy. Hence, without reducing the autonomy of the 
decentral energy system, the self-consumption could be 
boosted by 10% using MPC and in the process, the space 
heating demand is reduced by 16% and FC-CHP 
production reduced by 66%. 

4. Discussion 

As a novelty from the usual economic MPC approach, 
this article approaches the control optimization from the 
renewable energy utilization point of view via a 
supervisory MPC and as shown in the results, the 
outcomes are quite promising. (Khakimova et al., 2017) 
had a similar system with PV and ST and a decentral 
sector coupling for a heating system but they only 
evaluated for 48 hours and a direct comparison is thus 
not possible. (Serale et al., 2018) reported a 19% 
reduction in energy demand in a solar thermal system 
with latent heat storage. Here for this building, a 16% 
reduction is visible due to the introduction of soft 
constraint with a maximum of 1°C reduced room 
temperature before incurring a penalty for comfort 
violation. For a solar combi-system in a single-family 
house, the MPC developed (Pichler et al., 2014) could 
only result in a 2 to 4% increase in solar fraction and 
later to 5% in (Pichler et al., 2014). A 7% increase in the 
solar thermal fraction is reported by (Zemann et al., 
2020) where the solar thermal was investigated along 
with a wood boiler using an MPC.  
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Table 7  
Yearly efficiency in reference case and with MPC via deviation corrected weighted clustering extrapolation 

 η�HZc,cH� 
(%) 

ObFnB ObFnC ObFnD 

𝛈𝒚𝒆𝒂𝒓 
(%) 

MPC 
Gains 

(% 
Change) 

𝛈𝒚𝒆𝒂𝒓 
(%) 

MPC 
Gains 

(% 
Change) 

𝛈𝒚𝒆𝒂𝒓 
(%) 

MPC 
Gains 

(% 
Change) 

Energy Supply Fraction 

Solar Thermal 31.11% 37.73% +6.62% 38.80% +7.69% 40.16% +9.05% 

Gas Boiler 37.20% 56.72% +19.52% 60.90% +23.70% 58.96% +21.76% 

Power-to-Heat 39.53% 7.28% -32.25% 7.45% -32.08% 7.48% -32.05% 

Fuel cell Thermal 97.31% 37.38% -59.94% 36.82% -60.49% 36.65% -60.66% 

Fuel cell Electrical 80.73% 67.06% -13.67% 66.47% -14.27% 66.27% -14.47% 

Photovoltaics 19.30% 32.43% +13.13% 32.77% +13.47% 33.58% +14.28% 

Self-Consumption 
Fraction 

Fuel cell Electrical 61.02% 67.73% +6.72% 68.47% +7.46% 70.18% +9.17% 

Photovoltaics 34.79% 43.19% +8.40% 43.52% +8.74% 45.60% +10.82% 

Thermal Supply Fraction 116.48% 105.05% -11.43% 110.42% -6.06% 109.85% -6.63% 

Thermal Self Consumption Fraction 100.00% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00% 

Electricity Supply Fraction 100.00% 99.64% -0.36% 99.39% -0.61% 100.00% 0.00% 

Electricity Self Consumption Fraction 54.66% 56.00% +1.34% 56.43% +1.77% 58.15% +3.49% 

Power-to-Heat Self Consumption Fraction 30.78% 10.17% -20.61% 10.46% -20.32% 10.42% -20.36% 

Decentral System Supply Fraction 100.00% 99.91% -0.09% 99.85% -0.15% 100.00% 0.00% 

Decentral System Self Consumption Fraction 72.19% 81.79% +9.59% 82.30% +10.10% 82.31% +10.11% 

 
 
 

In this paper, a 9% increase in solar fraction could be 
reached for the designed energy system in the selected 
Sonnenhaus building in comparison to the reference case. 
On the electrical side, a PV+Battery system reported by 
(Badanjak & Bogdanović, 2019) could achieve 3.8% more 
renewable energy utilization via MPC while this paper 
reports a similar 3.5% more decentral electrical system 
utilization with a 14% increase in PV utilization. The 
decentral system utilization in terms of power-to-heat for 
an enhanced decentral sector coupling and integration of 
a fuel cell CHP are unique system configurations 
accomplished in this particular case study investigation. 
The main aim of this particular article is to investigate the 
necessity of detail in the mathematical objective function 
definition for the decentral renewable energy system to 
enhance renewable energy use and self-utilization in 
contrary to the state-of-the-art economic MPCs.  

The detailing of the objective function really does 
help in the winter days (Day 1 and Day 6) and also 
improvements are visible in the autumn days. Especially 
from the space heating demand, around 4% more energy 
could be saved and 3% more solar thermal fraction with 
the use of 𝐽#	in comparison to	𝐽� is evident. All these are 
achieved even when withholding the autonomy of the 
decentral energy system and in comparison to the status 
quo controller, 𝐽# could achieve a 10% increase in the 
decentral system self-consumption; 32% less power-to-
heat supply fraction; 14% more PV supply fraction. Along 
with these a 9% more solar thermal fraction; 16% less 
space heating demand; 491 kWh more battery use; 66% 
less FC-CHP production; 83% less power-to-heat thermal 
energy supply; 6% more thermal system effectiveness 
could also be reported. The only disadvantage seen in 
detailing the objective function is that the gas boiler is 

used more due to the non-preference of FC-CHP supplied 
power-to-heat. And due to increased gas boiler supply, the 
effectiveness of the system also reduces, because of the 
increased gas boiler supply. Nevertheless, the system 
reports better effectiveness than the status quo 
controllers. 

Natural gas powered SOFC-CHP is somewhat a 
complicated system component in this energy system 
which has a constrained control flexibility and due to the 
fact that the FC-CHP could not charge the battery storage 
and neither be totally switched off as the BlueGen SOFC-
CHP takes 30 hours for a complete switch on. But for a 
future case, a total shut down of the FC-CHP in summer 
could be evaluated. And with respect to the reference case, 
due to reduced FC-CHP production and due to the 
unpreferred P2H-FC conversion, the P2H from FC is 
reduced, and the gas boiler contribution had to be 
increased, as direct heat production via gas boiler using 
natural gas is much efficient than producing electricity via 
FC-CHP and supplying the electricity produced to the 
heating element in the thermal storage. The detailing of 
the objective function exactly helps in the decision of such 
complicated differentiation of the energy input even 
though the definition of a complicated mathematical 
function is time and personnel consuming.   

It is also important to mention that in this study, the 
forecast accuracy of the weather and occupancy is taken 
as 100% so as to specifically study the sensitivity of the 
objective function. Moreover, due to the selection of 
whitebox system model, the computation time is too high, 
and hence as a compromise, the MPC had to be evaluated 
only on an estimation basis for an annual scale using the 
clustering approach.  
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5. Conclusion 

The focus of this article is to study the effects of the 
objective function and to investigate if it is worthwhile to 
have a detailed mathematical definition of the objective 
function. From the results, it can be seen that due to the 
detailed function for the MPC of the integrated decentral 
thermal-electrical renewable energy system, the potential 
of the MPC does increase.  

In this case study, a Sonnenhaus standard building 
with PV, solar thermal, fuel cell CHP along with auxiliary 
gas boiler and the electrical grid are investigated. The 
already previously developed MPC with PSO algorithm 
optimizer in (Narayanan et al., 2020) is shortly explained. 
As shown in Equation (1), the objective is as simple as to 
increase the renewable energy system contribution and 
enhance self-consumption. But this 	𝐽		had to be modified 
into a minimization problem due to its easiness in the 
optimization as in 𝐽Z. The question answered in this article 
is, if this simple, generalized objective function, which can 
be implemented easily also for another energy system 
components, does serve better? Or is it worthwhile to 
spend more time in developing a time consuming, high 
knowledge personnel consuming process of a complicated 
𝐽�, where the auxiliary energy usage was further detailed 
as gas boiler usage, power-to-heat, and electrical grid 
import. Also each of these were given a penalty factor for 
auxiliary usage along with a bonus factor when more 
renewable energy is used. In 𝐽R, this objective was 
furthermore detailed by differentiating the power-to-heat 
supply by PV and by FC-CHP, so as to not prefer 
producing electricity by FC-CHP and convert later using 
power-to-heat which is an inefficient process compared to 
using natural gas directly in a gas boiler to produce heat. 
Also, an additional factor of bonus for the usage of battery 
is included so as to enhance battery usage rather than 
using FC-CHP electricity. Finally, it was also of interest 
to study if removing the battery discharge control variable 
will speed up the optimization as in 𝐽#.  

In this study, it is evident that detailing the objective 
function can help to improve the function of the MPC 
however from it is quite complicated to universally 
implement such complex objective functions. The solution 
would be to include a user interface in which at the 
commissioning of the MPC, the objective function can be 
customized by the installer where a provision to custom 
define the objective function can be indulged. For example, 
if there is a heat pump in place of a power-to-heat 
conversion, the efficiency of importing electricity from the 
grid and using this electricity for the heat pump as 
auxiliary heat input would be more efficient than the gas 
boiler. So in simple words, a questionnaire at the 
commissioning of the MPC can be carried out to customize 
the MPC where a programmed switch case concept to 
choose the different objective function element and a 
customized penalty value or bonus factor can be made 
possible. 

It is interesting to further investigate the developed 
objective function with different building standards and 
different optimization algorithms so as to explore the 
opportunities of mass implementation of the model 
predictive controller and to analyze what advantages can 
an MPC bring with respect to a status quo controller in 
different scenarios. It could also be interesting to 

investigate the same system with a hydrogen fuel cell or 
without fuel cell. Also, the effect of the prediction 
accuracy, model accuracy in the MPC could be evaluated 
with the acquired detailed objective function for the 
selected case study.  
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