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ABSTRACT. This paper has adopted the new bio-inspired Manta-Ray Foraging Optimization (MRFO) algorithm for optimal allocation 
of multiple Distributed Generation (DG) units attached to Radial Distribution Systems (RDSs) in order to reduce the total energy loss of 
the studied system. The DG units are optimized to work with a unity power factor (UPF) and optimal power factor (OPF) during a 24-h 
time-varying demand. The MRFO algorithm optimized single, two, and three DG units. The total energy loss and energy-saving during 
the time-varying demand are calculated and compared with the original case. The MRFO algorithm behavior is compared to the Particle 
Swarm Optimization (PSO) and Atom Search Optimization (ASO) algorithms regarding energy loss and energy-saving values. The 
standard 69-bus RDS is used as a test system. Considerable improvements in energy saving, loss reduction, and voltage profile are 
achieved after installing DG units, mainly when operating with optimal power factors. The MRFO algorithm achieves energy losses of 
817.91, 751.08, and 730.25 kWh with 1, 2, and 3 DG units with UPF allocations, respectively. On the other hand, when the DG units are 
optimized to work with OPF, the MRFO achieves energy losses of 233.24, 142.08, and 106.79 kWh with the same number of DG units, 
respectively. Furthermore, the MRFO algorithm has efficient behavior compared with the PSO, ASO, and other algorithms for different 
operations and conditions. 
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1. Introduction 

The distribution systems are being transferred from 
passive to active systems due to the increasing interest in 
using renewable energy sources as green and clean 
alternatives. Distributed generations (DGs) are secure 
and straightforward in contrast with regular power grids, 
and they are economically efficient (Bai and Yildizbasi 
2020). These DGs are small-scale generators located 
typically near the load centers. They can be renewable 
such as photovoltaic, wind, or biomass sources, or non-
renewable engines or turbine-based sources (Parihar and 
Malik 2020). The integration of these DGs into the radial 
distribution systems (RDS) lessens traditional fossil fuel 
source dependency. In this case, more environmental and 
technical benefits are gained for the utility. DGs optimal 
allocation to RDSs provides several advantages: reducing 
the total losses, increasing system stability, increasing 
reliability, reducing overload, and improving voltage 
profiles (Eid et al. 2020). Shortly the electricity prices from 
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the renewable DGs will be lower than the standard utility 
tariff. 

On the other hand, connecting DG resources to existing 
distribution systems may result in different problems, 
such as increasing system losses or power fluctuations if 
they are not correctly sized and sited (Yuan et al. 2020). 
Integrating DG units may face some difficulties due to 
their unknown generating power characteristic. The 
objective of deciding the optimum position for the most 
outstanding production with minimal environmental 
consequences is the DG planning function (Radosavljevic 
et al. 2020). The optimal DG allocation is a large-scale, 
nondeterministic, stochastic, nonlinear problem with 
continuous and discrete constraints. 

   Different metaheuristic techniques and analytical 
mechanisms have been used to find the DG optimum size 
and location on the RDS. Analytical approaches use 
mathematical expressions to determine the optimal 
solution (Abdelkader, Elshahed, and Osman 2019; Hung, 
Mithulananthan, and Bansal 2010; Murthy and Kumar 
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2013). Some researchers (Hung et al. 2014; Hung, 
Mithulananthan, and Bansal 2013, 2014) adopted the 
probability distribution functions to model renewable 
sources' stochastic behavior and demand to take their 
time-variable nature. Many metaheuristic optimization 
algorithms have been employed to solve the DG allocation 
problem with RDS.  Very few researchers (Atwa et al. 
2010; Gkaidatzis et al. 2017; Hung, Mithulananthan, and 
Bansal 2013; Mehta, Bhatt, and Pandya 2018; Ullah, 
Wang, and Radosavljević 2019) considered the energy loss 
minimization of RDS. Most of the listed authors consider 
the DG allocation problem with a constant load. Thus the 
solution is for one instant of time. They did not consider 
demand variations or DG probabilistic behavior. The DG 
units can affect the protection of the distribution systems 
when using coordination of overcurrent relays (Elsadd et 
al. 2021), (Khalifa et al. 2018), or fault location techniques 
(Elsadd et al. 2017). The authors of (Arabi Nowdeh et al. 
2019) applied multi-objective optimization with fuzzy 
functions to allocate different DG units to improve 
reliability and decrease losses. Different studies 
(Abdelaziz et al. 2015), (Tolba et al. 2018) were also applied 
for optimal allocation problems. 

In the last two years, many researchers consider the 
DG allocation problem using different metaheuristic 
optimization algorithms. The authors of (Bai and 
Yildizbasi 2020), (Yuan et al. 2020) used the coyote 
optimization algorithm (COA) for allocating battery 
energy storage into distribution systems with and without 
photovoltaic (PV) panels with the objective of minimizing 
the total system losses.  Grey wolf optimization (GWO) 
was applied in (Ansari et al. 2020) for DG planning into 
distribution systems to improve voltage profile, reliability, 
and strength of systems. The study included different 
distribution systems and DG types with different power 
factors. A similar study using the sine-cosine algorithm 
with chaos map theory (CSCA) was proposed in (Selim, 
Kamel, and Jurado 2020) to minimize the losses and 
improve the voltage profile. To allocate DG and shunt 
capacitors simultaneously into distribution systems, the 
authors of (Almabsout et al. 2020) used an enhanced 
genetic algorithm (EGA) for cost and economic analyses.  
PV and wind turbines were designed and allocated in 
(Parihar and Malik 2020) in order to minimize the voltage 
stability index of distribution systems. A hybrid particle 
swarm optimization and gravitational search algorithm 
(PSOGSA) was adopted in (Radosavljevic et al. 2020) to 
minimize total energy loss and maximize the total profits 
of DGs with RDS during a whole-year study. The authors 
of (Dehghani, Montazeri, and Malik 2020) used a spring 
search algorithm (SSA) to find the optimal size and site of 
DG units and capacitor banks integrated into RDS to 
reduce the total losses and elevate system performance. 
The author of (Eid 2020) used adaptive PSO and modified 
GSA algorithms to integrated multiple DG units with 
different power factors. The objective of the study was to 
enhance system performance in terms of loss reduction, 
improvement voltage profile, and increase of system 
stability using multi-objective optimization with the 
Pareto optimal front technique. The authors of (Selim et 
al. 2021) used a chaotic salp swarm algorithm (CSSA) to 
schedule different batteries and PV modules into 
distribution systems adopting 24 h operations to minimize 
losses and improve voltage profiles. Considering different 
load types, the authors of (Naderipour et al. 2021) used the 

Spotted hyena optimizer (SHO) algorithm to allocate 
different DGs and capacitors into RDS to minimize the 
cost of operation, cost of used devices, and energy losses. 
The adaptive PSO and exponential PSO algorithms were 
adopted in (Eid 2021) to minimize the system losses and 
enhance the system voltage profile of different RDS. 

Most of the above researchers considered the 
allocations of DG units into distribution systems with 
constant power demand; that fixed during the whole day 
of operation. Due to the nature of PV or wind energy 
generations, the output power of these sources is weather-
dependent and varies from hour to hour. Thus in order to 
model these sources effectively, at least 24 h operations 
must be considered.  

In this paper, the DG allocation problem is solved 
using the newly published MRFO metaheuristic 
optimization algorithm with the primary objective of 
reducing the total energy losses considering time-varying 
demand. The study includes the integration of single-, 
two-, and three-DG units. Moreover, the study also 
includes the DGs optimal allocation working with unity 
and optimal lagging power factors. A concept of energy-
saving is proposed and estimated for considered case 
studies. The obtained results from the MRFO algorithms 
are compared to both ASO and PSO optimization 
algorithms. The main contribution points of this work can 
be summarized as follows: 
• Optimization of the distribution systems along with 

24-h operations while minimizing the total energy 
losses. 

• Implementation of a new bio-inspired MRFO 
optimization algorithm with efficient behavior 
compared to other metaheuristic optimization 
algorithms such as ASO and PSO. 

• The study involved allocating different DG units (1, 
2, and 3) operating with unity and optimal power 
factors. 

• The energy-saving and cost-saving principles are 
incorporated in this study. 

The rest of the paper is organized as follows. Section 2 
describes the problem formulation, while Section 3 
explains the mathematical formulation of the MRFO 
algorithm. Section 4 displays the obtained results, and the 
conclusions are drawn in Section 5.     

2. Problem Formulation 

The optimal allocations of DGs improve system 
performance from different perspectives. The DG shares 
the load and system losses with the utility. A load flow 
solver is necessary to solve the distribution system with 
DG integration. For the radial distribution system, the 
Forward/Backward Sweep Method (FBSM) is the most 
suitable and adopted.  

2.1 Objective functions 

For any branch connected between any buses 𝑖, 𝑗, the 
active power loss of the branch 𝑃%&''()  is calculated as: 

𝑃%&''() = 𝐼(), × 𝑅()  (1) 

While the reactive power loss 𝑄%&''()  of the branch is 
calculated as: 
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𝑄%&''() = 𝐼(), × 𝑋() (2) 

where 𝐼() represents the branch current; 𝑅() represents 
the branch resistance and 𝑋() represents the branch 
reactance. 

The total active loss of the system 𝑃%&'' is calculated 
from: 

𝑃%&'' =1 𝑃%&''()
2()

()34
 (3) 

While the total reactive loss is calculated as: 

𝑄%&'' =1 𝑄%&''()
2()

()34
 (4) 

where 𝑁𝑏𝑟 represents the total number of the branches of 
the system. 

The active energy loss 𝐸9: during a 24-h period is 
calculated as: 

𝐸9: = ; 𝑃%&''(ℎ)	𝑑ℎ
A3,B

A34
 (5) 

While the reactive energy loss 𝐸9
C is calculated as:     

𝐸9
C = ; 𝑄%&''(ℎ)	𝑑ℎ

A3,B

A34
 (6) 

The main objective of this work is to reduce the total 
active energy loss of the system when accompanied by DG 
units as: 

𝑓&(E = 𝑚𝑖𝑛	(𝐸9:) (7) 

The energy-saving is calculated as the sum of the 
savings of each hour of the day. The active energy saving 
𝐸H: per day is calculated as: 

𝐸H: = 𝐸9
:,IJKA&LK	MN − 𝐸9

:,IJKA	MN  (8) 

The reactive energy saving 𝐸H
C per day is calculated as: 

𝐸H
C = 𝐸9

C,IJKA&LK	MN − 𝐸9
C,IJKA	MN  (9) 

where 𝐸9
:,IJKA&LK	MN , 𝐸9

C,IJKA&LK	MN are the active and reactive 
energy losses per day without installing any DG to the 
system; 𝐸9

:,IJKA	MN, 𝐸9
C,IJKA	MN  are energy losses with 

installing the DG units. 

2.2 Problem constraints 

Necessary problem limits should be satisfied while solving 
the DG integration to the RDS to minimize the total 
energy losses. These constraints include the voltage, DG 
size, power factor limits, and power flow governing 
equations. 

The voltage profile should always be within standard 
limits of ±5%, and the bus voltages should be: 

0.95 ≤ |𝑉W| ≤ 1.05 (10) 

where 𝑉W is the bus voltage at bus 𝑘. 
The total installed DG size should be less than the total 

demand at normal conditions, as: 

0 ≤ 𝑃MNZ ≤ 𝑃[\]^_[Z  (11) 

where 𝑃MNZ , 𝑃[\]^_[Z  are the total of the DG power and total 
demand, respectively.  

For optimal power factor (OPF) operation, the MRFO 
algorithm optimizes the PF to be within limits as: 

0.7 ≤ 𝑃𝐹 ≤ 1.0 (12) 

The power flow equations are also satisfied while 
optimizing the DG units as: 

𝑃L + 𝑃MN − 𝑃%&'' − 𝑃[\]^_[ = 0 (13) 
𝑄L + 𝑄MN − 𝑄%&'' − 𝑄[\]^_[ = 0 (14) 

where 𝑃L,𝑄L represent the utility powers; 𝑃MN,𝑄MN 
represent the total injected DG powers; 𝑃%&'',𝑄%&'' 
represent system powers; and 𝑃[\]^_[,𝑄[\]^_[ represent 
the demand powers. 

3. MRFO Algorithm 

The MRFO is a new metaheuristic optimization algorithm 
inspired by the behavior of manta rays creatures (Zhao, 
Zhang, and Wang 2020) published in 2020. The algorithm 
is not widely applied to power system optimization 
problems. This encourages us to adopt it for solving the 
DG allocation problem to reduce the energy losses of radial 
distribution systems (RDS). The MRFO mathematical 
model includes three foraging behavior as follows: 

3.1 Chain foraging 

The chain foraging is modeled as (Zhao, Zhang, and Wang 
2020): 

𝑥J(𝑡 + 1) = 𝑥J(𝑡)+ 𝑟e𝑥(\'K(𝑡) − 𝑥J(𝑡)f
+ 𝛼e𝑥(\'K(𝑡) − 𝑥J(𝑡)f, 𝑖 = 1 (15) 

𝑥J(𝑡 + 1) = 𝑥J(𝑡)+ 𝑟e𝑥Jh4(𝑡)− 𝑥J(𝑡)f
+ 𝛼e𝑥(\'K(𝑡) − 𝑥J(𝑡)f, 𝑖 = 2,… ,𝑁 (16) 

𝛼 = 2𝑟k|log(𝑟)| (17) 

where 𝑥J(𝑡) represents the position of the 𝑖𝑡ℎ manta ray at 
time 𝑡; 𝑟 represents a random number; 𝛼 represents a 
weighting coefficient; 𝑥(\'K(𝑡) represents the best location 
so far; 𝑁 represents the number of rays. 

3.2 Cyclone foraging 

The mathematical model of cyclone foraging is expressed 
as (Zhao, Zhang, and Wang 2020): 

𝑥J(𝑡 + 1) = 𝑥(\'K + 𝑟e𝑥(\'K(𝑡) − 𝑥J(𝑡)f
+ 𝛽e𝑥(\'K(𝑡) − 𝑥J(𝑡)f, 𝑖 = 1 (18) 

𝑥J(𝑡 + 1) = 𝑥(\'K + 𝑟e𝑥Jh4(𝑡) − 𝑥J(𝑡)f
+ 𝛽e𝑥(\'K(𝑡) − 𝑥J(𝑡)f, 𝑖 = 2,… ,𝑁 (19) 

𝛽 = 2	exp	(𝑟4 ×
𝑇 − 𝑡 + 1

𝑇 × sin(2𝜋𝑟4)) (20) 

where 𝑟4 is a random number and 𝛽 is a weighting factor, 
and 𝑡, 𝑇 are the current and maximum iterations. 

To enhance the exploration process, random 
assignments are assigned to rays as follows: 

𝑥)[ = 𝐿𝐵 + 𝑟(𝑈𝐵 − 𝐿𝐵) (21) 

𝑥J(𝑡 + 1) = 𝑥)[ + 𝑟e𝑥)[(𝑡) − 𝑥J(𝑡)f
+ 𝛽e𝑥)[(𝑡) − 𝑥J(𝑡)f, 𝑖 = 1 (22) 
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𝑥J(𝑡 + 1) = 𝑥)[ + 𝑟e𝑥Jh4(𝑡) − 𝑥J(𝑡)f
+ 𝛽e𝑥)[(𝑡) − 𝑥J(𝑡)f, 𝑖 = 2,… ,𝑁 (23) 

where 𝑥)[ is a random position, 𝐿𝐵, 𝑈𝐵 are the lower and 
upper limits of the search space. 

3.3 Summersault foraging 

The summersault action is modeled as (Zhao, Zhang, and 
Wang 2020): 

𝑥J(𝑡 + 1) = 𝑥J(𝑡)+ 2e𝑟,𝑥(\'K(𝑡) − 𝑟{𝑥J(𝑡)f, 𝑖
= 1,… ,𝑁 (24) 

where 𝑟,, 𝑟{ are random numbers. The above steps of the 
MRFO repeat until the stopping criterion is met. In this 
study, the stopping condition is the maximum number of 
iterations. 

4. Results and Discussions 

The standard 69-bus RDS performance is enhanced with 
optimal sizing and sitting different DG units. The main 
purpose is to minimize the total power loss and hence the 
energy loss as a result. The 69-bus RDS, as shown in Fig. 
1, has a power loss of 224.95 kW at normal demand 
conditions. The system data is provided in 
(Khodabakhshian and Andishgar 2016). The optimization 
in this study has two phases. In the first phase, the system 
works at regular demand, and the three different 
algorithms MRFO (Zhao, Zhang, and Wang 2020), ASO 
(Zhao, Wang, and Zhang 2019), and PSO (Kennedy and 
Eberhart 2011), are adopted and implemented to reduce 
the total power losses. In the second phase of the study, 
the same algorithms are used to reduce the total energy 
losses with time-varying demand along the 24-h cycle. 

4.1 Power loss reduction at regular demand 

The MRFO optimizes single-, two- and three-DG units to 
minimize the total system energy losses.  

 
Fig. 1 The 69-bus system layout. 

The MRFO performance is compared to PSO and ASO, 
and other algorithms in the literature when the 
distribution system is loaded with the regular demand 
(fixed PQ load). The DG operates with UPF and OPF 
separately, as discussed in the following sections. 

4.1.1 DG operation with UPF 

In this section, the total power loss (𝑃%&'') is minimized 
while the system is loaded at regular demand with the 
help of the optimal allocation of different DG units 
operating at UPF. The study includes the optimal 
integration of single-, two-, and three-DG units using 
three metaheuristic optimization algorithms. These 
algorithms include the well-known PSO (Kennedy and 
Eberhart 2011) and ASO (Zhao, Wang, and Zhang 2019), 
and the newly published MRFO algorithm (Hemeida et al. 
2020). For a single-DG allocation, the losses are the same 
for all algorithms of 83.177 kW as listed in Table 1, with a 
percentage reduction of about 63% compared to the base 
case loss of 224.95 kW. The MRFO algorithm outperforms 
other algorithms with two-DG units with a 𝑃%&'' of 71.644 
kW compared to 71.779 kW and 71.702 kW for ASO, and 
PSO algorithms, respectively. 

 
Fig. 2 Power loss reduction with UPF operations of different 
algorithms. 

 
 

 
Fig. 3 Voltage profiles without and with different DG units at 

UPF. 
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Table 1  
Unity PF DG allocation at regular demand  

DG units Algorithm Ploss (kW) Size/site 

0 -- 224.95 -- 
1 MRFO 83.177 1872.6/61 

ASO 83.177 1872.4/61 
PSO 83.177 1.872.6/61 
MINLP (Kaur, Kumbhar, and Sharma 2014) 83.485 1870.0/61 
IA (Hung and Mithulananthan 2013) 83.553 1900.0/61 
MTLBO (Martín García and Gil Mena 2013) 83.323 1819.7/61 

2 MRFO 71.644 531.2/17 
1781.5/61 

ASO 71.779 533.3/17 
1719.4/61 

PSO 71.702 547.2/17 
1815.8/61 

MINLP (Kaur, Kumbhar, and Sharma 2014) 71.929 530.0/17 
1780.0/61 

IA (Hung and Mithulananthan 2013) 72.222 510.0/17 
1700.0/61 

MTLBO (Martín García and Gil Mena 2013) 71.776 519.7/17 
1732.0/61 

3 MRFO 69.395 526.8/11 
380.1/18 
1718.9/61 

ASO 70.314 544.9/17 
521.4/50 
1736.4/61 

PSO 69.661 399.3/18 
459.7/66 
1726.9/61 

MINLP (Kaur, Kumbhar, and Sharma 2014) 69.676 530.0/11 
380.0/17 
1720.0/61 

IA (Hung and Mithulananthan 2013) 70.239 510.0/11 
340.0/17 
1700.0/61 

MTLBO (Martín García and Gil Mena 2013) 69.539 493.8/11 
378.4/18 
1672.5/61 

The same behavior of the MRFO algorithm happens with 
the three-DG case, where it achieves the lowest 𝑃%&'' 
among all algorithms with 69.395 kW with a percentage 
loss reduction of about 68.15%. A complete comparison of 
the percentage loss reduction is shown in Fig. 2. The 
results show the dominance of the MRFO algorithm 
compared to other algorithms. 

The voltage profiles of the 69-bus RDS while allocating 
different DG units at UPF are shown in Fig. 3 using the 
MRFO algorithm. The voltage profile increases with 
increasing the number of the DG units due to the extra 
injected real power into the system. Hence, the current in 
the system feeders decreases. The reduction of the feeder 
currents results in fewer power losses, and lesser voltage 
drops from the slack bus to the different branches and 
loads, which leads to the improvements of the voltage at 
system buses. 

 

4.1.2 DG operation with OPF 

When the DG operates with an optimal power factor 
(OPF), it reduces the system power loss dramatically 
compared to that of the operation with UPF. The DG 
operating with OPF supplies active power and reactive 
power to the system to cover some of the load and the 

system losses. As a result, the source power decreases and, 
consequently, the active and reactive power losses 
decrease. In this case, any algorithm optimizes the size, 
site, and PF of each DG. Thus the problem is three-, six-, 
and nine-dimensional type for allocating a single-, two-, 
and three-DG units, respectively. for a single-DG 
operating with OPF, the MRFO reduces the 𝑃%&'' to 23.134 
kW with a percentage reduction of 89.71%, competing with 
the other ASO and PSO algorithms as listed in Table 2 and 
shown in Fig. 4. With two-DGs, the losses are reduced to 
7.189 kW, 7.213 kW, and 7.348 kW for MRFO, ASO, and 
PSO algorithms, respectively. The percentage loss 
reduction increases when the number of the DGs increase, 
as shown in Fig. 4. Moreover, the reduction with MRFO is 
the largest among the three algorithms. 

While allocating different DG units at their OPF, the 
voltage profiles of the 69-bus RDS are drawn in Fig. 5 
using the MRFO algorithm. The voltage profile increases 
with increasing the number of the DG units due to the 
extra injected real power into the system. The voltages 
with 2 and 3 DGs are almost around the unit value. This 
means that DG compensating or injected real and reactive 
power covers most of the load and losses of the system.   
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Table 2  
Optimal PF DG allocation at regular demand 

DG units Algorithm Ploss (kW) Size/site OPF 
0 -- 224.95 -- -- 
1 MRFO 23.134 1828.4/61 0.8148 

ASO 23.149 1849.6/61 0.8179 
PSO 23.134 1828.4/61 0.8149 
MINLP (Kaur, Kumbhar, and 
Sharma 2014) 

23.315 1828.0/61 0.815 

ABC (Abu-Mouti and El-
Hawary 2011) 

23.920 1870.0/61 0.85 

HGWO (Sanjay et al. 2017) 23.160 1819.3/61 0.81 
2 MRFO 7.189 522.0/17 

1734.1/61 
0.8283 
0.8139 

ASO 7.213 507.1/18 
1757.4/61 

0.8215 
0.8185 

PSO 7.348 503.3/17 
1701.9/61 

0.8549 
0.8114 

MINLP (Kaur, Kumbhar, and 
Sharma 2014) 

7.209 522.0/17 
1735.0/61 

0.824 
0.814 

ABC (Abu-Mouti and El-
Hawary 2011) 

7.999 510.0/17 
1785.0/61 

0.85 
0.85 

HGWO (Sanjay et al. 2017) 7.200 514.9/17 
1722.9/61 

0.82 
0.81 

3 MRFO 4.254 494.5/11 
378.8/18 
1674.3/61 

0.8135 
0.8332 
0.8138 

ASO 4.468 362.5/11 
412.7/18 
1738.4/61 

0.7161 
0.8542 
0.8239 

PSO 4.596 396.8/18 
1681.9/61 
431.9/66 

0.8324 
0.8138 
0.8136 

MINLP (Kaur, Kumbhar, and 
Sharma 2014) 

4.28 494.0/11 
379.0/17 
1674.0/61 

0.813 
0.828 
0.814 

IA (Hung and 
Mithulananthan 2013) 

5.09 630.0/17 
900.0/50 
900.0/61 

0.82 
0.82 
0.82 

HGWO (Sanjay et al. 2017) 4.26 497.3/11 
375.2/18 
1665.4/61 

0.81 
0.83 
0.81 

 
 
 
 

 
Fig. 4 Power loss reduction with OPF DGs. 

 

 
Fig. 5 Voltage profiles without and with different DG units at 

OPF. 
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Fig. 6 Daily commercial demand. 

 

4.2 Power loss reduction with time-varying demand 

In this section, the DG units are optimized using the 
MRFO algorithm for reducing the energy losses of the 69-
bus RDS loaded by a commercial load type (Hung, 
Mithulananthan, and Bansal 2014), illustrated in Fig. 6. 
The active and reactive energy losses, 𝐸9|, 𝐸9} respectively 
are calculated during a whole day cycle by integrating the 
power loss curves during the same period. The algorithm 
optimizes the size and site of each DG at every hour, and 
the corresponding power losses are recorded. By the end of 
the day, the power loss curves are generated, and the 
energy losses are evaluated. A complete flowchart for the 
process is shown in Fig. 7. The flow chart starts with 
collecting system and algorithm input data, and then the 
simulation runs for every hour for a whole day (24 h). Then 
starting from the first iteration, the system is solved using 
FBSM, and the objective function is updated as well as the 
particles of the algorithm. The process is repeated until 
the maximum iteration number and then restarted with 
the next hour until the end of the day.  

 

 
 

Fig. 7 Flowchart of the energy loss optimization process. 

    The power loss curves for a single-DG allocation 
using the MRFO algorithm are shown in Fig. 8, 
accompanied by the base curves (without DGs). As can be 
seen that both active and reactive power loss curves follow 
the pattern of the daily load demand, as shown in Fig. 6. 
When the demand increases, more losses are generated in 
the system. The power losses are lower when the DG 
operates with OPF than the case with UPF operation. 
When the MRFO optimizes two- and three-DG units, the 
power curves are shown in Fig. 9 and Fig. 10, respectively. 
The loss curves always follow the load pattern with UPF 
operation, while the active loss curve does not follow it 
with two and three DGs at OPF. The sum integration of 
these loss curves during the whole day yields energy loss 
per day values.  

 
 

   
Fig. 8 Power loss curves without and with a single-DG unit 

using MRFO. 

 
 
Fig. 9 Power loss curves using MRFO with 2 DGs operating at 

(a) UPF and (b) OPF. 
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4.3 Energy loss reduction with time-varying demand 

4.3.1 with UPF DG units 

The MRFO and other algorithms, ASO, PSO, are 
applied to optimize the DG units throughout the whole day 
to minimize the total energy losses and for energy-saving 
purposes. The system is optimized every hour of the day, 
and hence, the energy losses and energy saving are 
calculated.  

Operating with UPF DGs, the energy losses are 
calculated and listed in Table 3. For a single-DG, the 
MRFO optimizes the system to 817.91 kWh and 397.21 
kVarh for active (𝐸9:) and reactive (𝐸9

C) energy losses 
achieving the lowest values compared to the ASO and PSO 
algorithms. On the other hand, with two- and three-DG 
units, the MRFO performance is also better than the ASO 
and PSO algorithms. The matching active (𝐸H:) and 
reactive (𝐸H

C) energy savings are calculated for each case 
study and listed in Table 3. It is clear that increasing the 
number of DG units decreases energy losses and increases 
energy savings. Injecting real and reactive power to the 
system at some buses reduces the power coming from the 
primary substation, which results in a reduction of the 
currents passing in the system feeders. Decreasing the 
currents in the feeders reduces the system losses and 
hence energy losses. Thus this process saves more energy. 

 
 
 

 
 
Fig. 10 Power loss curves using MRFO with 3 DGs operating at 

(a) UPF and (b) OPF. 

 
 

Table 3  
Active and reactive energy losses and equivalent energy savings 
with UPF DGs 
DG 
units 

Algorithm 𝐸9: 
(kWh) 

𝐸9
C 

(kVarh) 
𝐸H: 
(kWh) 

𝐸H
C 

(kVarh) 
0 -- 2134.94 971.21 -- -- 
1 MRFO 817.91 397.12 1317.03 574.09 

ASO 819.35 400.47 1315.59 570.74 
PSO 819.17 399.46 1315.77 571.75 

2 MRFO 751.08 371.82 1383.87 599.39 
ASO 760.40 388.67 1374.55 582.54 
PSO 760.29 377.00 1374.66 594.21 

3 MRFO 730.25 360.65 1404.69 610.56 
ASO 735.79 376.88 1399.15 594.33 
PSO 734.12 365.37 1400.83 605.84 

4.3.2 with OPF DG units 

The second scenario for energy saving is to allocate the 
DGs with OPF. With OPF, the DG injects both real and 
reactive powers into the system. This will share the load 
and losses with the main supply and decrease the total 
system losses. With different DG units, the active (𝐸9:) and 
reactive (𝐸9

C) energy losses are calculated during a day 
cycle and listed in Table 4. The amount of active and 
reactive energy savings (𝐸H:, 𝐸H

C) during the day are also 
listed in the table. The obtained results show that the 
MRFO algorithm achieves the lowest energy losses and 
the highest energy savings. The PSO algorithm comes at 
the second level before the ASO algorithm. The MRFO 
outpaces other algorithms for different cases. At the same 
time, increasing the DG units decrease energy losses and 
increases energy savings. 

Energy savings increase with increasing the DG units.  
On the other hand, both energy savings are more 
significant for the OPF case than that with UPF operation. 
If the electricity tariff is assumed 0.127$/kWh, the cost-
saving is displayed in Fig. 11 for different DG units with 
UPF and OPF cases. The cost-saving is more significant 
with OPF than with UPF. Moreover, increasing the DG 
units maximizes the benefits. 
 

 
Table 4  
Active and reactive energy losses and equivalent energy savings 
with OPF DGs 
DG 
units 

Algorithm 𝐸9: 
(kWh) 

𝐸9
C 

(kVarh) 
𝐸H: 
(kWh) 

𝐸H
C 

(kVarh) 
0 -- 2134.94 971.21 -- -- 
1 MRFO 233.24 144.09 1901.71 827.13 

ASO 239.30 148.22 1895.64 822.99 
PSO 235.93 145.37 1899.01 825.85 

2 MRFO 142.08 110.87 1992.86 860.34 
ASO 143.43 112.84 1991.51 858.37 
PSO 142.39 109.59 1992.55 861.62 

3 MRFO 106.79 93.14 2028.16 878.07 
ASO 111.86 99.50 2023.09 871.72 
PSO 107.21 93.83 2027.74 877.38 
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Fig. 11 Cost-saving per year with MRFO algorithm. 

 

5. Conclusion 

A new optimization algorithm called MRFO has been 
implemented to optimize different DG units to minimize 
the total energy losses of the 69- bus distribution systems. 
The study included single-, two-, and three- DG units. All 
of the DG units are optimized to work with unity and 
optimal power factors. The obtained results showed that 
the increasing number of the DG units reduces the system 
energy losses, and hence, more energy savings and cost 
savings are achieved. Moreover, the results approved the 
proposed MRFO algorithm's superiority over ASO and 
PSO algorithms and other algorithms. The MRFO 
algorithm can optimize the size, site, and power factor of 
every DG along the 24-h cycle to minimize the active and 
reactive energy losses of the distribution systems. For 
future work, the actual modeling of the distributed 
generation such as photovoltaic (PV) and wind energy 
systems (WES) can be modeled and considered together 
with their uncertainty of power generations. 
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