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ABSTRACT. The increasing penetration of renewable energy sources has introduced great uncertainties and challenges into computation 
and analysis of electric power systems. To deal with uncertainties, probabilistic approaches need to be used. In this paper, we propose a 
new framework for probabilistic assessment of power systems taking into account uncertainties from input random variables such as load 
demands and renewable energy sources. It is based on the cumulant-based Probabilistic Power Flow (PPF) in combination with an 
improved clustering technique. The improved clustering technique is also developed in this study by making use of Principal Component 
Analysis (PCA) and Particle Swarm Optimization (PSO) to reduce the range of variation in the input data, thus increasing the accuracy 
of the traditional cumulant-based PPF (TCPPF) method. In addition, thanks to adopting PCA for dimensionality reduction, the improved 
clustering technique can be effectively dealt with a large number of input random variables so that the proposed framework for 
probabilistic assessment can be applied for large power systems. The IEEE-118 bus test system is modified by adding five wind and eight 
solar photovoltaic power plants to examine the proposed method. Uncertainties from input random variables are represented by 
appropriate probabilistic models. Extensive testing on the test system indicates good performance of the proposed approach in comparison 
to the traditional cumulant-based PPF and Monte Carlo simulation. Extensive testing on the test system, using Matlab (R2015a) on an 
Intel Core i5 CPU 2.53 GHz/4.00 GB RAM PC, indicates good performance of the proposed approach (PPPF) in comparison to the TCPPF 
and Monte Carlo simulation (MCS): In terms	of	computation time, PPPF needs 4.54 seconds, while TCPPF and MCS require 2.63 and 251 
seconds, respectively; ARMS errors are calculated for methods using benchmark MCS and their values clearly demonstrate the higher 
accuracy of PPPF in estimating probability distributions compared to TCPPF, i.e., the maximum (Max) and mean (Mean) values of ARMS 
errors of all output random variables are: ARMS%%%&'() = 0.11%, ARMS/0%%&'() = 0.55% and ARMS%%%&'2(3 = 0.06%, ARMS/0%%&'2(3 = 0.35%. 
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1. Introduction 

Over the past decades, the deployment of renewable 
energy in power systems has grown dramatically due to 
the concerns of carbon dioxide emission as well as the 
growth in the demand for energy consumption. However, 
a large number of renewable energy sources has 
introduced great uncertainties and challenges into the 
operation and planning of power systems. Uncertainties in 
power systems result from load demands, renewable 
energy sources, etc. The conventional Deterministic Power 
Flow (DPF) is a vital tool for power system planning and 
operation (Bergen et al. 1986). During the computation, it 
uses specified values of inputs (i.e., loads, power 
generation, etc.). However, information on loads, power 
generation (especially wind and solar power	 generation) 
and so on in a real power system is not certain so output 
variables (i.e., state variables including voltages, angles, 
and line power flows) need to be assessed for a range of 
loads and generation conditions. Using DPF, it is 
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necessary to carry out for all possible system states 
requiring an extremely large computational effort (Zhang 
et al. 2004; Morales et al. 2007). Therefore, DPF has a 
significant limitation in the calculation and analysis of 
power systems. Another way to calculate and analyze the 
system is to use the worst-case scenario to avoid system 
risk; however, it does not accurately reflect the state of the 
system possibly leading to overly pessimistic and non-
optimal techno-economic solutions (Hasan et al. 2019).  

Different from DPF, PPF has been developed to handle 
the uncertainties and become an crucial tool in power 
system planning and operation. PPF was first proposed by 
Borkowska in 1974. Since then, various methods have 
been developed for PPF. Generally, they could be classified 
into three main categories: numerical methods, 
approximate methods, and analytical methods. 

MCS is a well-known numerical method for PPF 
calculation. MCS relies on a significant number of samples 
and repetitive DPF computations to obtain the results. It 
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is recognized as the most accurate method in the field of 
PPF and its results are usually used as a reference to 
evaluate the accuracy of other methods. The main 
drawback of MCS is that it is very time consuming due to 
a large number of simulations so it is difficult to apply for 
large power systems in practice. In order to reduce the 
computational burden of MCS, a number of sampling 
methods such as Latin hypercube sampling (Liu et al. 
2016), Latin supercube sampling (Hajian et al. 2013) and 
importance sampling (Huang et al. 2011) were developed 
and applied. MCS using importance sampling techniques 
via the cross-entropy method was proposed to estimate 
PPF risk events (Leite da Silva et al. 2018). In another 
attempt to improve computational efficiency, Quasi-MCS 
was applied (Tao et al. 2013; Xie et al. 2018). 

On the contrary, approximate methods need much less 
computational time in comparison to that for MCS. Point 
estimate method (PEM) is considered as the 
representative method in this category. In this approach, 
input random variables are represented by a number of 
pairs of values and weights and then the moments of the 
output random variables are computed via functions 
characterizing input-output relationship. Su (Su 2005) 
first proposed the 2m PEM for PPF in which input random 
variables were assumed to be uncorrelated. It was then 
modified by Aien (Aien et al. 2014) to deal with correlated 
random variables. 2m+1 PEM was also introduced to 
improve the accuracy (Morales et al. 2007); however, it 
needs more simulations compared to 2m PEM. Gupta 
(Gupta 2016) pointed out that both three PEM (3PEM) 
and five PEM (5PEM) methods can solve PPF accurately 
in the presence of load and wind generation uncertainties. 
Generally, the efficiency of point estimate method 
decreases as the number of random variables increases, 
thus, it also faces great challenges in applying for large 
power systems. 

In analytical methods, power flow equations are 
linearized so that arithmetic algorithms (such as 
convolution and cumulant techniques) can be adopted to 
obtain probability distributions (i.e., probability density 
functions and cumulative distribution functions, denoted 
as PDFs and CDFs, respectively) of output random 
variables based on probability distributions of input 
random variables. In the early stages of analytical 
methods, convolution techniques (Allan et al. 1977; 
Borkowska et al. 1974) were commonly used. Fast Fourier 
transform was employed by Allan in 1981 (Allan et al. 
1981). However, computation efficiency of these 
techniques was still low. A first-order second-moment 
method was also adopted to obtain the mean and standard 
deviation of output random variables (Wan et al. 2012). 
Among analytical methods, cumulant method is one of the 
fastest ones for PPF computation (Fan et al. 2012), so it is 
suitable for large power systems with a large number of 
input random variables. Cumulant method executes 
power flow calculation only once and obtains cumulants of 
output variables from the cumulant of input variables 
through a simple linear transformation (Zhang et al. 
2004). This method needs a reconstruction techniques 
such as the Gram Charlier series expansion (Zhang et al. 
2004) and Cornish Fisher series expansion (Ruiz-
Rodriguez et al. 2012) to recover the probability 
distributions of output variables.	 Cumulant method is 
based on the linearization of power flow equations, thus 
when the input random variables have large variations, 

the traditional cumulant method for PPF could result in 
significant errors. 

Based on the advantages and disadvantages of each 
group of above-mentioned methods, cumulant method can 
be applied to the planning and operation of power systems 
with different time frames in practice if the accuracy of the 
method is improved. This is why, in the present paper, the 
focus is on improving the accuracy of the TCPPF method. 
Great efforts are	made to address the issue by proposing to 
use a clustering technique to enhance the TCPPF. 

Application of a clustering technique aims to obtain the 
samples in each cluster with smaller variation, compared 
to large range of variation of the whole samples, then 
TCPPF is implemented for each cluster instead of the 
whole samples to improve the accuracy of the cumulant 
method. Among many existing clustering algorithms, K-
means is one of the most popular one (Gan et al. 2007). In 
solving PPF and also probabilistic optimal power flow, 
Deng (Deng et al. 2017; Deng et al. 2019) and Zhou (Zhou 
et al. 2020) tried to handle large variations of input 
random variables using the method of combined cumulant 
and the conventional K-means. K-means is easy to 
execute; however, it has a number of drawbacks: it only 
converges to arbitrary local optima and does not 
guarantee to find the global optimum solution for 
clustering; it is difficult to predict the number of clusters; 
random selection initial cluster centers has a strong 
impact on the final results. Moreover, for a large power 
system with large number of random variables associated 
with loads, renewable energy sources, etc., PPF problem 
needs to manage high dimensional input dataset that 
makes the task of clustering more challenging. 

In order to overcome the above-mentioned limitations 
of TCPPF in general and of existing techniques for 
clustering as well in particular, an improved clustering 
technique based on the combination of PCA and PSO is 
proposed. The proposed PPF approach making use of the 
improved clustering technique is tested on the modified 
IEEE-118 bus test system to demonstrate its performance 
in comparison to MCS and the TCPPF. 

The remainder of the paper is organized as follows. 
Section 2 presents the formulation	 of the TCPPF. In 
Section 3, the improved clustering technique is described, 
while the proposed PPF approach and framework for 
probabilistic assessment of power systems are given in 
Section 4. Section 5 describes the testing of the proposed 
approach on the modified IEEE-118 bus test system and 
the results are discussed. Section 6 gives further 
discussions on the application of methods for probabilistic 
assessment of power systems. Finally, Section 7 
summarizes the main conclusions of the paper. 

2. Cumulant-based Probabilistic Power Flow 
Formulation 

In this section, a TCPPF method is presented (Zhang et al. 
2004). It is based on linear relationship between output 
random variables (i.e., state variables including voltages, 
angles, real and reactive power flows) and input random 
variables (i.e., nodal power injections such as load 
demands, renewable power generation). 

The basic power flow equations can be represented by 
a matrix form as in Eq. (1) and Eq. (2). 

𝑤 = 𝑔(𝑥)      (1) 
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𝑧 = ℎ(𝑥)      (2) 
 

where:  
• 𝑤 : vector of nodal power injections; 
• 𝑥: vector of state variables; 
• 𝑧: vector of line power flows; 
• 𝑔(𝑥): power flow equations; 
• ℎ(𝑥): functions to compute line power flows. 

DPF is performed for the system and then using Taylor 
series expansion to linearize the above equations around 
the solution point 𝑥 gives as in Eq. (3) and Eq. (4). 

∆𝑤 = G|@	∆𝑤      (3) 
 
∆𝑧 = H|@	∆𝑤      (4) 
 

where: G|@ is the inverse of the Jacobian matrix and H|@ is 
the sensitivity matrix of power flows with respect to nodal 
power injections; G|@ and H|@ are computed at the solution 
point 𝑥. 

In PPF computation, each element of 𝑤, 𝑥 and 𝑧 is 
considered as the realization of a random variable 
associated with each nodal power injection, state variable 
and power flow, respectively. Based on the linearized 
relationships in (3) and (4), cumulant-based PPF can be 
adopted. 

The procedure for TCPPF method is briefly described 
as follows: 

• Solve DPF for the system to obtain the expected 
value of random state variables 𝑥 and the 
sensitivity matrices G|@ and H|@ computed at 𝑥; 

• Calculate cumulants of state variables and line 
power flows based on (3) and (4) and using 
cumulants of input random variables; 

• Obtain PDFs and CDFs of the output random 
variables of interest using a series expansion 
technique. 

Popular series expansion techniques, such as the Gram 
Charlier series expansion (Zhang et al. 2004) and Cornish 
Fisher series expansion (Ruiz-Rodriguez et al. 2012) could 
be adopted to approximate probability distributions for 
output random variables. The Cornish Fisher series 
expansion is chosen to use in the current paper because of 
its better performance for non-Gaussian distributions 
(Ruiz-Rodriguez et al. 2012). 

3. Improved Clustering Technique 

3.1 Data clustering 

Clustering is the task of partitioning data points in a 
dataset into a number of clusters such that data points in 
the same clusters are more similar to other data points in 
the same cluster than those in other clusters (Gan et al. 
2007). In other words, clustering algorithms maximize the 
similarity among members within the same clusters, 
while minimizing the dissimilarities between different 
clusters. Therefore, clustering problem can be treated as 
an optimization problem so that optimization algorithms, 
such as GA (Genetic Algorithms) (Bandyopadhyay et al. 
2002; Falkenauer et al. 1998), PSO (Abdmouleh et al. 2017; 
Van der Merwe et al. 2003), etc., can be applied. Different 
from K-means, such optimization algorithms give global 
optimum solution for clustering and provide a good 
performance for clustering. Among them, PSO has main 

advantages as follows (Abdmouleh et al. 2017): it is quite 
simple to implement; it needs few parameters to adjust; it 
can converge fast and give robust result. Thus, PSO is 
applied for clustering in this paper. 

For high-dimensional datasets, the task of clustering 
faces several difficulties, resulting in obtained results. To 
get over this problem, in this paper an effective way is 
suggested to support the clustering task by applying PCA 
to reduce dimensions of the dataset before using PSO 
algorithm. 

3.2 Principal Component Analysis 

PCA is a dimensionality reduction method (Jackson et al. 
1991). PCA is often applied to reduce the dimensionality 
of large datasets. It transforms a large set of variables into 
a smaller one, remaining most of the information in the 
original set (Jolliffe et al. 2002). PCA is carried out on a 
square symmetric matrix, i.e., the correlation or the 
covariance matrix of the dataset. The covariance matrix is 
used if the scales of the considered variables are not 
different. Otherwise, the data need to be standardized 
before using PCA or the correlation matrix is applied (Le 
et al. 2015). 

Suppose n-by-m matrix A contains a dataset in which 
n rows and m columns correspond to observations or 
samples and variables, respectively. PCA is carried out on 
the dat aset as follows (Le et al. 2015): 

• Center the data by subtracting the mean of all 
data points from each individual data point to 
obtain centered matrix AC; 

• Compute eigenvalue (λE, 𝑖 = 1 ÷𝑚) and 
eigenvector (eE, 𝑖 = 1 ÷𝑚) pairs of the covariance 
matrix or correlation matrix of the dataset;  

• Sort eigenvalues in descending order (i.e., λK ≥
λM ≥ ⋯ ≥ λO); 

• Form the projection matrix: E = [eEeM⋯	eO]; 
• Use E to transform AC into a n-by-m matrix B =

(E/AC/)/, where each column of B is called a PC 
(Principal Component). 

The variance of the ith PC (𝑖 = 1 ÷𝑚) is equal to the 
eigenvalue λE associated with that PC. The 1st column of B 
(the 1st PC) corresponding to the largest eigenvalue λK is 
the most important component that contains most of the 
variance (information) in the dataset A, followed by the 2nd 
component, and so on. 

Each PC contributes to total variance of the data as in 
Eq. (5) (Le et al. 2015). 

 𝑣E = 	
VW

∑ VYZ
Y[\

    (5) 
 
If the first k eigenvectors that correspond to the k 

(𝑘 ≪ 𝑚) largest eigenvalues are selected, a reduced matrix 
B_ =	 (E_/AC/)/ could be obtained, where E_ = [eEeM ⋯	e`]. 

The cumulative contribution of the first k PCs is 
calculated as in Eq. (6). 

 C` =	∑ 𝑣b`
bcK     (6) 

 
Eventually, PCA projects the data in matrix A (size n-

by-m) into lower dimension subspace (size n-by-k) by 
picking up a first few numbers of PCs (i.e., k) with the 
largest variances. 
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3.3 Improved clustering technique 

The improved clustering technique, based on combination 
of PCA and PSO clustering algorithm, developed in this 
paper is applied to deal with input random variables in 
PPF problem. The technique is implemented as follows: 

• Construct data matrix A with size of n-by-m in 
which n correspond to number of samples and m 
correspond to the variables; 

• Carry out PCA and transform data into the 
reduced projected data B_ (size of n-by-k, 𝑘 ≪ 𝑚); 

• Perform PSO algorithm to partition data into 
distinct clusters. 

4. Proposed Framework for Probabilistic 
Assessment	

This section introduces the proposed framework for the 
probabilistic assessment of power systems taking into 
account uncertainties from input random variables (i.e., 
load, renewable power generation, etc.) with large range 
of variation resulting in significant errors for the TCPPF. 
In order to tackle this problem, the clustering technique, 
presented in Section 3, is developed to partition sample 
data of input random variables into distinct clusters in 
which the obtained data in each cluster have smaller 
range of variation compared to that in the original data. 
The TCPPF is then carried out for each cluster. 

Procedure for the proposed approach is described as 
follows: 

• Step 1: Represent uncertainties from the input 
random variables by probabilistic models. 

• Step 2: Generate samples of the inputs based on 
their probabilistic models. 

• Step 3: Perform the improved clustering 
technique (Section 3) to partition sample data 
into distinct clusters. 

• Step 4: Run TCPPF for each cluster to obtain 
cumulants of output random variables (i.e., bus 
voltage, line power flow, etc.) based on cumulants 
of input random variables. In case the input 
variables are correlated, the decomposition 
technique presented by Cai (Cai et al. 2012) is 
adopted to obtain uncorrelated data prior to 
running TCPPF. 

• Step 5: Compute the entire cumulants of output 
random variables by adopting the law of total 
probability to combine all results obtained from 
all clusters. 

• Step 6: Approximate the PDFs and/or CDFs of 
output random variables using a series expansion 
technique. 

• Step 7: Perform probabilistic assessment for the 
system such as probability of line overloading, 
probability of over-/under-voltage, etc. 

 

5.   Tests and Results 

In this section, the IEEE 118-bus test system is adopted 
to evaluate the performance of the proposed probabilistic 
assessment approach. The diagram and necessary 
information of branches, buses, and generators of the 
system are given by Christie (Christie 1993). The system 
contains 19 generators, 35 synchronous condensers, 177 
lines, 9 transformers, 189 power injections from loads 
(Only non-zero active and reactive power injections are 

considered). In this test, the focus is on the use of the 
improved data clustering technique while considering 
uncertainties from both loads and renewable energy 
sources (i.e., wind and solar). Hence, the system is 
modified by adding five wind power plants and eight solar 
photovoltaic power plants to buses as shown in Table 1 
and Table 2, respectively. Uncertainties from loads and 
renewable energy sources are assumed to be provided and 
for the sake of simplicity and without loss of generality: 
Load at each bus is represented by a normal distribution, 
whose mean is the base value and standard deviation is 
equal to 10% of its mean; the uncertainties of wind power 
are assumed to have Weibull distributions with their 
parameters as shown in Table 1 and they are correlated 
with correlation coefficient equal to 0.7; the uncertainties 
of solar photovoltaic power are assumed to follow Beta 
distributions with their parameters as given in Table 2 
and they are correlated with correlation coefficient equal 
to 0.8. 

In the test system, there are 202 input random 
variables, including 5 from wind power plants, 8 from 
solar photovoltaic power plants and 189 from active and 
reactive powers of loads. Based on probability 
distributions of input random variables and their 
correlation information, 10000 samples are generated. 
Taken as examples, the PDF of active load power at bus 
11 and wind power at bus 14 are plotted by histograms as 
shown in Fig. 1 and Fig. 2, respectively. 

Matrix A of the samples (its form as described in 
Section 3) has the size of 10000×202. With such a high-
dimensional dataset, the improved clustering technique 
can effectively deal with. The remaining steps of the 
procedure for the proposed approach are then performed 
to achieve the results. At the same time, both a MCS with 
10000 samples and the TCPPF are used to solve PPF to 
assess the performance of the proposed approach. The 
obtained results from MCS are treated as the benchmark. 
The numerical studies are implemented in Matlab 
(R2015a) on an Intel Core i5 CPU 2.53 GHz/4.00 GB RAM 
PC. 
 
Table 1  
Wind power generation information 

Bus Rated power 
(MW) 

Parameters of Weibull distributions of 
wind power generation 

Scale 
parameter 

Shape parameter 

2 90 12 1.4 
14 100 30 1.6 
50 60 21 2.1 
51 80 15 1.5 
84 50 10 2.5 

 
Table 2  
Solar photovoltaic power generation information 

Bus Rated power 
(MW) 

Parameters of Beta distributions of 
solar photovoltaic power generation 

Parameter 1 (a) Parameter 2 (b) 
16 100 3 8 
21 90 1.5 9 
23 60 9 14 
28 50 12 19 
93 35 2.5 9 
94 70 1.6 7 
95 85 1.2 5 
98 65 4 12 
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Fig. 1 Histograms of active load power at bus 11 

 

 
Fig. 2 Histograms of wind power generation at bus 14 

 

In order to evaluate the accuracy of results obtained 
from a PPF method in comparison with that from MCS, 
ARMS (Average Root Mean Square) error (Le et al. 2016; 
Zhang et al. 2004) is calculated as in Eq. (7). 

𝐴𝑅𝑀𝑆 =	 K
h
i∑ (𝐹klmE − 𝐹oopE)Mh

K     (7) 

where: 𝐹klmE and 𝐹oopE  are the 𝑖qr values on CDF curves 
obtained by MCS and the PPF method, respectively; N is 
the number of points on CDFs (Le et al. 2016). In this test, 
the base power of 100 MVA is adopted. 

PPF computation is performed for all three methods to 
obtain results of all output random variables in terms of 
PDFs and/or CDFs; however, for illustration, the PDFs 
and CDFs of selected output random variables are shown. 
Fig. 3 and Fig. 4 depict PDFs and CDFs of real power flow 
through line 63-59 (i.e., denoted as P63-59), respectively, 
while PDFs and CDFs of voltage at bus 51 (i.e., denoted as 
V51) are shown in Fig. 5 and Fig. 6, respectively. 

As observed from the figures, the curves obtained by 
the proposed approach (denoted as PPPF) can better 
match the curves from MCS than those from the TCPPF, 
showing the good performance of the proposed approach in 
estimations of probability distributions. It is worth noting 
that the accuracy of PPPF is significantly improved 
compared to TCPPF at the left and right boundary regions 
(i.e., left and right tails) of the probability distributions. It 
is because the cumulant method is based on the 
linearization of power flow equations and when the input 
random variables have large variations (probability 
distributions with long left and right tails), the 
linearization is significantly affected causing remarkable 
errors in the left and right tails of probability distributions 
of output random variables.  In this paper, thanks to 
adopting clustering technique, large range of variation of 

the whole samples of input random variables is divided 
into various smaller range of variation in PPPF so its 
accuracy is greatly improved compared to TCPPF. 

The results of ARMS errors for P63-59 and V51 are shown 
in Table 3. They again indicate the very good accuracy of 
the proposed aprroach and the good performance of 
applying the improved clustering technique that is 
developed in this paper. ARMS errors help to 
quantitatively evaluate the accuracy of methods in 
comparison to the benchmark MCS. The smaller values of 
ARMS errors demonstrate the higher accuracy of PPPF in 
estimating probability distributions compared to TCPPF. 
For showing an overview of the accuracy in terms of ARMS 
errors in this test, the maximum (Max) and mean (Mean) 
values of ARMS errors of all output random variables 
(including bus voltages and angles, active and reactive 
power flows) are also given as follows: ARMS%%%&'() = 0.11%, 
ARMS/0%%&'() = 0.55% and ARMS%%%&'2(3 = 0.06%, ARMS/0%%&'2(3 =
0.35%. 

For demonstrating the performance of all considered 
methods in computation time, Table 4 is shown. It clearly 
indicates that all the considered cumulant methods just 
needs a few seconds for computation, compared to a 
hundred of seconds required by MCS. Among the two 
cumulant methods, PPPF requires more computation time 
since it has to perform the computation for all clusters 
while TCPPF does it only once. However, the 
computational burden does not increase significantly. 
Therefore,	 PPPF method has high accuracy and gives 
calculation results in a short time, so it is suitable for 
calculation and analysis of power systems, especially large 
power systems in practice where MCS is likely not feasible 
to implement. 

 
 

 
Fig. 3 PDFs of real power flow through line 63-59 (P63-59) 
 
 

 
Fig. 4 CDFs of real power flow through line 63-59 (P63-59) 
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Fig. 5 PDFs of voltage at bus 51 (V51) 

 

 
Fig. 6 CDFs of voltage at bus 51 (V51) 

 
 
Different from conventional DPF that uses specific 

values of input variables of a power flow computation 
problem to obtain fixed values for output variables, PPF 
can provide a range of all possible values and statistical 
information for output variables that are very helpful for 
probabilistic assessment of the power system accounting 
for uncertainties from input variables. The probability of 
line overloading, over-/under-voltage, and so on can be 
estimated. 

Taken as an example, suppose that the upper limit of 
the real power flow of line 63-59 is 180 MW (the vertical 
line in Fig. 3 and Fig. 4), the probability so that power 
through the line is over its limit can be calculated as in Eq. 
(8): 

P{𝑃vwxyz > 180} = 1.6%   (8) 
 
Similarly, probability so that voltage at a specific bus 

is out of the operating range can be evaluated. Assume 
that the operating range of voltage is [0.94, 1.06] p.u., the 
probability being greater than the upper limit is 
determined in Eq. (9). 

P{𝑉yK > 1.06} = 1.5%    (9) 
 

 
 
Table 3  
ARMS	errors	

Output 
ARMS (%) 

TCPPF Proposed approach 
P63-59 0.31 0.05 
V51 0.45 0.09 

Table 4  
Comparison	of	computation	time	

Method Time (s) 

MCS 251 
TCPPF 2.63 
PPPF 4.54 
 
 
 
Similarly, any output random variable of interest in 

the system could be assessed. The results obtained by the 
above probabilistic assessment framework can assist the 
system operator in analyzing the operating states of the 
system to make appropriate decisions as well as propose 
suitable solutions for the system. 

6. Further Discussions on the Application of 
Methods for Probabilistic Assessment of Power 
Systems	

In this paper, a new framework for the probabilistic 
assessment of power systems has been proposed. In this 
section, a discussion on possible applications of methods is 
presented. 

Each group of PPF methods has its own advantages 
and disadvantages. As discussed above, MCS method 
gives accurate and reliable results; however, it is very time 
consuming. Both approximation and analytical methods 
need much less computational time compared to that for 
MCS. However, the efficiency of approximation method 
(typically PEM) decreases as the number of random 
variables increases so it is difficult to apply to large power 
systems with many random variables. On the contrary, 
analytical method, especially cumulant method, is 
suitable for computation of large power systems. Due to 
adopting the linearization of power flow equations, it 
encounters difficulties when the input random variables 
have large variations. This disadvantage is overcome by 
the approach proposed in this paper. 

Basically, a PPF method is appropriate to be selected 
or not depending on the actual application needed: 
• When solving problems in power systems in planning 

domain (e.g., many years, a year, seasons, months, 
weeks) or in operation planning domain (up to a few 
days), the users may not necessarily need fast tools 
for assessment of the system. In this case, MCS is 
suitable to be used. However, for a very large power 
system with too many inputs, MCS is sometimes not 
feasible because of its computational complexity. In 
such a case, PPPF is recommended as an alternative. 
Data on load at each bus and renewable energy 
sources such as wind and solar collected over a long 
period of time from several months to a year or many 
years are used to analyze and construct probability 
distributions for input random variables. 

• For dealing with problems in operation framework 
from a few minutes (very short-term operation) to a 
few hours (short-term operation) and within 24 hours 
(day ahead), approximation and analytical methods 
are suitable to be applied. However, for a large power 
system, cumulant method, especially the PPPF, is 
recommended. Information associated with 
probability distributions of loads and power 
generation from wind and solar resources for each 
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time-step can be provided by a probabilistic 
forecasting technique (Botterud et al. 2011) or a 
scenario-based forecasting technique (Le et al. 2015), 
then PPF is performed using these distributions.	

7.   Conclusions 

In this paper, a new framework is proposed for 
probabilistic assessment of power systems accounting for 
uncertainties from input random variables (i.e., load, 
renewable power generation, etc.) based on the cumulant-
based PPF in combination with an improved clustering 
technique. The improved clustering technique, developed 
in this study, helps to enhance the cumulant PPF method 
to deal with large range of variation in the input random 
variables. In addition, the combination of Principal 
Component Analysis and Particle Swarm Optimization in 
the improved clustering technique makes the cumulant 
PPF method able to apply for a large power system with 
large number of random variables associated with loads, 
renewable energy sources and so on. 

The proposed method is tested on the modified IEEE-
118 bus test system and its results are compared with the 
results obtained by MCS and the traditional cumulant-
based PPF. 

From theoretical analysis and case study on the 
modified IEEE-118 bus test system, some conclusions are 
summarized as follows: 
• When the input random variables of PPF problem 

have large variations, the TCPPF could result in 
significant errors, especially at the tails of the 
probability distributions, so it is not suitable to 
solve PPF for a system with large variations of 
input variables. 

• The proposed method can deal with large variations 
of input variables thanks to adopting the improved 
clustering technique. The case study clearly point 
out that the proposed method can achieve higher 
accuracy than TCPPF while remaining higher 
efficiency compared to MCS. 

• From a practical point of view, PPPF method is 
suitable to apply for both planning and operation of 
power systems in practice. It is able to apply for 
large power systems with large number of random 
variables. 

In this paper, we mostly focus on development of the 
improved clustering technique and the proposed 
framework for probabilistic assessment of power systems 
considering uncertainties from loads and renewable 
energy sources. However, in a real power system, there 
exist several sources of uncertainty following various types 
of probability distribution. In future work, further study 
on the proposed method should be directed to incorporate 
those factors into the PPF problem and the assessment of 
power systems. The improved clustering technique 
proposed in this paper can be considered for application to 
manage input data in solving other problems in power 
systems in particular as well as other fields if needed. 
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