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ABSTRACT. In this paper, an advanced modus operandi named the 𝛼-constrained simplex method (ACSM) is deployed to resolve 
a real-time hydro-thermal-wind-solar power scheduling problem. ACSM is an updated articulation of the Nonlinear Simplex 
Method (SM) of Nelder and Mead. It has been designed after interbreeding an ordinary SM with some other methods like-
evolutionary method, α-constrained method, etc. To develop this technique three alterations in the SM are adopted (i) 𝛼-level 
differentiation, (ii) mutations of the worst point, and (iii) the incorporation of multi-simplexes. A real-time multi-objective hydro-
thermal-wind-solar power scheduling problem is established and optimized for the Kanyakumari (Tamil Nadu, India) for the 18th 
of September of 2020. Four contrary constraints are contemplated for this case study (i)fuel cost and employing cost of wind and 
solar power system, (ii) 𝑁𝑂$ emission, (iii) 𝑆𝑂& emission, and (iv)	𝐶𝑂& emission. The fidelity of the projected practice is trailed upon 
two test systems. The first test system is hinged upon twenty-four-hour power scheduling of a pure thermal power system. The 
values of total fuel cost,	𝑁𝑂$emission, 𝑆𝑂&emission, and 𝐶𝑂&emission are attained as 4707.19$/day, 59325.23 kg/day, 207672.70 
kg/day, and 561369.20 kg/day, respectively. In the second test system, two thermal generators are reintegrated with renewable 
energy resources (RER) based power system (hydro, wind, and solar system) for the same power demands. The hydro, wind, and 
solar data are probed with the Glimn-Kirchmayer model, Weibull Distribution Density Factor, and Normal Distribution model, 
respectively. The outturns using ACSM are contrasted with the SM and evolutionary method(EM). For this real-time hydro-
thermal-wind-solar power scheduling problem the values of fuel cost, 𝑁𝑂$ emission, 𝑆𝑂& emission, and 𝐶𝑂& emission are shortened 
to 1626.41 $/day, 24262.24 kg/day, 71753.80 kg/day, and 196748.20 kg/day, respectively for the specified interval using ACSM 
and with SM, these values are calculated as 1626.57 $/day, 24264.67 kg/day, 71760.98 kg/day, 196767.68 kg/day, respectively. 
The results for the same are obtained as 1626.74 $/day, 24267.10 kg/day, 71768.15 kg/day, 196787.55 kg/day, respectively, by 
using EM. The values of the operating cost of the solar system, wind system, total system transmission losses, and computational 
time of test system-2 with ACSM, SM, and EM are evaluated as 8438.76 $/day, 19017.42 $/day, 476.69 MW/day & 15.6 seconds; 
8439.61 $/day, 19019.33 $/day, 476.74 MW/day and 16.8 sec; and 8447.20 $/day, 19036.43 $/day, 477.17 MW/day and 17.3 sec, 
respectively. The solutions portray the sovereignty of ACSM over the other two methods in the entire process. 
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1. Introduction 

India is the third highest manufacturer and consumer of 
electricity in the world (“List of Countries by Electricity 
Production,” n.d.) & (“Electricity Sector in India,” n.d.). Its 
installed capacity up-to 30th of September of 2020 is 373.00 
GW. About 36.17 % of generated power is from RER 
(“Renewable Energy in India,” n.d.). India has projected a 
target to generate about 40 % of its total power generation 
from RER up-to 2030 (Ministry of New and Renewable 
Energy, 2019-20) in the Paris Climate Agreement. 

RER, such as hydro, wind, solar, biomass, etc. have 
significant potential in India. In many parts of the 
                                                        
*Corresponding author: sunimerriar@yahoo.co.in(Sunimerjit Kaur) 

country, more than one RER are accessible. Kanyakumari 
(Tamil Nadu, India) is one such place. India’s biggest wind 
farm is instated here. Solar and hydro energies also have 
substantial prospects in this southernmost segment of the 
country. 

In the past, Dasgupta and co-workers (2020) worked on 
power flow-based hydro-thermal-wind scheduling of 
hybrid power system using the sine cosine algorithm. The 
sine-cosine algorithm was employed to minimize fuel 
emission and generation cost. Dhillon et al. (2002) 
suggested fuzzy decision-making in stochastic multi-
objective short-term hydrothermal scheduling. Nguyen et 
al. (2020) stated optimal scheduling of large-scale wind-
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hydro-thermal systems with a fixed-head short-term 
model. Ansari et al. (2020) suggested the consideration of 
the uncertainty of hydrothermal wind and solar-based 
DG. The researchers relied upon renewable energy assets 
to lower down the usage of fossil fuels as the basic source 
of ecological natural impurities. Vaderobli et al. (2020) 
developed optimization under uncertainty to reduce the 
cost of energy for parabolic trough solar power plants for 
different weather conditions. Das et al. (2018) presented 
fixed head short-term hydrothermal scheduling in 
presence of solar and wind power.They employed a point 
estimate method to model the unreliability of renewable 
sources. Mohamad et al. (2019) demonstrated a hybrid 
optimization technique for short-term wind-solar-
hydrothermal generation scheduling. Narang et al. (2014) 
developed scheduling short-term hydrothermal 
generation using the predator-prey optimization 
technique. Ji et al. (2021) worked on an enhanced Borg 
algorithmic framework for solving the hydro-thermal-
wind co-scheduling problem. They proposed the HTW-CS 
for constraint-handling. Biswas et al. (2017) worked on 
optimal power flow solutions incorporating stochastic 
wind and solar power. Saxena and Ganguli (2015) 
analyzed solar and wind power estimation and economic 
load dispatch using the firefly algorithm. Liaquat et al. 
(2021) presented the application of a dynamically search 
space squeezed modified Firefly Algorithm to a novel 
short-term economic dispatch of multi-generation 
systems. They used the fractional integral polynomial 
model and autoregressive integrated moving average 
model.Tan et al. (2019) suggested optimal scheduling of 
hydro-PV-wind hybrid system considering CHP and BESS 
coordination. Brar et al. (2005) stated fuzzy satisfying 
multi-objective generation scheduling based on simplex 
weightage pattern search. Reddy et al. (2016) elaborated 
the optimal operation of micro-grid using hybrid 
differential evolution and harmony search algorithm.  Li 
and Kuri (2005) developed generation scheduling in a 
system with wind power. Naversen et al. (2020) presented 
hydrothermal scheduling in the continuous-time 
framework. The continuous-time framework was adapted 
to model adaptable hydropower resources associating with 
slow-ramping thermal power generators to minimize the 
operation cost of the hydrothermal system. Panda and 
Tripathy (2016) gave a solution of a wind integrated 
thermal generation system for environmental optimal 
power flow using a hybrid algorithm. Correa-Jullian et al. 
(2020) worked on operation scheduling in a solar thermal 
system: A reinforcement learning-based framework. An 
easy and adaptable reinforcement learning tabular Q-
learning structure was implemented to recognize the 
optimal schedules for a hot water solar system. Kayalvizhi 
and Kumar (2018) analyzed stochastic optimal power flow 
in presence of wind generations using a harmony search 
algorithm. Damodaran and Kumar (2018) demonstrated 
hydro-thermal-wind generation scheduling considering 
economic and environmental factors using heuristic 
algorithms. Rahimi et al. (2021) stated optimal stochastic 
scheduling of electrical and thermal renewable and 
renewable resources in the virtual power plant.The 
scheduling of resources contemplating the unreliability of 
electrical and thermal loads was conducted.Reddy (2017a) 
worked on optimal scheduling of wind-thermal power 
system using clustered adaptive teaching learning-based 
optimization. He et al. (2019) gave integrated scheduling 

of hydro, thermal, and wind power with spinning reserve. 
They proposed SHADE based on an improved 
heterogeneous real and binary number distinct evolution 
algorithm. Hetzer et al. (2008) developed an economic 
dispatch model incorporating wind power. Dubey et al. 
(2015) worked on a hybrid flower pollination algorithm 
with a time-varying fuzzy selection mechanism for a wind-
integrated multi-objective dynamic economic dispatch. 
Sukkiramathi and Seshaiah (2020) analyzed the wind 
power potential by the three-parameter Weibull 
distribution to install a wind turbine. Saxena and Rao 
(2015) compared Weibull parameters computation 
methods and analytical estimation of wind turbine 
capacity factor using a polynomial power curve model and 
did a case study of a wind farm.The capacity factor of wind 
turbines was analytically estimated through the design of 
probability of wind speed and power curve of wind 
turbines (instated at Soda site). Nagababu et al. (2015) 
evaluated wind resources in selected locations in Gujarat. 
Ma et al. (2017) demonstrated a power generation 
scheduling for wind-solar-thermal power long-distance 
consumption based on game-theory. Reddy (2017b) 
analyzed the optimization of renewable energy resources 
in hybrid energy systems. Kumar et al. (2019) established 
wind energy potential assessment by Weibull parameter 
estimation using a multiverse optimization method: A 
case study of the Tirumala region in India. Takahama and 
Sakai (2005) stated constrained optimization by applying 
the α-constrained method to the nonlinear simplex method 
with mutations. 

In this paper, an elaborated meta-heuristic 
optimization technique named as - the ACSM is employed 
to resolve a real-time hydro-thermal-wind-solar power 
scheduling problem for Kanyakumari (Tamil Nadu, 
India). This technique is composed after applying three 
alterations in the common SM (i) implementing 𝛼- level 
comparisons, (ii) mutations of the worst points, and (iii) 
exerting multi-simplexes. It is developed after the fusion 
of many approaches – e.g. (i) SM, (ii) EM, and (iii) some 
other mathematical procedures like the 𝛼-constrained 
method. In the proposed method, multi-simplexes are 
formed around the initial points. The contrasted points are 
based on their constraint defying. The simplexes gently 
creep up towards the optimum solution during the 
iterations. The decision-making (DM) has an unspecified 
nature. Therefore, it is considered that DM has fuzzy 
targets. The objectives are assessed by inducing an 
analogous membership function. The validity of this 
method is confirmed on two test systems. The results are 
differentiated with SM and EM. The supremacy of ACSM 
over the other two techniques from which it is composed is 
depicted in the whole exercise. It is observed that ACSM 
is a stable, constructive, fast, explicit, and solid technique 
for constrained optimization.  

2. Multi-objective Problem Formulation 

Four constraints are scrutinized for the presented real-
time hydro-thermal-wind-solar power scheduling 
problem. These clashing constraints are (i) cost (fuel cost 
and the employing cost of wind and solar power system), 
(ii) 𝑁𝑂$ emission, (iii) 𝑆𝑂& emission, and (iv)	𝐶𝑂& emission. 
These constraints can be examined as: 
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2.1. Economy constraint 

The thermal unit fuel cost, wind power cost, and solar 
power cost are appraised as an indispensable criterion for 

economic viability. The economy constraint for the 
optimization interval of the hydro-thermal-wind-solar 
power system is stated as (Dhillon et al. 2002; Biswas et 
al. 2017; Kothari and Dhillon 2011): 

 
 

𝐹* = , -./𝑎12𝑃12&(𝑡) + 𝑏12𝑃12(𝑡) + 𝑐12:
;1

2<*

+.𝑤>?(𝑡)
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where: 

• 𝑔𝑡 and	𝑔𝑤 are the number of thermal and wind 
generators, respectively 

• 𝑔𝑠 is the number of solar units 
• 𝑃12	(𝑡) is the output power of the 𝑖1J thermal 

generator for	𝑡1J interval, in MW  
• 𝑎12, 𝑏12 &	𝑐12 are the cost coefficients of the 𝑖1J 

thermal generator 
• 𝑤>?(𝑡)	is the wind power cost of the 𝑗1J wind 

generator for 𝑡1J interval 
• 𝑤@A	(𝑡) is the solar power cost of the 𝑞1J solar unit 

for 𝑡1J interval 
• 𝑇O is the total planning period  

2.2. Environmental constraints 

The emission and the cost curves can be directly related 
through a constant factor called emission rate per Mkcal 
for a specified grade and category of fuel. Therefore, in this 
paper, three thermal emissions-𝑁𝑂$	emission, 𝑆𝑂& 
emission, and 𝐶𝑂& emission are observed as the quadratic 
functions of thermal output power. The 𝑁𝑂$ emission of 
the viewed period can be evaluated as (Kothari and 
Dhillon 2011): 
 

𝐹& = 	, -./𝑑*2𝑃12&(𝑡) + 𝑒*2𝑃12(𝑡) + 𝑓*2:
;1

2<*

B

CD

E

𝑑𝑡 (2) 

 
where: 

• 𝑑*2, 𝑒*2	&	𝑓*2 are the coefficients of 𝑁𝑂$ emission 
of the 𝑖1J thermal generator 

 
𝑆𝑂& emission for the observed interval can be given as 
(Kothari and Dhillon 2011): 
 

𝐹R = , -./𝑑&2𝑃12&(𝑡) + 𝑒&2𝑃12(𝑡) + 𝑓&2:
;1

2<*
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CD

E

𝑑𝑡 (3) 

 
where: 

• 𝑑&2, 𝑒&2 & 𝑓&2 are the coefficients of 𝑆𝑂& emission 
of the 𝑖1J thermal generator 

 
𝐶𝑂& emission for the optimization interim can be obtained 
as (Kothari and Dhillon 2011): 
 

𝐹S	 = 	, -./𝑑R2𝑃12&(𝑡) + 𝑒R2𝑃12	(𝑡) + 𝑓R2:
;1

2<*

B

CD

E

𝑑𝑡 (4) 

 
where: 

• 𝑑R2, 𝑒R2 &	𝑓R2 are coefficients of 𝐶𝑂&	emission of 
the  𝑖1J thermal generator 

2.3. Hydro model 

Insubstantial fuel cost is experienced during the operation 
of hydro units. The characteristics (input/output) of these 
units are conveyed by water discharge. According to the 
Glimn-Kirchmayer model, the variation of water 
discharge of the 𝑢1J	hydro generator for	𝑡1J interval is 
given as (Dhillon et al. 2002; Narang et al. 2014; Kothari 
and Dhillon 2011; El-Hawary and Ravindranath 1988): 
 
𝑄V(𝑡) = 𝐾*𝜑(𝐻)𝜏(𝑃JV(𝑡))𝑚R/ℎ (5) 

 
where: 

• 𝜑 and 𝜏 are the functions of water head and 
hydro-generations, respectively 

• 𝑃JV(𝑡) is an output of the 𝑢1J hydropower unit 
for	𝑡1J interval, in MW 

• 𝐾* is a constant 
 
For a fixed effective head, 𝜑(𝐻) becomes constant, 
therefore Eq. (5) can be reworded as (Dhillon et al. 2002; 
Narang et al. 2014; Kothari and Dhillon 2011): 
 
𝑄V(𝑡) = 𝐾^𝜏(𝑃JV(𝑡)) (6) 

 
where: 

• 𝐾^ is the new constant structured by the product 
of 𝐾* and 𝜑(𝐻) 

 
The hydroelectric power plants are constrained by the 
quantity of water accessible for the optimization period. It 
can be displayed as (Dhillon et al. 2002; Narang et al. 2014; 
Kothari and Dhillon 2011): 
 

, 𝑄V(𝑡)𝑑𝑡 = 𝑅V

CD

E

,																									𝑢 = 𝑔𝑡 + 1,… . 𝑔ℎ (7) 

 
where: 

• 𝑅V is the predetermined volume of water 
available in m3 

 
Water discharge for 𝑡1J interval is observed as the 
quadratic functions of hydro output power and stated as 
(Dhillon et al. 2002; Narang et al. 2014; Kothari and 
Dhillon 2011): 
 
𝑄V(𝑡) = 𝑥V𝑃JV& (𝑡) + 𝑦V𝑃JV(𝑡) +	𝑧V,

𝑢 = 𝑔𝑡 + 1,… . 𝑔ℎ (8) 
 
where: 
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• 𝑥V, 𝑦V, and 𝑧V are the discharge coefficients of the 
𝑢1J hydro unit 

• 𝑔ℎ is the number of hydro-generators  

2.4. Wind model 

Wind power generating systems have undergone an 
enormous enlargement in the world. Its prime downside is 
the unpredictability of wind power generation which 
brings on complexity in the governing of power systems. 
The unsure wind data is observed in the Weibull 
Distribution Density Factor, in this paper. The Probability 
Density Function (PDF) of wind speed can be given as 
(Biswas et al. 2017; Reddy et al. 2016; Hetzer et al. 2008): 

 

𝑓fgh =	 i
𝑘
𝑐kl

𝑣
𝑐n

op*	
𝑒𝑥𝑝 r−l

𝑣
𝑐n

o
t,												 (0 ≤ 𝑣 ≤ ∞	) (9) 

 
where: 

• v and 𝑐 are the annual average wind speed and 
the scale factor, respectively, in m/s 

• k is the shape factor  
 
The Weibull shape factor displays the width of wind speed 
distribution. This dimensionless factor shows the effect of 
topology on wind speed distribution. The shape factor can 

be expressed as (Biswas et al. 2017; Saxena and Ganguly 
2015; Singal 2009): 
 

𝑘	 = 	i
𝜎
𝑣O
k
p*.Eyz

 (10) 

 
where: 

• 𝑣O and 𝜎 are the mean and mode speeds of wind, 
respectively, in m/s 

 
The scale factor is can be obtained as (Biswas et al. 2017; 
Saxena and Ganguly 2015; Singal 2009): 
 
𝑐	 = 	

𝑣O
Γ(1 +	*

|
		)

 (11) 

 
The Gamma Function	Γ(x)is commonly defined through an 
intersecting improper integral. It can be calculated as 
(Biswas et al. 2017): 
 
Γ(x) = , ep�	t�p*	dt

�

E
 (12) 

 
The PDF of wind power can be stated as (Saxena and 
Ganguly 2015; Kaur et al. 2020a): 
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 (13) 

 
where: 

• 𝑣�?,𝑣�?, and 𝑣�? are the cut-in speed, the rated 
speed, and the cut-out speed, respectively, of the 
𝑗1J	wind generator in m/s 

• 𝑣f(𝑡) is the operating wind speed for 𝑡1J interval, 
in m/s 

• 𝜌? =	
��(1)	
���

. It is the ratio of operating wind speed 
to the rated wind speed for 𝑡1J interval 

• 𝐼? 	= 	
(���p���	)

���
. It is the ratio of the difference 

between the rated speed and cut-in speed to cut-
in speed, for 𝑡1J interval  

 
 

𝑃𝑣𝑗(𝑡) =

⎩
⎪
⎨

⎪
⎧0																																						; 𝑓𝑜𝑟	𝑣f(𝑡) < 𝑣�?		𝑎𝑛𝑑		𝑣f(𝑡) > 𝑣�?
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			; 𝑓𝑜𝑟		𝑣�? < 𝑣f(𝑡) < 𝑣�?

𝑃>�?																																	; 𝑓𝑜𝑟		𝑣�? 	≤ 𝑣f(𝑡) ≤ 𝑣�?

 (14) 

 
where: 

• 𝑃>�?	is the rated power of the 𝑗1J	wind generator 
 
At different wind velocities, the wind power available for 
the 𝑗1J wind generator for 𝑡1J time interval can be obtained 
as displayed in Eq 14 (Reddy et al. 2016). Eq. 14 displays 
that the wind power available at the considered location 
depends upon operating wind speeds during the examined 
interval and the ratings of the 𝑗1J	wind generator. 

The prophecy wind power may not invariably be equal 
to the available wind power because of unsettled actions 

of wind. Therefore, the factual wind power cost is usually 
more than its predicted cost. When the available wind 
power is less than the organized wind power, the arranger 
has to a recompense penalty cost, called the 
overestimation cost. When the planned wind power is less 
than actual wind power, a fine is imposed on the operator 
for not using the available wind power, called 
underestimation cost. The direct cost function of the 𝑗1J 
wind generator for 𝑡1J interval can be observed as (Reddy 
2017a; Hetzer et al. 2008; Dubey et al. 2015): 
 



Int. Journal of Renewable Energy Development 10 (3) 2021: 635-651 
  Page |  

	

IJRED-ISSN: 2252-4940.Copyright © 2021. The Authors. Published by CBIORE 

639 

𝑧g>?(𝑡) = 𝑧>*?𝑃>?	(𝑡) (15) 
 
where: 

• 𝑧>*? is the coefficient of the direct cost of the 
𝑗1J	wind generator 

• 𝑃>?(𝑡) is the scheduled wind power of the 𝑗1J 
wind generator for 𝑡1J interval 

The overestimation cost function of the 𝑗1J wind generator 
for 𝑡1J interval is observed as (Reddy 2017a; Kayalvizhi 
and Kumar 2018; Hetzer et al. 2008; Dubey et al. 2015): 

 
 

𝑧�>?(𝑡) = 𝑧>&? , (

���(�)

E

𝑃>?(𝑡) − 𝑃𝑣𝑗(𝑡))	𝑓(𝑃𝑣𝑗(𝑡))𝑑(𝑃𝑣𝑗(𝑡)) (16) 

 
where: 

• 𝑧>&? is the coefficient of overestimation cost of 
the 𝑗1J	wind generator.  

 
The underestimation cost function for 𝑡1J interval of the 
𝑗1J wind generator can be expressed as (Reddy 2017a; 
Hetzer et al. 2008; Dubey et al. 2015): 

 

𝑧V>?(𝑡) = 𝑧>R? , (𝑃𝑣𝑗(𝑡)

����

���(1)

− 𝑃>?(𝑡))	𝑓/𝑃𝑣𝑗(𝑡):𝑑/𝑃𝑣𝑗(𝑡): (17) 

 
where: 

• 𝑧>R? is the coefficient of underestimation cost of 
the 𝑗1J	wind generator 

 
The total operating wind power cost of the system is equal 
to the sum of the direct cost, the overestimation cost, and 
the underestimation cost. 

2.5. Model of solar units (PV)  

Solar energy is harnessed from the sun in the form of 
radiations, using a range of technologies. The intensity of 
solar irradiance fluctuates with the geography and climate 
of a locale. In this paper, the undetermined solar data is 
surveyed by the Normal Distribution Model. The 
Probability Density Function (PDF) of insolation for 𝑡1J 
interval can be examined as (Dukkipati et al. 2019; Kaur 
et al. 2020b): 
 

𝐹𝑠(𝐼C(𝑡)) =
𝑒
 (¡¢(�) D)£

£¤£

𝑠√2𝜋
 (18) 

 
where: 

• 𝐼C(𝑡)	and m are the solar irradiances for 𝑡1J 
interval and the mean of solar irradiance over 
the year, respectively in kWh/m2/day 

• 𝑠 is the standard deviation of solar prominence 
in kWh/m2/day. 

 
The power available of the 𝑞1J solar unit for 𝑡1J interval 
can be stated as (Tan et al. 2019): 

 

𝑃𝑎𝑣𝑞(𝑡) = 		𝑃@�A
l1 +	𝑘C/𝑇�f(𝑡)–	𝑇�A:n 𝐼@(𝑡)

𝐼O©$
 (19) 

 

where: 

• 𝑇�f(𝑡) and 𝑇�A are the operating temperatures for 
𝑡1J interval and the reference temperature of the 
𝑞1J solar unit, respectively, in	℃ 

• 𝑃@�A is the rated power of 𝑞1J solar unit in MW 
• 𝑘C is the temperature coefficient in /℃ 
• 𝐼O©$ is the maximum value of solar irradiance 

that descends under standard situations, in 
kWh/m2/day 

 
The entire solar radiation falls on a tilted flat collector 
depends upon (i) diffused sky radiation, (ii) diffused 
radiation reflected from the surface of the earth, and (iii) 
beam radiation. The solar irradiance fall on a tilted plane 
for 𝑡1J interval is evaluated as (Singal 2006; Kaur et al. 
2021): 
 
𝐼@(𝑡)

=
𝐼C(𝑡)[cos	(∅ − 𝑔) cos𝛿	 cos𝜔 + sin(∅−𝑔) sin𝛿]

(cos𝛿 cos𝜔 cos∅+ sin∅ cos𝛿)  (20) 

 
where: 

• ∅ is topographical latitude in (°) 
• 𝑔 is the tilt angle of the solar collector in (°) 
• δ is the declination of the sun in (°) 
• ω is the angle of the hour in (°) 
• 𝑔	= Ø ± 15°     

The angle of the declination of the sun can be observed as 
(Singal 2006): 
 
𝛿 = 23.45° sini

360(284+ 𝐷)
365 k (21) 

 
where: 

• 𝐷	is the number of the day of the year 
 
The operating cost of the solar power system is the sum of 
the direct cost, overestimation cost, and underestimation 
cost of the 𝑞1J solar unit. The function of the direct cost of 
the 𝑞1J solar unit for 𝑡1J interval can be examined as 
(Biswas et al. 2017): 
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.𝑧g@A	(𝑡)
;@

A<*

= .(𝑆*@A𝑃@A(𝑡))
;@

A<*

 (22) 

 
where: 

• 𝑆*@A is the coefficient of the direct cost of the 𝑞1J 
solar unit 

• 𝑃@A(𝑡) is the scheduled power of the 𝑞1J	solar unit 
for 𝑡1J interval  

 
The function of overestimation cost of the 𝑞1J solar power 
unit for 𝑡1J	interval is stated as (Biswas et al. 2017): 
 

.𝑧�@A

;@

A<*

(𝑡) =.l𝑆&@A/𝑃@A(𝑡)
;@

A<*

− 𝑃𝑎𝑣𝑞(𝑡):n 𝐹𝑠(𝐼C(𝑡)) 
(23) 

 
where: 

• 𝑆&@A is the coefficient of overestimation cost of the 
𝑞1J solar unit 

 
The function of underestimation cost of the 𝑞1J solar power 
unit for 𝑡1J interval can be observed as (Biswas et al. 2017): 

 

.𝑧V@A(𝑡)
;@

A<*

= .{𝑆R@A/𝑃𝑎𝑣𝑞(𝑡) − 𝑃@A(𝑡):
;@

A<*

}	𝐹𝑠(𝐼C(𝑡)) (24) 

 
where: 

• 𝑆R@A is the coefficient of the underestimation cost 
of the	𝑞1J solar unit 

 
The total employing cost of the 𝑞1J solar unit for 𝑡1J 
interval can be examined as (Biswas et al. 2017): 
 

.𝑊¿A(𝑡) =
;@

A<*

.(𝑧g@A(𝑡) + 𝑧�@A(𝑡) + 𝑧V@A(𝑡)	)
;@

A<*

 (25) 

2.6. Multi-objective optimization problem 

The multi-objective power scheduling problem of the 
hydro-thermal-wind-solar power system can be given as 
(Biswas et al. 2017; Saxena and Ganguly 2015; Kothari 
and Dhillon 2011; Mondal et al. 2013): 
 
Minimize [𝐹*, 𝐹&,𝐹R,𝐹S]CD 
 
Subject to 

 

. 𝑃12(𝑡)
;1

2<*
+	. 𝑃JV(𝑡)

;J

V<*
+. 𝑃>?

;>

?<*
(𝑡) +. 𝑃@A(𝑡)

;@

A<*
=	𝑃À(𝑡) + 𝑃Á�@@(𝑡) (26) 

 

, 𝑄V𝑑𝑡 = 𝑅V

CD

E

 

𝑃12DÂ� ≤ 𝑃12(𝑡) ≤ 𝑃12DÃÄ 
0 ≤ 𝑃>?(𝑡) ≤ 𝑃>�?																	 
0 ≤ 𝑃@A(𝑡) ≤ 𝑃@�A 
𝑄VDÂ� ≤ 𝑄V(𝑡) ≤ 𝑄VDÃÄ 

 
where: 

• 𝑃À(𝑡) and 𝑃Á�@@(𝑡) are the system’s power 
demand, and the transmission losses, 
respectively, for 𝑡1J interval, in MW 

• 𝑃12DÂ� and 𝑃12DÃÄ minimum and maximum limits 
of the output power of the 𝑖1J thermal generator, 
respectively, in MW 

• 𝑄VDÂ�and 𝑄VDÃÄ are minimum and maximum 
limits of water discharge, respectively, of the 𝑢1J 
hydro unit, in 𝑚R/ℎ 

 
 

2.7. Transmission losses 

The transmission losses of a power system can diversify 
from 5 to 15 of the total system load. It is, therefore, 
necessary to consider the transmission losses during the 
development of economic load dispatch schemes. The 
transmission losses of the short term hydro-thermal-wind-
solar power system can be evaluated by using Kron’s 
approximated loss formula having beta-coefficients and 
for the 𝑡1J interval, it can be stated as (Kothari and Dhillon 
2011): 

 

𝑃ÁC(𝑡) =.-.𝑃12(𝑡)𝐵C2C?𝑃1?(𝑡)
;1

?<*

B
;1

2<*

 (27) 

  

𝑃ÁÆ(𝑡) =.-.𝑃J2(𝑡)𝐵J2J?𝑃J?

;J

?<*

(𝑡)B
;J

2<*

 (28) 

  

𝑃ÁÇ(𝑡) =.-.𝑃>2(𝑡)𝐵>2>?𝑃>?

;>

?<*

(𝑡)B
;>

2<*

 (29) 

  

𝑃Á@(𝑡) =.-.𝑃@2(𝑡)𝐵@2@?𝑃@?

;@

?<*

(𝑡)B
;@

2<*

 (30) 

 
where: 

• 𝑃ÁC(𝑡),	𝑃ÁÆ(𝑡), 	𝑃ÁÇ(𝑡), and 𝑃Á¿(𝑡) are the 
transmission losses of the thermal system, the 
hydro system, the wind system, and the solar 
system, respectively, in MW, for the 𝑡1J interval 

 
Total transmission losses of the entire system for 𝑡1J 
interval can be observed as: 
 
𝑃Á�@@(𝑡) = 𝑃ÁC(𝑡) + 𝑃ÁÆ(𝑡)+ 𝑃ÁÇ(𝑡) + 𝑃Á¿	(𝑡) (31) 

3. Solution Methodology 

ACSM is an updated elaboration of the Nonlinear Simplex 
Method (SM) of Nelder and Mead. It has been designed 
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after the integration of an ordinary SM with some other 
methods, like - mathematical methods, evolutionary 
method, α-constrained method, etc (Takahama and Sakai 
2005). 

A normal SM has many deficiencies therefore three 
remoldings have been inserted into it. An unconstrained 
optimization technique can be transfigured to a 
constrained optimization technique with the use of 𝛼-level 
comparisons. Here the preference is given to the 
satisfaction level over the value of the objective function. 

In a customary SM, when simplex is contracted, a part 
of points around the partition of the feasible zone are 
overlooked, occasionally. Therefore, boundary mutations 
are inserted for probing the boundary of the feasible zone. 

Sometimes simplex may lose affine self-reliance and can't 
reach the optimal solution. Therefore, multi-simplexes are 
used rather than a single simplex. The incorporation of 
mutation of the worst point and multi-simplexes also 
improve the perfection of the method. 

3.1. Assessment of 𝛼 

To procure superior results for the problems, which have 
a very small feasible region, controlled values of 𝛼 are 
required. Its values lie between (0–1). The values of the 𝛼, 
(using Eqs. (35-36)) can be observed as (Takahama and 
Sakai 2005): 

 
 
 

𝛼(𝑇) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧
1
2i𝑚𝑎𝑥 l𝜇g/𝐴

2:n +
1
𝑀. 𝜇g/𝐴2:

Ë

2<*
k								; 𝑇 = 0																																	

(1 − 𝛽)𝛼(𝑇 − 1) + 𝛽														; 	0 < 𝑇 ≤
𝑇O©$
2  and (𝑇	𝑚𝑜𝑑	𝑇Í) = 0			

𝛼(𝑇 − 1)																																					; 0 < 𝑇 ≤
𝑇O©$
2  and (𝑇	𝑚𝑜𝑑	𝑇Í) ≠ 0				

1																																																			; 𝑇 >
𝑇O©$
2

 (32) 

 
where: 

• T and 𝑇O©$ are the number of iteration and the 
maximum iterations, respectively 

• 𝛽 and 𝑇Í are controlling parameters of 𝛼 
• 𝑀 is the number of search points 

3.2. Algorithm of α-constrained Simplex Method  

Assume ‘Sp’ is the search space of feasible solutions, 
𝑓(𝑦)	is an objective function, and 𝑦 =	 [𝐴*, 𝐴&, … , 	𝐴O]C is 
an m-dimensional vector of decision variables. Put 
expansion factor	𝐸 > 1, contraction factor	𝐿 ∈ (0,1), 
mutation rate 𝑀� ∈ (0 − 1),	tolerance limit Ɛ = 0.001, 𝛽 = 
0.03, and 𝑇Í = 50. The algorithm of ACSM can be perceived 
as (Takahama and Sakai 2005): 

1. Initialize the population,  𝑀	(> 	𝑚 + 1) for multi-
simplexes.	𝑀 number of search points are 
compulsory to construct one simplex, therefore, to 
formulate multi-simplexes more than 𝑀 points are 
necessary. 

2. Find  𝐴Ò (the most desirable point), 𝐴J (least 
desirable point), and 𝐴@ (second-worst point), from 
the following equations: 
 
𝐴Ò 	= 	 𝑎𝑟𝑔	𝑚𝑖𝑛2 	𝑓/𝑦2: 
 
𝐴J = 𝑎𝑟𝑔𝑚𝑎𝑥2 	𝑓/𝑦2: 
 
𝐴@ 	= 	 𝑎𝑟𝑔𝑚𝑎𝑥2ÓJ 	𝑓/𝑦2: 
 

3. Generate the random number 𝑅 and recondition 𝐴J 
as: 
 

𝐴J = Ô
𝐴Ò + 𝑅(𝐴J − 𝐴Ò) ; 𝑅 ≥ 𝑀�

𝐴J − 𝑅(𝐴J − 𝐴Ò) ; 			Else
 

(33) 
 

(34) 

 
4. Drop the least desirable point and frame the initial 

simplex with 𝑚 +1 points. Then the centroid can 
be evaluated as: 
 

𝐴E =
1

𝑚 + 1. 𝐴2
OÖ*

2<*
2ÓJ

 

 
5. Calculate the value of 𝛼 using Eqs. (32, 35 & 36) 

and then reflect the most desirable point of the 
simplex about the centroid to obtain  reflected 
point 𝐴� as: 
 
𝐴� = (1 + 𝛼)𝐴E 	− 𝛼𝐴J  

 
6. If 𝑓/𝐴�, 𝜇g(𝐴�): <Í 𝑓 l𝐴Ò,𝜇g(𝐴Ò)n, i.e. the reflected 

point is better than the most desirable point, then 
the reflection is reckoned to have snared the 
simplex to a superior zone in the search space. It 
is called the expansion process. Therefore, go to 
step 7, else go to step 8. 

7. Expansion is executed towards the reflected point 
from the centroid. Evaluate the expansion point 
𝐴×	as: 
 
𝐴× = 𝐸𝐴� + (1 − 𝐸)𝐴E 

 
If 𝑓/𝐴×, 𝜇g(𝐴×): <Í 𝑓 l𝐴Ò, 𝜇g(𝐴Ò)n, i.e. the 
expansion point is better than the most desirable 
point then	𝐴J  is replaced by 𝐴×, else 𝐴J is replaced 
by 𝐴�, and go back to step 2. 
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Fig. 1 Flow Chart of ACSM 
 

 
8. If 𝑓/𝐴�, 𝜇g(𝐴�): ≤Í 𝑓/𝐴@, 𝜇g(𝐴@):, ie. the reflected 

point is better than equal to the second-worst 
point, then it means that the reflection is 
contemplated to have carried the simplex towards 
the inferior zone. Therefore, contraction operation 
takes place. The proportion of contraction is 

regulated by the contraction factor 𝐿. Now, replace 
𝐴J with 𝐴� and go back to step 2, else go to step 9. 

9. If 𝑓/𝐴�, 𝜇g(𝐴�): <Í 𝑓 l𝐴J, 𝜇g(𝐴J)n, ie. the reflected 
point is better than the least desirable point then 
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	𝐴J is replaced by 𝐴�. The direction of contraction 
is from the centroid towards the reflected point. 

10. Find the contraction point 𝐴Ø as: 
𝐴Ø = 𝐿𝐴J + (1 − 𝐿)𝐴E 

If	𝑓/𝐴Ø, 𝜇g(𝐴Ø): <Í 𝑓 l𝐴J, 𝜇g(𝐴J)n,	 i.e. the 
contraction point is better than the least 
desirable point then 𝐴J is replaced by 𝐴Ø, else 
renovate	𝐴J as: 
 
𝐴J = 𝐿𝐴J + (1 − 𝐿)𝐴Ò 

 
and go to step 2.  

11. If abs (𝑓Ò − 𝑓J) ≤ 𝜀 then go to step 12, otherwise go 
to step 2. 

12. Stop 

3.3. Flowchart 

Fig. 1 represents the flowchart that explains the entire 
process of ACSM as discussed earlier. 

3.4. Effect of ACSM parameters 

(i) The mutation rate of the worst points: 

The mutations are introduced to find the solutions 
encircling the boundary of the feasible area and to 
command the convergence speed of the explored points. If 
the mutations are conducted with a high mutation rate 
then the number of assessments of the constraints will 
increase and therefore the speed of the algorithm may 
decrease (Takahama and Sakai 2005).  
 
(ii) The number of search points: 

The number of surveyed points regulates the variation of 
investigated points and also manages the convergence 
speed of the search procedure. If this value is very less, 
then even with a high convergence speed, the variation 
sets off low and the inspected points repeatedly coincide to 
a local optimal. If this value is too high, then the 
convergence speed decreases, and therefore the explored 
points can’t outstretch the global optimal (Takahama and 
Sakai 2005).  
 
(iii) The value of 𝛽: 

The feasible region can be enlarged by pacifying the value 
of 𝛼 and can be brought down to the initial feasible region 
by putting the value of 𝛼 equal to 1. The value of 𝛽 
regulates the speed of 𝛼. If the value of 𝛽 is small, 𝛼 
reaches 1 slowly. Therefore, there is a low probability of 
convergence of the search point to a local optimum. If the 
value of 𝛽 is very less then a large region can be searched 
by the search points. It includes the infeasible area which 
reduces the search proficiency (Takahama and Sakai 
2005).  

(iv) The contraction factor: 

It controls the convergence speed of search criteria. If it is 
small, the inspected points reach their centroid quickly. 
The search points even with high convergence speed may 
converge to a local optimal omitting the global optimal. If 
it is too high, the possibility of convergence to local optimal 

is low. The convergence speed is low but the inspected 
points may not reach the global optimum, in this case 
(Takahama and Sakai 2005).  

4. Decision-Making 

The decision-making has an unspecified temperament and 
indistinct aims for the objective functions. These targets 
are tuned by setting up their membership functions. Their 
values range from 0 – 1. The merit 0 of membership 
function stipulates aversion and value 1 specifies absolute 
affinity. It can be stated as (Kothari and Dhillon 2011): 
 

µ/f Ü: =

⎩
⎪
⎨

⎪
⎧ 1																		 ; 	𝑓2 ≤ 𝑓O2�2

𝑓O©$2 − 𝑓2

𝑓O©$2 − 𝑓O2�2
; 𝑓O2�2 < 𝑓2 < 𝑓O©$2

0																 ; 𝑓2 ≥ 𝑓O©$2

	(𝑖 = 1,2, … ,𝑀) (35) 

 
where: 

• 𝑓2 is the objective-function 
• 𝑓O©$2  and 𝑓O2�2 	are maximum and minimum values 

of the objective function, respectively 
 
The Fuzzy Cardinal Priority Ranking or the membership 
function of non-dominated outturns to a fuzzy set can be 
given as (Kothari and Dhillon 2011): 
 

𝜇go =
∑ 𝜇/𝑓o2:Ë
2<*

∑ ∑ 𝜇/𝑓o2:Ë
2<*

Þ
o<*

 (36) 

 
where: 

• K is the number of non-dominated results 

5. Prospects of Renewable Energy in 
Kanyakumari (Tamil Nadu, India) 

Kanyakumari is positioned at 8.088306° north 77.538452° 
east, which is the southernmost extremity of India 
(NCERT India,” 2020-21). It owns plentiful RER (like-
hydro, wind, solar, etc.). Its hydroelectric power projects, 
e.g. Kodayar Dam-I & II have 60 MW & 40 MW installed 
capacities, respectively (“Tamil Nadu Generation and 
Distribution Corporation Limited”).  

Kanyakumari possesses elevated wind speeds owing to 
its presence at sea-shores. India’s biggest wind farm (at 
Muppandal) of 1500 MW installed capacity is inducted 
here (“Muppandal Wind Farm,” n.d.). Figure 2 depicts the 
PDF (unit-less) of wind speeds during the perused period 
(18th of September of 2020) of Kanyakumari, which is 
calculated from Eq. (9). It shows that the probability of 
wind speed is high (about 0.06) during the night (9 PM to 
7 AM) and goes on decreasing (about 0.05) with the rise of 
the sun (from 7 AM to 8 PM). Fig. 3 shows the PDF of solar 
irradiance during 24 hours of 18th of September of 2020 of 
Kanyakumari, which is evaluated using Eq. (18). Up to 9 
AM the solar panel doesn't receive sufficient sun's 
radiations, therefore its PDF is found zero during this 
time. Its value is maximum (more than 1), from 10 AM to 
11 AM. After that its value went down and rose again after 
2 PM. It becomes zero again after 5 PM.  
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Fig. 2 Variation of PDF of wind power with the time of the Kanyakumari (Tamil Nadu, India) 

 

 
Fig. 3 Variation of PDF of solar irradiance with the time of the Kanyakumari (Tamil Nadu, India) 

 

 
 
6. Test Systems 

In this paper, a real-time short-term multi-objective 
hydro-thermal-wind-solar power scheduling problem for 
Kanyakumari (Tamil Nadu, India) is constructed and it is 
optimized for the 18th day of September of 2020. To 
exemplify the eminence of the recommended technique, 
the following two test systems have been examined with 
the aid of the FORTRAN 90 computer programming 
language. These test systems are classified as: 

(i) Power scheduling of a pure thermal system 
(ii) Power scheduling of a hydro-thermal-wind-solar 

power system 

6.1. Test system 1 

It is worked out for four thermal generators power system. 
A 24 hour multi-objective thermal power scheduling 
problem is assessed by using ACSM, which can satisfy 
economic and emission objectives, concurrently. Fuel 
costs, 𝑁𝑂$	emission, 𝑆𝑂& emission, and 𝐶𝑂& emission 
functions of four thermal generators are tabulated in 
Table 1. The minimum and maximum generation 

restrictions for each thermal generator are contemplated 
as 10 MW and 250 MW, respectively. 

6.2 Test System 2 

This structure is encompassed around the scheduling of a 
coordinated hydro-thermal-wind-solar power system. It 
embodies two thermal generators, one hydro unit, one 
wind generator/farm, and one solar unit. The rate of 
discharge of hydro-generating station is obtained by 
Glimn-Kirchmayer model using Eqs. (5–8). The average 
annual data, as well as 24 hour data of wind 
farm/generator and solar power system, is looked over for 
the 18th of September of 2020 for Kanyakumari (Tamil 
Nadu, India). The wind character is surveyed by Weibull 
Distribution Density Factor using Eqs. (9–17) and solar 
irradiances are studied with the Normal Distribution 
Model by using Eqs. (18–25). Wind farm/generator and the 
solar unit parameters are ordered in Table 2. The shape 
factor ‘k’ is gained from Eq. (10), which is established as 
1.4005. The scale factor ‘c’ is investigated by Eq. (11–12) 
and its value is observed as c = 8.23 m/s for Kanyakumari 
for the viewed duration. The water discharge rate is given 
by Eqs. (37–38). 

𝑄*(𝑡) = 	0.0000219427𝑃J*& − 0.00025709𝑃J* + 1.742333𝑚R/ℎ (37) 
  
𝑅V = 72.4797	𝑚R (38) 
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Table 1 
The characteristic fuel cost, 𝑁𝑂$	emission, 𝑆𝑂& emission, and 𝐶𝑂& emission functions of four thermal generators 
Fuel cost ($/h) equations  𝑵𝑶𝒙emission (kg/h) equations  
𝐹**=0.000018292𝑃1*& (𝑡) + 0.112900944𝑃1*(𝑡)	+ 3.729447760 𝐹&*=0.006732𝑃1*& (𝑡) − 2.39928𝑃1*(𝑡) + 610.2535  
𝐹*&=0.000027676𝑃1&& (𝑡)	+ 0.114675880𝑃1&(𝑡) + 1.164633280 𝐹&&=0.006323𝑃1&& (𝑡) − 0.38128𝑃1&(𝑡)	+ 80.9019 
𝐹*R=0.000081097𝑃1R& (𝑡) + 0.094052024𝑃1R(𝑡)	+ 2.747550880 𝐹&R=0.006181𝑃1R& (𝑡) − 0.39077𝑃1R(𝑡) +  50.3808 
𝐹*S=0.000052578𝑃1S& (𝑡) + 0.087180216𝑃1S(𝑡)	+ 4.131380800  𝐹&S=0.006483𝑃1S& (𝑡) − 0.79027𝑃1S(𝑡)	 + 28.8249 
  
𝑺𝑶𝟐emission (kg/h) equations  𝑪𝑶𝟐emission (kg/h) equations  
𝐹R*=0.000813𝑃1*& (𝑡)	+ 4.97641𝑃1*(𝑡)	+ 165.3433 𝐹S*=0.106409𝑃1*& (𝑡) − 12.73642𝑃1*(𝑡)	+ 1819.625 
𝐹R&=0.001206𝑃1&& (𝑡)	+ 5.05928𝑃1&(𝑡)	+ 51.3778 𝐹S&=0.265110𝑃1&& (𝑡) − 61.01945𝑃1&(𝑡)	+ 5080.148 
𝐹RR=0.003578𝑃1R& (𝑡)	+ 4.14938𝑃1R(𝑡)	+ 121.2133 𝐹SR=0.403144𝑃1R& (𝑡)	− 121.9812𝑃1R(𝑡) + 11381.070 
𝐹RS =0.002320𝑃1S& (𝑡) + 3.84624𝑃1S(𝑡)+ 182.2605 𝐹SS=0.140053𝑃1S& (𝑡)	− 29.95221𝑃1S(𝑡) + 3824.770 

 

Table 2 
Parameters of wind farm and solar unit (PV) 
Wind system variables Specifications Solar system variables Specifications 

The capacity of each wind farm (MW) 30 The capacity of each solar unit (MW) 30 
Rated speed 𝑣� (m/s) 15 The angle of tilt of solar collector (°) 20 

Cut in velocity 𝑣� (m/s) 3.5 Hour angle (°) ±15 

Cut out velocity 𝑣� (m/s) 25 Temperature coefficient (/°C) −4.7 e−3 
Coefficient of direct cost ($/kWh) 0.05 Coefficient of direct cost ($/kWh) 0.06 
Coefficient of overestimation cost ($/kWh) 0.17 Coefficient of overestimation cost ($/kWh) 0.17 
Coefficient of underestimation cost ($/kWh) 0.24 Coefficient of underestimation cost ($/kWh) 0.24 

 

Table 3 
The solution of power scheduling problem with four thermal generators of test system-1 using ACSM 

Time interval (t) 𝑷𝑫	(𝒕) (MW) 𝑷𝒕𝟏(𝒕) (MW) 𝑷𝒕𝟐(𝒕) (MW) 𝑷𝒕𝟑(𝒕) (MW) 𝑷𝒕𝟒(t) (MW) 𝑷𝑳𝒐𝒔𝒔(𝒕) (MW) 

1 455 116.25 116.28 116.37 116.35 9.75 
2 425 108.56 108.38 108.46 108.56 8.51 
3 415 105.89 105.92 105.78 105.91 8.11 
4 407 103.70 103.74 103.78 103.85 7.79 
5 400 101.94 101.91 101.86 101.86 7.52 
6 420 107.05 107.16 107.10 107.06 8.29 
7 487 124.55 124.70 124.52 124.61 11.16 
8 604 155.23 155.29 155.22 155.33 17.14 
9 665 171.44 171.50 171.49 171.40 20.79 
10 675 174.14 174.10 174.14 174.23 21.42 
11 695 179.53 179.46 179.41 179.36 22.71 
12 705 182.09 182.25 182.13 182.08 23.38 
13 580 149.04 148.93 149.00 148.92 15.81 
14 605 155.70 155.72 155.57 155.63 17.23 
15 616 158.60 158.61 158.62 158.53 17.86 
16 653 168.28 168.32 168.28 168.26 20.05 
17 721 186.35 186.38 186.38 186.49 24.44 
18 740 191.46 191.57 191.42 191.43 25.75 
19 700 180.91 180.78 180.85 180.76 23.05 
20 678 174.92 174.97 174.87 174.91 21.61 
21 630 162.21 162.28 162.24 162.33 18.68 
22 585 150.42 150.26 150.35 150.28 16.10 
23 540 138.57 138.44 138.42 138.39 13.71 
24 503 128.77 128.85 128.73 128.87 11.91 

 
 
 
7. Results of Test Systems 

7.1. Test System 1 

The power scheduling problem is optimized for 24 
individual power demands (for each hour of the whole 
day). The fuel costs, 𝑁𝑂$	emission, 𝑆𝑂& emission, and 𝐶𝑂& 
emission are appraised through Eqs. (1-4). Transmission 
losses are summed up with the help of Eqs. (27-31). 
Decision-making is executed by employing Eqs. (35–36). 
All the results using ACSM are systematized in Tables 3 

& Supplementary Table S1.  The power demand is 
minimum (400 MW) for the 5th time interval. The values 
of total transmission losses, 𝐹*,𝐹&,𝐹R	&	𝐹S for this period 
are 7.52 MW, 141.02 $/h, 2230.68 kg/h, 6222.85 kg/h, and 
19857.97 kg/h, respectively. Whereas these values for the 
maximum power demand (740 MW during 18th interval), 
are obtained as 25.75 MW, 246.70 $/h, 2829.59 kg/h, 
10882.88 kg/h, and 31315.98 kg/h, respectively. Test 
system-1 is then judged by SM and EM and outturns are 
charted in Table 7. 
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Fig. 4 Variation of available powers of wind and solar systems with the time of Kanyakumari (Tamil Nadu, India) 

 
 

 
Fig. 5 Percentage of load shared by thermal, hydro, wind, and solar power systems for reviewed permutation of generating units at 

Kanyakumari (Tamil Nadu, India) using ACSM 
 
 

7.2. Test system 2 

The available wind power for each hour is gained from Eq. 
(14). Fig.4 displays the variation of available powers of 
wind and solar systems with the time of Kanyakumari 
(Tamil Nadu, India) for the considered day. It can be 
observed from the figure that the value of maximum 
available wind power is 18.46 MW/h, from 1 PM to 5 PM 
of the considered day. The minimum available wind power 
is observed as 10.75 MW/h from 12 AM to 4 AM, 6 AM to 
7 AM, and 11 PM to 12 AM, respectively. 

The available solar power is derived from Eq. (19) and 
its maximum value obtained is 28.25 MW/h from 12 PM to 
1 PM and its minimum value is found as 7.88 MW/h from 
9 AM to 10 AM of the stated day.  

Table 4 represents the solution of power scheduling of 
hydro-thermal-wind-solar power system of test system-2 
using ACSM. The total power demand is contemplated as 
13904 MW. Whereas the total scheduled thermal power, 
hydropower, wind power, and solar power are 8072.15 
MW/day, 5821.59 MW/day, 349.60 MW/day, and 137.95 
MW/day, respectively for the considered permutation of 
generating units. Total transmission losses for the 
regarded period are quantified as 476.69 MW/day. The 
values of transmission losses and water discharge for 
maximum and minimum demands are 30.22 MW/h & 9.20 
MW/h and 3.72 Mm3/h & 2.31 Mm3/h, respectively.  

Fig. 5 depicts the percentage load shared by thermal, 
hydro, wind, and solar power systems during the studied 

period for the reviewed power demand and union of 
different power generating units, using 𝐴𝐶𝑆𝑀. 

Supplementary Table S2 depicts values of fuel cost, 
𝑁𝑂$	emission, 𝑆𝑂& emission, and 𝐶𝑂& emission of test 
system-2 obtained by ACSM. The values of  𝐹*,𝐹&,𝐹R&	𝐹S 
for the maximum and minimum demands are 83.48 $/h, 
1094.88 kg/h, 3703.37 kg/h and 11945.48 kg/h and 48.60 
$/h, 967.44 kg/h, 2144.96 kg/h and 5092.03 kg/h, 
respectively. 

Table 5 represents the values of operating costs of the 
solar system of test system-2 observed by ACSM. The solar 
unit starts delivering power after 9 AM up to 4 PM on the 
18th of September of 2020 for the examined system when 
solar radiation and operating temperature reach the pre-
specified values of the solar generating unit. The highest 
value of direct cost and total operating cost for the solar 
system is evaluated as 1728.90 $/h and 1728.91 $/h, 
respectively from 12 PM–1 PM for solar power generation 
of 28.25 MW. 

For the wind power system the direct cost, the 
overestimation cost, and the underestimation cost are 
procured from Eqs. (15–17). Table 6 shows the values of 
operating costs of the wind system of test system-2 
observed by ACSM. The values of the highest direct cost 
and total operating cost for wind system are 1009.12 $/h 
and 1008.83 $/h, respectively for 18.55 MW wind power 
generation for the 15th time interval. 

The same problem is then solved with SM and EM and 
the outcomes of all the three methods are compared and 
tabulated in Table 7. 

56%

41%

2%

1%
3%

Thermal power Hydro power Wind power Solar power
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Table 4  
Power scheduling of hydro-thermal-wind-solar power system (test system-2) using ACSM 

Time interval  
(t) 

𝑷𝑫(𝒕)(MW) 𝑷𝒕𝟏(𝒕) 
(MW) 

𝑷𝒕𝟐(𝒕) 
(MW) 

𝑷𝒉𝟏(𝒕) 
(MW) 

𝑷𝒔𝟏(𝒕) 
(MW) 

𝑷𝒘𝟏(𝒕) 
(MW) 

𝑷𝑳𝒐𝒔𝒔(𝒕) 
(MW) 

𝑸𝟏(𝒕)	 
(Mm3/h) 

1 455 132.37 132.33 191.46 0 10.55 12.091 2.50 
2 425 123.17 123.19 178.25 0 11.00 10.52 2.39 
3 415 120.12 120.09 173.91 0 10.50 10.02 2.36 
4 407 117.66 117.66 170.38 0 10.80 9.62 2.34 
5 400 114.94 114.93 166.36 0 13.00 9.20 2.31 
6 420 121.05 121.04 175.13 0 13.50 10.17 2.37 
7 487 142.22 142.23 205.52 0 11.00 13.90 2.62 
8 604 177.95 177.91 256.61 0 13.55 21.42 3.12 
9 665 196.48 196.52 283.01 0 14.75 25.91 3.43 
10 675 199.00 199.02 286.70 0 17.00 26.57 3.47 
11 695 205.04 205.04 295.15 0 17.25 28.12 3.58 
12 705 208.54 208.51 300.15 0 17.00 29.04 3.64 
13 580 166.67 166.67 240.58 7.75 17.20 18.92 2.95 
14 605 171.24 171.29 247.02 17.20 18.50 19.97 3.02 
15 616 172.55 172.57 248.86 24.00 18.55 20.29 3.04 
16 653 182.72 182.71 263.42 28.25 18.40 22.67 3.20 
17 721 204.30 204.27 294.11 28.00 18.50 28.04 3.56 
18 740 212.70 212.71 306.03 21.55 17.00 30.22 3.72 
19 700 204.12 204.08 293.85 11.20 14.75 27.88 3.56 
20 678 200.77 200.82 289.15 0 14.50 27.01 3.50 
21 630 185.61 185.60 267.51 0 14.55 23.23 3.24 
22 585 171.89 171.84 247.98 0 13.50 20.04 3.03 
23 540 157.80 157.84 227.83 0 13.25 17.00 2.82 
24 503 147.14 147.17 212.62 0 11.00 14.85 2.68 

 
Table 5  
Values of operating costs of the solar system of test system 2 observed by ACSM 

Time interval 
(t) 

Direct cost 
($/h) 

Underestimation cost 
($/h) 

Overestimation cost 
($/h) 

Total operating cost of the solar system 
($/h) 

1–12 0 0 0 0 
13 474.30 15.52 −11.03 478.79 
14 1052.64 −17.35 12.33 1047.62 
15 1468.80 −7.04 5.00 1466.76 
16 1728.90 0.02 −0.012 1728.91 
17 1713.60 0.13 −0.09 1713.64 
18 1318.86 −0.65 0.46 1318.67 
19 685.44 −3.68 2.62 684.37 
20–24 0 0 0 0 

 

Table 6 
Values of operating costs of the wind system of test system 2 observed by ACSM 

Time interval Direct cost 
($/h) 

Underestimation cost 
($/h) 

Overestimation cost 
($/h) 

Total cost 
($/h) 

1 573.92 2.87 -2.04 574.75 
2 598.40 -3.46 2.46 597.40 
3 571.20 3.57 -2.54 572.23 
4 587.52 -0.65 0.46 587.33 
5 707.20 4.45 -3.16 708.49 
6 734.40 -2.12 1.51 733.79 
7 598.40 -3.46 2.46 597.40 
8 737.12 -2.28 1.97 736.32 
9 802.40 -1.51 1.08 801.96 
10 924.80 2.01 -1.43 925.38 
11 938.40 -0.96 0.68 938.12 
12 924.80 2.01 -1.42 925.38 
13 935.68 -0.37 0.26 935.57 
14 1006.40 -0.44 0.31 1006.27 
15 1009.12 -1.02 0.72 1008.83 
16 1000.96 0.71 -0.50 1001.16 
17 1006.40 -0.44 0.31 1006.27 
18 924.80 2.01 -1.43 925.38 
19 802.40 -1.51 1.08 801.96 
20 788.80 1.66 -1.18 789.28 
21 791.52 1.03 -0.73 791.82 
22 734.40 -2.12 1.51 733.79 
23 720.80 1.16 -0.83 721.14 
24 598.40 -3.46 2.46 597.40 
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Table 7  
Comparison of outcomes using ACSM, SM, and EM 

S.No. Output variables ACSM SM EM 
1 Total	𝐹* ($/day) of test system-1 4707.19 4707.67 4708.14 
2 Total	𝐹& (kg/day) of test system-1 59325.23 59331.16 59337.10 
3 Total 𝐹R (kg/day) of test system-1 207672.70 207693.47 207714.23 
4 Total 𝐹S (kg/day) of test system-1 561369.20 561425.34 561481.47 
5 Total	𝐹* ($/day) of test system-2 1626.41 1626.57 1626.74 
6 Total	𝐹& (kg/day) of test system-2 24262.24 24264.67 24267.10 
7 Total 𝐹R (kg/day) of test system-2 71753.80 71760.98 71768.15 
8 Total 𝐹S (kg/day) of test system-2 196748.20 196767.68 196787.55 
9 Total operating cost of the solar system ($/day)  8438.76 8439.61 8447.20 
10 Total operating cost of the wind system ($/day)  19017.42 19019.33 19036.43 
11 Total transmission losses (MW) of test system-2 476.69 476.74 477.17 
12 Simulation time (seconds) of test system-2 15.6 16.8 17.3 

 
 
 
 

  

  
 

Fig. 6 Comparison of total fuel cost, 𝑁𝑂$  emission, 𝑆𝑂& emission, and 𝐶𝑂& emission of test system-2 using ACSM, SM & EM 
 
 

 
8. Comparisons 

In an ordinary SM for ‘m’ objectives, m+1 search points 
are explored to generate an initial simplex of non-zero 
volume. If y = 1, 2……, m+1 and 𝑋õ- indicates each vertex 
of the initial simplex, then the least desirable point (worst 
point) of the initial simplex is searched. Then with the 
utilization of some fixed rules, a new simplex is 
constructed from the older one in such a manner that the 
search moves away from the least desirable point in the 
simplex. Whereas evolutionary algorithms operate by 
searching population enumeration to some extent, so that 
while the generation of newer individual solution, some of 
them would have superior genetic characteristics and 

some would have inferior genetic characteristics. ACSM is 
composed with the amalgamation of these two methods 
along with the 𝛼-constrained method, in which a 
constraint satisfaction level is inserted to display how 
aptly the explored point satisfies the constraints. The 
performance of SM, EM, and ACSM is compared here. 

In this paper, initially, a multi-objective thermal power 
scheduling problem is optimized in test system 1. Fuel 
cost, emissions, transmission losses, and simulation time 
are computed with ACSM. Then two thermal generators 
are integrated with (one each) generating units of hydro, 
wind, and solar system in test system 2. The operation of 
this hybrid system (for the Kanyakumari region of India 
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and the 18th of September of 2020) also takes in water 
discharge of the hydro system and operating cost of wind 
& solar systems. It is detected from Table 7 that now the 
values of total fuel cost, 𝑁𝑂$	emission, 𝑆𝑂& emission, and 
𝐶𝑂& emission are lowered from 4707.19 $/day, 59325.23 
kg/day, 207672.70 kg/day, and 561369.20 kg/day to 
1626.41 $/day, 24262.24 kg/day, 71753.80 kg/day, and 
196748.20 kg/day, respectively, for the examined time 
interval. 

The problem is optimized by using ACSM, and 
outcomes are weighed up with SM and EM. After 
contrasting the results observed by using ACSM, SM, and 
EM, it is revealed that ACSM brings out upper-level 
outturns than SM and EM. The values of fuel 
cost,	𝑁𝑂$	emission, 𝑆𝑂& emission, and 𝐶𝑂& emission are 
calculated as 1626.57 $/day, 24264.67 kg/day, 71760.98 
kg/day, 196767.68 kg/day, respectively, using SM. The 
results for the same are obtained as 1626.74 $/day, 
24267.10 kg/day, 71768.15 kg/day, 196787.55 kg/day, 
respectively, by using EM.  

The values of the operating cost of the solar system, 
wind system, transmission losses, and computational time 
with ACSM, SM, and EM are gained as 8438.76 $/day, 
19017.42 $/day, 476.70 MW/day & 15.6 sec; 8439.61 $/day, 
19019.33 $/day, 476.74 MW/day & 16.8 seconds; and 
8447.20 $/day, 19036.43 $/day, 477.17 MW/day and 17.3 
sec, respectively. It can be noticed that ACSM brings out 
the least transmission losses and computational time 
along with fuel cost, operating cost (wind and solar 
system), and emissions than the other two contemplated 
methods. Fig 6 shows the comparison of the total fuel cost, 
𝑁𝑂$	emission, 𝑆𝑂& emission, and 𝐶𝑂& emission of test 
system-2 using ACSM, SM & EM. It manifests that ACSM 
is advantageous to the other two methods from which it is 
produced, i.e. SM and EM. The comparisons prove that 
ACSM is a constructive, fast, explicit, and solid technique 
for constrained optimization. Also, it is not much affected 
by varying parameters.   

9. Conclusion 

India has a vast number of treasures of RER due to its 
magnificent topographical location. The fundamental 
aspects for employing RER-based power systems in the 
country are to upgrade energy surety, financial growth, 
moderate climate variation, boost up energy retrieve, etc. 

Greater capital cost, intermittent nature of most of the 
RER, lack of pertaining land, storage potential, improper 
utilization schemes, etc. are the main constraints in the 
growth of this field. Therefore, currently, RER has very 
little contribution to the total basic commercial energy 
supply in India. 

There is a vast scope for advancement in the RER-
based power system in the countries like India. It is a well-
renowned certainty that fossil fuel-based power systems 
are expensive, exhausting, and environment polluting. As 
proved in this paper, that the clever blending of the 
conventional power generation system with RER-based 
systems can bring about a revolution in the field of the 
electrical power system. These hybrid systems (such as 
hydro-thermal-wind-solar power systems) can reduce the 
shortcomings of conventional fossil fuel-relied structures 
as well as RER oriented systems. A large number of RER 
based power generating systems are already deployed at 

different places of India, but still, hybrid systems are very 
few. The Indian government is modeling strategies, 
programs and, enlightening atmosphere to push India to 
be one of the few masters of the most interesting markets 
of renewable energy in the world. 

Sustainable electrical energy is required for the 
sustainable development of the world. Hybrid power 
systems like hydro-thermal-wind-solar power generating 
systems can corroborate reliable, reasonable, sustainable, 
and clean energy for the people. 
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