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Abstract. In this study, statistical analysis is performed in order to characterize wind speeds distribution according to different samples 

randomly drawn from wind speed data collected. The purpose of this study is to assess how random sampling influences the estimation 

quality of the shape (k) and scale (c) parameters of a Weibull distribution function. Five stations were chosen in West Africa for the study, 

namely: Accra Kotoka, Cotonou Cadjehoun, Kano Mallam Aminu, Lomé Tokoin and Ouagadougou airport. We used the energy factor 

method (EPF) to compute shape and scale parameters. Statistical indicators used to assess estimation accuracy are the root mean square 

error (RMSE) and relative percentage error (RPE). Study results show that good accuracy in Weibull parameters and power density 

estimation is obtained with sampled wind speed data of 30% for Accra, 20% for Cotonou, 80% for Kano, 20% for Lomé, and 20% for 

Ouagadougou site. This study showed that for wind potential assessing at a site, wind speed data random sampling is sufficient to 

calculate wind power density. This is very useful in wind energy exploitation development. 
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1. Introduction 

The main drivers of the renewed interest in renewable 

energy sources in recent years, are conventional energy 

resources depletion and their greenhouse gas emissions 

which are responsible for climate change. So, the adoption 

of alternative energy sources that enable the reduction of 

greenhouse gas emissions is essential (Gabbasa et al. 

2013). For this, many scientists and governments around 

the world have paid particular attention to renewable 

energy. Among green energy sources, there is wind energy 

(Mostafaeipour 2010). With rapid technology 

development, wind machines have reached higher level of 

industrial reliability, which makes wind power more 

profitable. Wind is mainly characterized by its speed, 

which determines its strength. However, wind speed 

varies during different seasons (Seguro et al. 2000). 

Knowledge of certain parameters such as frequency, 

average speed, wind power density at a site, is important 

for wind resources exploitation (Shu 2013). Modelling 

wind speed distribution can help control seasonal 

variations in wind potential at a site (Al Zohbi et al. 2014; 

Salami et al. 2016; Sadam et al. 2020). Large number of 

studies have been published in scientific literature which 

proposes variety of probability density functions to 
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describe wind speed frequency distributions (Warit et al. 

2015). For statistical analysis of wind speed data 

distribution, Weibull probability density function is 

generally considered the most suitable function due to its 

simplicity, and its high precision (Mostafaeipour et al. 

2014; Salami et al. 2013). According to international 

standard IEC 61400-12 and other international 

recommendations, two-parameter Weibull probability 

density function is the most appropriate distribution 

function for wind speed data. Weibull probability density 

function corresponds perfectly to the wind speed data 

observed on a site (Mouangue, 2014). These Weibull 

function parameters are called shape and scale 

parameters. Several numerical methods have been 

proposed in the literature to calculate Weibull shape and 

scale parameters (Arslan et al. 2014; Guarienti et al. 2020; 

Kapen et al. 2020; George et al. 2014; Ahmed 2013; Signe 

et al. 2019). Akdag and Dinler proposed a new method 

called power density method for calculating Weibull 

parameters (Akdag 2009). Their results indicate that this 

method is more appropriate in terms of comparing wind 

speed average and wind energy. Jowder (2009) used 

graphical and empirical method to determine Weibull 

parameters to calculate wind speed and wind power 
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distribution in kingdom of Bahrain at three heights of 10, 

30 and 60 m. Other methods allow to evaluate Weibull 

function parameters in different regions (Razavieh et al. 

2014; Khahro et al. 2014; Adaramola et al. 2014). Kidmo et 

al. evaluated six methods to calculate Weibull parameters 

to represent wind speed distribution at Garoua in 

Cameroon (Kidmo et al. 2015). Their results have shown 

that the power density method is more suitable than other 

methods. Generally, estimating Weibull parameters at a 

site requires large amount of data over a long period. 

Researchers have estimated these parameters from hourly 

data (Usta et al. 2016). Others, however, used three-hour 

data. Three-hour data use to determine Weibull 

parameters has shown that error made is negligible 

(Ouedraogo et al. 2017). Scientists used wind speed data 

in 174 hours steps, which made it possible to confirm the 

independence hypothesis of wind speed data on Weibull 

parameters estimation (Ramirez 2005). Wind speed data 

sampling is important in order to gain computing time 

when estimating Weibull parameters (Salami et al. 2018). 

The main objective of this study is to assess the influence 

of wind speed data random sampling on Weibull shape and 

scale parameters estimation and on wind power density 

calculation precision. 

2. Case study and wind speed data 

Africa is the continent with the lowest electrification rate 

in world. Only 42% of population has access to electricity, 

against 75% in developed countries. In West Africa, 

electrical energy is mainly produced by thermal and 

hydraulic power stations and through imports from 

neighboring regions. Thermal power plants mainly use 

fossil fuels. Electricity demand always exceeds supply and 

power plant outages are common during peak periods. 

Today, the gap between electricity supply and demand in 

West Africa is estimated to be more than 40% (IEMSPR 

2019). West Africa is one of fastest growing economic 

regions on the African continent and electric power 

insufficiency turns out to be heavy constraint. However, 

as pointed out in the third issue of the review "The West 

African Observatory", devoted to energy issue in West 

Africa, the region is rich in energy resources. Indeed, it has 

a significant hydroelectric potential, wind energy 

potential that would allow wind farms deployment, high 

solar radiation, as well as considerable hydrocarbon 

resources. In sub-Saharan Africa, only 43 megawatts of 

installed wind power were deployed, and another 230 

megawatts were being installed in 2011. The only 

functional wind farm that is on commercial scale is that of 

Cabeolica in Cape Verde. Cape Verde has the largest 

installed capacity with more than 28 MW, followed by 

South Africa with 8.6 MW for two pilot projects. West 

Africa lags the continent, as fewer projects are completed, 

in progress or planned. It is becoming necessary for West 

Africa to find solution to exploit all the potential it has in 

terms of clean and renewable energy, in particular wind 

energy. West Africa can tap into its wind energy potential 

all year round. The sites considered in this study are those 

of Accra Kotoka, Cotonou Cadjehoun, Kano Mallam 

Aminu, Lomé Tokoin and Ouagadougou Airport, all 

located in West Africa.  

Accra Kotoka is home to Kotoka International 

Airport which is the main airport in Ghana. Accra is 

influenced by local steppe climate. Annual temperature 

average is 26.6°C. Precipitation averages are 809 mm per 

year.  

Cotonou International Airport is located to Cotonou 

Cadjehoun. Cotonou is the economic capital and the 

largest city in Benin. The climate is tropical. Temperature 

average throughout year is 26.8°C. The annual rainfall 

average is 1244 mm. Mallam Aminu is home to 

international airport serving Kano, capital of Kano state 

and the most populous city in northern Nigeria. Kano is 

influenced by local steppe climate. There is little rainfall 

in Kano. Temperature average in Kano is 26.1°C. Annual 

average rainfall is 752 mm. Lomé Tokoin is a locality 

which is home to Gnassingbé Eyadema International 

Airport located northeast of Lomé city, capital of Togo. 

Prevailing climate is tropical. Annual average 

precipitation is 859 mm. Temperature average in Lomé is 

26.8°C. Ouagadougou is Burkina Faso capital and the 

largest city. The city is in the center of Burkina Faso, in 

the middle of intertropical zone. This is where 

Ouagadougou International Airport is located, which is 

the largest airport in Burkina Faso. Ouagadougou has 

steppe climate. There is little rainfall in Ouagadougou, 

averaging 788 mm per year. Annual temperature average 

is 28.2°C. Table 1 shows geographic coordinates and 

Figure 1 illustrates selected sites locations on West Africa 

map (Climate-data 2019). 

Wind speed data used in this study are provided by 

meteorological databases of Wyoming University in 

United States (Meteorogram 2019). For each selected site, 

data collected covers period from January 2005 to 

December 2017 or twelve-year registration period. Wind 

speed data is recorded every day at one-hour intervals at 

10 meters height above ground. Table 2 presents some 

statistics descriptive: wind speed average, standard 

deviation, asymmetry, flattening, wind power density and 

Weibull parameters (k and c) of wind speed data at 

selected sites. According to Table 2, a low number of data 

are collected on the sites of Accra (68732) and Kano 

(24283) compared to the sites of Cotonou (150660), Lomé 

(171493) and Ouagadougou (102127). Also Kano, Accra, 

and Cotonou sites have the highest average wind speeds 

at values of 4.9993 m/s, 4.6965 m/s and 4.5460 m/s, 

respectively. On the other hand, the lowest wind speed is 

observed on the Ouagadougou site. Power densities vary 

in proportion to average speeds. Descriptive statistics 

presented in Table 2 give an overview of wind speed 

characteristics at selected sites. 

 

 

 
Fig. 1 Selected sites location 
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Table 1  

Studied sites geographic coordinates 
 

Source: Meteorological databases of Wyoming University, United States (2017). 

 
Table 2 

Weibull parameters and statistics descriptive of wind speed at selected sites 

Sites 
Number of 

data 

K 

 

(-) 

C 

 

(m/s) 

Mean 

 

(m/s) 

Standard 

deviation 

(-) 

Kurt 

 

(-) 

Skew 

 

(-) 

Power density 

 

(W/m2) 

Accra 68732 2.0616 4.6965 4.1603 2.2159 2.7670 0.0880 81.7700 

Cotonou 150660 2.4391 4.5460 4.0312 1.8238 2.4916 0.1378 64.4602 

Kano 24283 2.0574 4.9993 4.4287 2.3016 4.3208 0.4118 98.8275 

Lomé 171493 1.9172 4.0329 3.5777 2.0257 2.3283 0.2425 55.9525 

Ouagadougou 102127 1.8471 3.3557 2.9808 1.6747 4.6219 0.7901 33.6992 

 

 

3. Method 

To assess wind potential on a site, wind speed frequency 

distribution must be expressed (Saeed et al. 2020; Shoaib 

et al. 2019). Weibull distribution is the most used and 

recommended in the literature to express wind speed 

frequency distribution (Houekpoheha et al. 2014). 

3.1 Weibull distribution  

Weibull distribution is a special case of Pearson 

distribution (Chang 2011). In this distribution, wind 

speed variations are characterized by two functions: 

probability density function and cumulative distribution 

function (Sathyajith and Geeta 2011). Probability density 

function indicates probability for which wind gave speed

v . Weibull distribution probability density function f(v) 

is given by relation (1) (Wais 2017; Mathew 2006). 
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−      
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     (1) 

 

 

Cumulative speed distribution function gives probability 

that wind speed is less than or equal to speed v . 

Cumulative distribution function F(v) is given by relation 

(2). 
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3.2 Weibull parameters estimation 

There are several methods for estimating Weibull 

parameters from wind data at a site (Kang et al. 2018; 

Kasra et al. 2016; Masseran 2015). In this study, energy 

pattern factor method is used (Tizpar et al. 2014). Energy 

pattern factor 
pfE  is given by equation (3) (Boudia et al. 

2015). 
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With gamma function Γ(x) given by relation (4). 
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The parameter k is obtained by relation (5). 
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The scale parameter c is given by equation (6). 
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3.3. Wind speed average 

Wind speeds mean �̅� value is given by equation (7). 

 

1
1
 

=  + 
 

v c
k

                     (7) 

3.4 Wind power density  

Wind energy power density represents amount of energy 

produced by wind (Ouarda et al. 2015). It is the most 

important characteristic of wind (Fagbenle et al.; 2011). 

Suppose that S is a cross section through which wind 

Country Sites 
OACI code Latitude Longitude Altitude  

(m) 

Ghana Accra Kotoka DGAA 5.60°N 0.17 °W 69 

Benin Cotonou Cadjehoun DBBB 6.35°N 2.38°E 9 

Nigeria Kano Mallam Aminu DNKN 12.05°N 8.53°E 481 

Togo Lomé Tokoin DXXX 6.17°N 1.25°E 25 

Burkina Faso Ouagadougou DFFD 12.35°N 1.52 °W 306 
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flows perpendicularly with a speed v, wind power P (v) is 

given by relation (8) (Prem et al. 2018). 

 

( ) vS
v

vP
2

2
=    [W]        (8) 

 

Wind energy distribution density is obtained by 

multiplying wind power density by each wind speed 

probability according to equation (9) (Mohammadi et al. 

2015). 
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By integrating equation (9) for study period, wind power 

density average is obtained according to equation (10) 

(Hennessey 1977). 
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3.5 Statistical performance indicators 

To evaluate Weibull distribution parameters and wind 

power density computational performance, different 

statistical indicators were used in this study. Standard 

deviation is used to measure data dispersion. Relation 

(11) gives it. 
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Kurtosis coefficient or Pearson flattening coefficient 

measures distribution overwriting degree of a real 

random variable. It is given by relation (12). 
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Skewness coefficient or asymmetry coefficient measures 

distribution asymmetry degree of a real random variable. 

It is defined by expression (13). 
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Relative Percentage Error (RPE) shows the difference 

between wind power density calculated from sample and 

power density calculated with the full dataset of wind 

speed collected from which sample is taken. RPE is 

defined by relation (14) (Sabzpooshani et al. 2014). 

 

( )*100
−

= tP P
RPE

P
     (14) 

 

where: 

• Pt is sample power density,  

• P is total data power density. 

 

Root Mean Square Error (RMSE) assesses error made 

when calculating statistical parameters of sample drawn 

from data collected. Relation (15) gives the RMSE. 
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where: 

• N is intervals total number, 

• yi is observed value frequency, 

• xi is the frequency value obtained by Weibull 

distribution. 

 

Confidence interval is used to assess estimation precision 

of sample statistical parameter, as given by relation (16).  

 

*= x

s
IC m t

n

      (16) 

 

where: 

• IC is confidence interval,  

• t is confidence level value,  

• s is sample standard deviation, 

• n is sample size,  

• mx is sample mean. 

3.6 Methodology 

This involves taking different sizes of random samples 

from wind speed data collected, then estimating Weibull 

distribution parameters and wind power density of each 

sample at five studied sites. A simulation program is 

configured in Matlab environment. 

The program accesses files in database and performs 

wind speeds random sampling according to data 

percentage predefined by the user. For each sample, 

RMSE on Weibull parameters and the RPE on wind 

power density estimation are calculated at five the 

studied sites. Several series of simulations are carried 

out. For each series of simulations, parameters k and c 

mean and standard deviation for 100 simulations are 

used to calculate estimation confidence interval. 

 

4. Results and discussions 

Five sites from West Africa were chosen for this study. 

Several simulations were performed for Weibull 

parameters estimation and for power density evaluation 

at all sites. Weibull parameters and wind power density 

statistical precision parameters were calculated.  

Figures 2.d to 2.f present Weibull parameters and 

wind power density for sampled wind data of size: 90%, 

80%, 70%, 60%, 50%, 40%, 30%, 20%, 10% of collected 

data, as well as statistical indicators for the five study 

sites. 
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In view of the results in Figures 2.d to 2.f, for all sites, 

the root mean squared error (RMSE) made on Weibull 

parameters k and c estimation in the order of magnitude 

of the thousandth (1/1000) for some samples and of the 

hundredth (1/100) for others. For the relative percentage 

error (RPE) made on calculated wind power density is 

between -1% to 1% for all data samples and at all sites. 

The statistical parameters are calculated with an 

acceptable precision of 0.01. The RPE on power density is 

very close to zero. These errors are therefore negligible. 

Consequently, the impact of these wind speed data 

samplings on the Weibull parameters estimation is 

insignificant. 

Figures 2.a to 2.c present Weibull parameters and 

wind power density for 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 

1% wind speed data samples, as well as statistical 

indicators at Accra, Cotonou, Kano, Lomé, and 

Ouagadougou site. Results in Figures 2.d to 2.f show that, 

at all sites, error made on Weibull parameters k and c 

estimations is in the order of the hundredth, except at 

Kano site, where already at 2% wind speed data, RMSE 

on k and c are order of tenth. For relative percentage error 

made on calculated wind power density is between -1% to 

1%, for all samples and at all sites. At Kano site, for 

samples less than or equal 2% of wind speed data, error 

made in parameters k and c estimation is not negligible. 

For 0.9%, 0.8%, 0.7%, 0.6%, 0.5%, 0.4%, 0.3%, 0.2%, 0.1% 

data samples, tables 3 to 6 present Weibull parameters 

and wind power density, as well as statistical indicators 

at Accra, Cotonou, Lomé, and Ouagadougou site. 

The Weibull distribution curves for all the five sites 

correspond to maximum and minimum confidence 

intervals, as shown in Figures 3a to 3.f. The results of 

Table 3 show that for Accra site, RMSE on c is in the order 

of tenth for sample sizes less than 0.9%. Distribution 

function and Weibull distribution curves for the Accra site 

do not fit the histograms of k and c, as shown in Figure 

3.g. On the Cotonou site (Table 4), RMSE on k and c are 

around tenth for sample sizes less than 0.2%. Distribution 

function and Weibull distribution curves on the Cotonou 

site do not fit the histograms of k and c, as shown in 

Figure 3.h. At the Lomé site (Table 5), RMSE on c is 

around tenth for sample sizes less than 0.3%. Distribution 

function and Weibull distribution curves on the Lomé site 

do not fit the histograms of k and c, as shown in Figure 

3.i. On the Ouagadougou site (Table 6), RMSE on k is in 

the order of one tenth for sample sizes less than 0.5%. 

Distribution function and Weibull distribution curves at 

Ouagadougou site do not fit the histograms of k and c, as 

shown in Figure 3.h. 

For all sites, the relative percentage error (RPE) 

made on power density calculation is between -1% to 1% 

for all samples between 0.1% and 0.9% of wind speed data. 

Therefore, their results are biased and should not be 

considered. 

The Weibull distribution curves correspond to linked 

curves to maximum and minimum confidence intervals, 

and Weibull distribution curve, considering all data, is 

practically the same in figures 3.a to 3.e respectively at 

Kano, Accra, Cotonou, Lomé, and Ouagadougou site. 

These obtained results show that Weibull parameters k 

and c, can be estimated with an acceptable accuracy at 

the five sites by considering a part of measured data at 

each site and not all wind measured data. 

 

 

 
Table 3 

Weibull parameters, power density and statistical indicators at Accra site 

Data 

sample 

k 

[-] 

c 

[m/s] 

Power density 

[W/m2] 

RMSE for k 

[-] 

RMSE for c 

[-] 

RPE for power density 

[-] 

0.9% 2.0590 4.7004 82.3415 0.0841 0.1121 0.6953 

0.8% 2.0798 4.7170 82.4039 0.0840 0.1046 0.7705 

0.7% 2.0687 4.6876 81.2820 0.0818 0.1070 -0.5992 

0.6% 2.0608 4.6945 82.1508 0.1040 0.1183 0.4648 

0.5% 2.0725 4.6903 81.4197 0.1008 0.1378 -0.4290 

0.4% 2.0626 4.6765 81.2014 0.1109 0.1497 -0.6990 

0.3% 2.0666 4.7094 83.0732 0.1277 0.1782 1.5699 

0.2% 2.0981 4.6921 80.8987 0.1467 0.2010 -1.0758 

0.1% 2.1034 4.7017 82.1218 0.2194 0.3294 0.4296 

 
 

Table 4 

Weibull parameters, power density and statistical indicators at Cotonou site 

Data 

sample 

k 

[-] 

c 

[m/s] 

Power density 

[W/m2] 

RMSE for k 

[-] 

RMSE for c 

[-] 

RPE for power density 

[-] 

0.9% 2.4364 4.5414 64.3562 0.0473 0.0508 -0.1615 

0.8% 2.4351 4.5426 64.4408 0.0503 0.0690 -0.0299 

0.7% 2.4487 4.5500 64.5093 0.0587 0.0634 0.0762 

0.6% 2.4370 4.5405 64.3329 0.0632 0.0697 -0.1978 

0.5% 2.4358 4.5329 64.0391 0.0593 0.0758 -0.6575 

0.4% 2.4382 4.5416 64.3824 0.0739 0.0807 -0.1208 

0.3% 2.4516 4.5452 64.3255 0.0821 0.0897 -0.2093 

0.2% 2.4284 4.5317 64.2666 0.1033 0.1344 -0.3011 

0.1% 2.4523 4.5342 64.0817 0.1342 0.1685 -0.5906 
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a) 

 
 

d) 

 
 

 

b) 

 
 

e) 

 
c) 

 
f) 

 
Fig. 2 Error (RMSE, REP) curves for wind speed on the five sites according to data sample size 
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a) Kano site for 40% sample data 

 
f)  Kano site for 2% sample data. 

 
b) Accra site for 30% sample data. 

 
g) Accra site for 0.3% sample data 

 
c) Cotonou site for 20% sample data 

 
h) Cotonou site for 0.2% sample data. 

 
 

d) Lomé site for 10% sample data. 

 
i) Lomé site for 0.3% sample data. 

 

e) Ouagadougou site for 20% sample data. 
 

j) Ouagadougou site for 0.3% sample data. 

Fig. 3 Weibull distribution curves for wind speed on the five sites according data sample size. 
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a) k using all monthly data vs. k using 20% of monthly 

data 

 
d) k using 20% of monthly data 

 
b) c using all monthly data vs. c using 20% of monthly data 

 
e) c using 20% usi monthly data 

 

 

 
c) Power density using all monthly data vs. Power density 

using 20% of monthly data 

 

 
f) Power density using 20% of monthly data 

 

 

Fig. 4 Monthly variation of Weibull distribution parameters (k and c) and power densty on the five sites using 20% data sample size. 
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Table 5 

Weibull parameters, power density and statistical indicators at Lomé site 

Data 

sample 

k 

[-] 

c 

[m/s] 

Power density 

[W/m2] 

RMSE for k 

[-] 

RMSE for c 

[-] 

RPE for power density 

[-] 

0.9% 1.9182 4.0273 55.7349 0.0385 0.0525 -0.3914 

0.8% 1.9189 4.0333 55.9651 0.0401 00574 0.0215 

0.7% 1.9158 4.0231 55.6528 0.0371 0.0647 -0.5396 

0.6% 1.9150 4.0255 55.7933 0.0454 0.0708 -0.2863 

0.5% 1.9217 4.0280 55.6816 0.0478 0.0730 -0.4875 

0.4% 1.9241 4.0400 56.1474 0.0608 0.0895 0.3460 

0.3% 1.9195 4.0388 56.2668 0.0653 0.1007 0.5575 

0.2% 1.9233 4.0151 55.2143 0.0788 0.1139 -1.3380 

0.1% 1.9323 4.0380 56.1602 0.1200 0.1696 0.3689 

 

Table 6 

Weibull parameters, power density and statistical indicators at Ouagadougou site 

Data 

sample 

k 

[-] 

c 

[m/s] 

Power density 

[W/m2] 

RMSE for k 

[-] 

RMSE for c 

[-] 

RPE for power density 

[-] 

 0.9% 1.8537 3.3581 33.7792 0.0725 0.0705 0.2350 

0.8% 1.8412 3.3600 34.1309 0.0697 0.0659 1.2632 

0.7% 1.8656 3.3448 33.1835 0.0902 0.0728 -1.5559 

0.6% 1.8568 3.3501 33.5919 0.0997 0.0766 -0.3210 

0.5% 1.8601 3.3639 34.0461 0.1185 0.0958 1.0173 

0.4% 1.8580 3.3385 33.2936 0.1096 0.0973 -1.2199 

0.3% 1.8730 3.3724 34.3112 0.1485 0.1148 1.7820 

0.2% 1.8711 3.3500 33.6287 0.1356 0.1372 -0.2114 

0.1% 1.8680 3.3419 34.2772 0.2051 0.2267 1.6846 

 

 

Figures 4.d through 4.f present the monthly variations of 

the parameters k, c and the wind power density, 

respectively, estimated using only 20% of the monthly 

data collected on the five wind sites considered in this 

study. To appreciate the estimates of these parameters, 

its compared them to the parameters calculated using all 

100% of the monthly data collected. The results of these 

comparisons are shown in Figures 4.a through 4.c. In 

these figures, a perfect linear correlation (R2 almost equal 

1) between the parameters estimated using only 20% of 

the monthly data collected and the parameters calculated 

using all 100% of the monthly data collected is observed. 

The RMSE calculated on the estimate of the k parameters 

using 20% of the data are less than 0.01 except for the 

Kano site for which the RMSE is equal to 0.020295 (Fig 

4.a). The same thing is observed for the estimation of the 

parameters c where all the RMSE are less than 0.01 

except for the Kano site for which the RMSE is equal to 

0.015589 (Fig 4.b). Thus, a 20% sample of data collected 

on these four sites (Accra, Cotonou, Lomé, and 

Ouagadougou) can used to estimate Weibull's k and c 

parameters with an RMSE less than 0.01. The 

parameters k and c being parameters which are used for 

the estimation of the power density (equation (9)) on a 

site, we can further derive that the estimations of the 

power densities using the 20% of data collected on the four 

(04) sites (Accra, Cotonou, Lomé and Ouagadougou) are 

acceptable as confirmed in Figure 4.c. The power density 

variation curves (Fig. 4.f) on the five study sites show that 

the power densities differ appreciably from one month to 

another, especially in Kano. Only the Ouagadougou site 

has a power density of less than 60 m2/W throughout the 

year. In Lomé, Cotonou, and Accra, the greatest power 

densities occur during the months of February, March, 

April, July, August and September. This observation 

confirms the results obtained in (Salami et al. 2016). 

Optimal use of wind energy can therefore be envisaged on 

these sites during these six months. 

To validate this present study method, the obtained 

results are compared to results of other methods such as 

that used odd and even class wind speed time series of the 

Weibull distribution histogram to estimate Weibull 

parameters (Salami et al. 2018), the one which also uses 

numerical methods for determining Weibull distribution 

parameters (Guarienti et al. 2020) and to results of 

Analysis and efficient comparison of ten numerical 

methods in estimating Weibull parameters for wind 

energy potential (Kapen et al. 2020). This comparison 

allows to say that the random sampling of the wind speed 

data for shape and scale parameters calculation gives 

results as precise as use of odd and even class wind speed 

time series of distribution histogram or all wind speed 

data collected at a site to estimate Weibull parameters. 

This approach makes it possible to precisely determine 

Weibull parameters with a reduced size of wind speed 

collected data and ultimately leads to a reduced 

computation time. 

 

5. Conclusion 

The main objective of our study is to assess the 

impact of wind speed data random sampling on the 

quality of Weibull shape and scale parameters estimation. 

The study considered the wind sites of Accra in Ghana, 

Cotonou in Benin, Kano in Nigeria, Lomé in Togo, and 

Ouagadougou in Burkina Faso. In general, the study 

shows that samples larger than 20% of wind speed data 

collected give Weibull parameters k and c approximately 

equal to those of all wind speed data collected, with 
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maximum error around 0.05. With this very small 

difference we can conclude that Weibull parameters 

estimation is acceptable. 

Study results show that good accuracy in Weibull 

parameters and power density estimation is obtained 

with the following sampled data sizes: 30% of wind speed 

data for Accra, 20% for Cotonou, 80% for Kano, 20% for 

Lomé, and 20% for Ouagadougou. 

This study results are very useful in the development 

of wind energy. In the case of wind potential assessment 

which is necessary for any wind turbine installation 

project, wind speed data random sampling may be 

sufficient to calculate wind power density. This saves 

computing time. Better yet, this result enables wind 

project developers to confidently compress wind data 

through sampling prior to any extensive energy potential 

evaluation while still expecting the same results as when 

working with full datasets.  

Nomenclature 

f(v) : Weibull distribution probability density 

function 

F(v) : cumulative distribution function 

Epf: : energy pattern factor 

Γ(x): : gamma function 

k : shape parameter 

c : scale parameter (m/s) 

v : wind speed (m/s) 
�̅� : wind speeds mean (m/s) 

P(v): : wind power (W/m2) 

�̅�: : wind power density average (W/m2) 

ρ : air density (kg/m3) 

σv : standard deviation 

K : kurtosis coefficient 

S : skewness coefficient 

RMSE : root mean square error 

RPE: : relative percentage error 

IC : confidence interval 
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