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Abstract. This paper deals with the multi-objective optimization dispatch (MOOD) problem in a DC microgrid. The aim is to formulate 
the MOOD to simultaneously minimize the operating cost, pollutant emission level of (NOx, SO2 and CO2) and the power loss of conversion 
devices.  Taking into account the equality and inequality constraints of the system. Two approaches have been adopted to solve the MOOD 
issue. The scalarization approach is first introduced, which combines the weighted sum method with price penalty factor to aggregate 
objective functions and obtain Pareto optimal solutions. Whilst, the Pareto approach is based on the implementation of evolutionary multi-
objective optimization solution. Single and multi-objective versions of multi-verse optimizer algorithm are, respectively, employed in both 
approaches to handle the MOOD. For each time step, a fuzzy set theory is selected to find the best compromise solution in the Pareto 
optimal set. The simulation results reveal that the Pareto approach achieves the best performances with a considerable decrease of 28.96 
$/day in the daily operating cost, a slight reduction in the power loss of conversion devices from 419.79 kWh to 419.29 kWh, and in less 
computational time. While, it is noticing a small increment in the pollutant emission level from 11.54 kg/day to 12.21 kg/day, for the daily 
microgrid operation. This deviation can be fully covered when comparing the cost related to the treatment of these pollutants, which is 
only 5.55 $/day, to the significant reduction in the operating cost obtained using the Pareto approach. 
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1. Introduction 

In recent years, due to the environmental concerns and 
increasing demand for clean and sustainable energy, 
development of renewable energy technology has become 
the focus of several current studies. However, the 
integration of renewable energy sources (RESs) into the 
existing power system presents some challenges. This is 
mainly related to the intermittent and random nature of 
RESs. If the permanent production from those sources is 
performed without control, it will increase the power 
mismatching due to the uncertainties in power generation 
from RESs, also it will cause fluctuations in voltage and 
frequency of the main grid (Wang, Sechilariu and 
Locment. 2012). 

Microgrid (MG) concept seems to be a promising 
alternative for the comprehensive utilization of RESs and 
other form of distributed generations (DGs) (Liu et al. 
2015).  A typical MG is consisting of DGs, battery storage 
system (BSS), and loads. 

 Generally, it is equipped with an energy management 
system (EMS) as an essential component in order to 
improve the reliability and supply security of the system, 
taking into account the economic and environmental 
impact associated with the MG operation (Rodríguez del 
Nozal et al. 2020). 
                                                        
* Corresponding author: lagouir.mar1@gmail.com 

The Multi-objective optimization dispatch (MOOD) is 
a basic problem in MG system operation. And various 
objective functions and models have been discussed and 
developed in the application of the MG such as: minimize 
the operating cost, minimize the pollutant gas emissions, 
minimize the cycle degradation of the battery storage 
system (Feng et al. 2020), minimize the power loss of the 
system (Zhang et al. 2020), maximize the comfort and the 
economic benefit of the end users by including demand 
side management approach (Lokeshgupta and 
Sivasubramani. 2018) in the formulated problem. 

There are many potential ways to deal with the multi-
objective optimization problem (MOOP). The scalarization 
approach requires the transformation of the MOOP into a 
single objective optimization. The weighted sum method 
(WSM) is widely considered to formulate the optimization 
problem. Then the Pareto optimal front can be obtained 
through multiple runs using well-known metaheuristic 
algorithms. In (Mondal, Bhattacharya and nee Dey. 2013), 
the authors discuss the application of the gravitational 
search algorithm (GSA) to solve the economic emission 
load dispatch problem, considering the penetration of 
wind power. The price penalty factor (PPF) is introduced 
to convert the multi-objective problem into a single one. 
Then the set of Pareto optimal solutions (POSs) was 
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generated using weighting factor. The results obtained by 
GSA have been compared with those of biogeography-
based optimization. They reveal that GSA outperforms the 
biogeography-based optimization in terms of solution 
quality and computational efficiency. The authors in 
(Abdullah et al. 2015), propose a modified particle swarm 
optimization with time-varying acceleration coefficients 
(MPSO-TVAC) for economic emission load dispatch 
optimization. Similarly, a combination of PPF (Zhang, 
Gong and Ding. 2012) and WSM has been adopted to 
aggregate the objective functions and to find the POSs of 
the formulated problem, then the best compromise 
solution is determined based on a fuzzy ranking approach. 

However, current studies trend toward the application 
of the evolutionary multi-objective algorithms to 
approximate the Pareto set of the MOOP. In (Aghajani 
and Ghadimi. 2018) a multi-objective particle swarm 
optimization (MOPSO) method was employed for day-
ahead energy management, considering the operation cost 
and emission rate as objective functions to be minimized. 
Then the results are compared with non-dominated 
sorting genetic algorithm II (NSGA-II) technique, to show 
the superior performance of the proposed method.  

The research in (Sundaram. 2020), proposed the 
implementation of Multi-objective multi-verse optimizer 
(MOMVO) algorithm to solve both the combined economic-
emission dispatch and the combined heat and power 
economic emission dispatch problems. Considering 
challenging constraints such as valve-point effects, ramp 
rate limits and the feasible operating region of 
cogeneration units. The statistical analysis proves the 
ability of the proposed method to provide better solutions 
compared to existing methods in literature such as NSGA 
II, MOPSO and others. The authors in (Ghiasi et al. 2021) 
solved the energy management of a MG consisting of 
various DGs. The optimization problem is formulated to 
simultaneously minimize the total operational costs and 
the environmental pollution effects. An improved multi-
objective differential evolutionary optimization algorithm 
is suggested to handle the optimization problem.  

Recently, there has been a growing interest in 
proposing new and hybrid optimization algorithms to deal 
with the MOOD problem in MG system. Multi-objective 
fireworks algorithm with gravitational search operator 
(MFAGSO) (Wang et al. 2017), MOPSO method (Aghajani 
and Ghadimi. 2018), Antlion optimizer algorithm  
(Kamboj, Bhadoria and Bath. 2017; Alazemi and Hatata. 
2019; Hatata and Hafez. 2019; Van, Snasel and Nguyen. 
2020), NSGA-II optimization method (Contreras, Cortes 
and Myrzik. 2019), strength Pareto evolutionary 
algorithm (Yuan et al. 2017), MPSO-TVAC (Abdullah et al. 
2015), multi-objective grey wolf optimization (Haseeb et 
al. 2020). 

In this paper the multi-objective optimization dispatch 
problem has been solved using both approaches. The 
scalarization method is first implemented. It is based on 
the application of the WSM with PPF in order to convert 
the MOOD problem into a single objective function, then 
the Pareto sets is obtained through multiple runs by 
adjusting the weight coefficients. Finally, for each 
combination of weights, the single version of multi-verse 
optimizer (MVO) algorithm is selected to handle the 
formulated optimization problem. On the other hand, the 
Pareto approach requires the application of the MOMVO 

based evolutionary multi-objective algorithm to deal with 
the considered conflicting objective functions.   

The MOOD is formulated in order to minimize 
simultaneously three contradictory objective functions 
representing: the overall operating cost, the emissions 
level of (NOx, SO2, CO2), and the power loss of the 
conversion devices, taking into account the technical 
constraints of the system (Taha, Abdeltawab and 
Mohamed. 2018).  Finally, to determine the best 
compromise solution from POSs, integrated a decision-
making based on a fuzzy set theory is successfully 
employed. To validate the robustness and efficiency of the 
proposed approaches, the performance of both techniques 
is compared.  

The paper is organized as follows: Section 2 details the 
formulated optimization problem. Section 3 is dedicated to 
describing the proposed two approaches to solve the multi-
objective optimization dispatch problem. The obtained 
simulation results are presented and discussed in Section 
4. Finally, Section 5 concludes the work. 

2. Problem Formulation 

The MG under study is running under grid connected 
mode. Fig. 1 shows the architecture of the proposed MG 
power system. It mainly contains photovoltaic (PV) system 
and wind turbine (WT) modules as RESs. Three 
conventional energy sources (CESs), respectively 
represented by a diesel engine (DE), fuel cell (FC) unit and 
a micro-turbine (MT) as well as an energy storage system 
(ESS). These components are controlled by a centralized 
EMS, and the connection to the main grid is ensured 
through a point of common coupling (PCC). Meanwhile, 
the MG system includes a number of power conversion 
devices, which are mainly AC/DC and DC/DC conversion 
devices. 
 

 
Fig. 1 Architecture of the studied MG under grid connected mode 
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2.1. Control Strategy of the DC Microgrid 

In grid connected mode, the MG system exchanges 
power with the main grid through purchasing or selling 
electricity. The control strategy of the studied DC 
microgrid is detailed as follows, and it is depicted in the 
flowchart of Fig. 2: 
 

- The load is mainly supplied by both PV 
generation system and WT modules as they are 
sustainable and clean sources. 

- When the load is low, and there is an abundance 
of the power generated from RESs. The excess of 
power will be used for charging the BSS. Once the 
battery reaches a maximum state of charge (SoC), 
the remaining power will be sold to the main grid. 

- During peak periods of load, when the combined 
output power of both RESs and the BSS during 
discharging cycles cannot meet the peak load. 
The EMS incorporates the three CESs in the 
energy management, while permitting the import 
of power from the main grid. The participation of 
each element in the energy management will be 
limited to its response to the formulated MOOD 
problem. 

- During the transaction process with the main 
grid, if a grid failure is caused the load shedding 
option should be taken into consideration. 
Meaning that the power generation will be 
limited to the internal MG’s sources only, given 
priority to supply the critical load. 

 
Fig. 2 Flowchart of the proposed strategy control in grid 
connected mode 

2.2. Modelling of the Multi-Objective Optimization 
Dispatch Problem 

Beside the operation control of the MG’s components, the 
developed EMS is designed with the aim to handle the 
MOOD problem, considering technical, economic and 
environmental tasks simultaneously. The operating cost 
of the MG power system is defined as the first objective 
function to be minimized, followed by the pollutant gas 
emissions of nitrogen oxide, sulfur dioxide and carbon 
dioxide (NOx, SO2 and CO2), respectively. Finally, the 
third objective function is the power loss of the conversion 
devices.  

Two approaches are proposed to solve the MOOD 
problem. The scalarization method based on the 
application of PPF with WSM to transform the multi-
objective optimization problem into a single-objective 
problem and to find the Pareto optimal solutions. A set 
of feasible solutions could be obtained by assigning 
various combinations of weight coefficients to the 
formulated objective function (Abdullah et al. 2015). 

As regards the Pareto approach, depends on the 
application of multi-objective optimization solution 
directly to the formulated problem. Therefore, the 
MOMVO algorithm is applied to deal with the MOOD 
problem. Fig. 3 provides an illustrative presentation of 
the two approaches. Finally, the mathematical 
formulations of the three contradictory objective 
functions are described in the following subsection. 

 

 
Fig. 3 Illustrative presentation of the proposed two approaches to 
solve the MOOD 
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2.2.1. Minimization of the operating cost function 
The primary concerning of the proposed energy 
management approach is the minimizing of the operating 
cost. It consists of the fuel cost of generators , 
operation & maintenance cost , start-up cost  
and the transaction cost of exchanging power with the 
main grid  (Mohamed and Koivo. 2012; Moradi et al. 
2018; Nemati, Braun and Tenbohlen. 2018; Alvarado-
Barrios et al. 2019; Dey, Shivam and Bhattacharyya. 2019; 
Wang, He and Deng. 2019): 

  (1) 

  (2) 

 

  (3) 

  (4) 

  (5) 

 
Where 

•  denote the cost coefficients of 
generating unit  , 

•  is the operation and maintenance cost 
coefficient in [$/kWh], 

•  is the active power output of generating 
unit , 

•  represent respectively, hot and cold 
start-up cost, 

•  is the constant of cooling time, 
•   is the cost of purchasing electricity from 

the main grid in [$/kWh], 
•  is the cost of selling electricity to the main 

grid in [$/kWh], and 
•  indicates the power of the transaction 

with the main grid. 
 
Equation (1) represents the operating cost of the MG 

power system, while Eq. (2), (3), (4) and (5) describe the 
mathematical formulas used for calculating the cost of 
each term, respectively. It is worth mentioning, that the 
actual generated power from each dispatchable source 
may vary in the range from 0 to the rated power, and 
the fuel consumed is approximated as a quadratic 
function of the output power given as Eq. (2). Regarding 

the operation & maintenance cost, it can be formulated 
as a linear function of the generated power as shown in 
Eq. (3). Furthermore, the transaction cost of the 
exchanged power with the main grid could have a 
positive value whenever the MG import power from the 
main grid, or represented by a negative value in case of 
selling power to the main grid. Finally, a null value 
refers to the disconnected mode, in case of a grid failure 
as formulated in Eq. (5).  

The adopted electricity price profile for each hour of 
the day is shown in Fig. 4, it is given similar to the data 
provided in (Nemati, Braun and Tenbohlen. 2018). 
Where the maximum and the minimum cost of 
purchasing electricity from the main grid are set at 
0.288 $/kWh and 0.152 $/kWh, respectively. 

2.2.2. Minimization of the pollutant gas emissions cost 
function 

The second objective function to be minimized is the 
pollutant gas emissions cost of NOx, SO2 and CO2, 
respectively. Mathematically formulated as a linear 
function of the produced power (Wu, Liu and Ding. 2014; 
Liu et al. 2015; Nemati, Braun and Tenbohlen. 2018): 

  (6) 

Where 
•  denotes the externality cost for emission 

type  in [$/kg], 
•  is the number of generating unit, 
•  is the total number of the types of 

atmospheric pollutants (NOx, SO2, CO2), 
•  is the total number of running hours, 
•  is the pollutant emission coefficient of 

the generating unit   in [kg/kWh], and 
•  is the pollutant emission coefficient of 

the main grid, for emission type  in 
[kg/kWh]. 

 
Table 1 and Table 2 present respectively, a detailed 

specification of the operating and the emission 
parameters used (Mohamed and Koivo. 2012; Moradi et 
al. 2018; Nemati, Braun and Tenbohlen. 2018; 
Alvarado-Barrios et al. 2019; Murty and Kumar. 2020). 

 

 
Fig. 4 Hourly electricity price profile 
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2.2.3. Minimization of the power loss cost function 

The third term of the MOOD problem is used to evaluate 
the power loss of the conversion devices in the MG power 
system. It is defined as follows (Wu et al. 2019): 

  (7) 

Where 
•  is the coefficient of conversion power loss, 
•  stands for the penalty of the power loss 

cost function in [$/kWh], and   
•  indicates the power loss of conversion 

device connected to the generator . 
 
It is worth mentioning that according to (Wu et al. 

2019), this power loss may vary between 2% and 16% of 
conversion power. Therefore, in this work the coefficient 
of conversion power loss  of FC is set to 2%, 4% when 
we make use of the generated power of DG or MT unit. 
Finally, this coefficient is equal to 6% in case of 
exchanging power with the main grid. 

2.2.4. System constraints 

The above formulated multi-objective problem is 
optimized considering the technical operation constraints 
given as described hereafter. 

During the operation of the MG system, the power 
balance should be preserved. This means that the power 
output from all the installed dispatchable and non-
dispatchable DG unites, including the exchanged power 
with the main grid and the BSS must be equal to the 
load demand and the power loss. It is defined as follows:  

  (8) 

 
 

 
In each time period, the output power of each 

distributed generation should be bounded within its 
allowable range, the technical constraints are given in 
the following: 

  (9) 

3. Proposed Methods to solve the MOOD Problem 

In this work, two methodologies are adopted to deal with 
the MOOD problem in the studied MG system. The 
following subsections detail the mathematical formulation 
of the optimization problem using both approaches, as well 
as an overview of single and multi-objective version of 
MVO algorithm used to solve the MOOD problem. 

3.1. Scalarization Method 

The scalarization method (Augusto, Bennis and Caro. 
2012; Gunantara. 2018) is primarily described. It is based 
on combining WSM with PPF to convert the MOOD 
problem into a single objective optimization. In the search 
space, a set of feasible solutions, can be obtained through 
multiple simulation runs, by assigning different 
combinations of weight coefficients  ,  and , to 
their associated objective functions. Mathematically the 
MOOD problem is formulated by Eq. (10) (Liu et al. 2015). 
Given as follows: 

  (10) 

Fig. 5 illustrated the various combinations of weight 
coefficients obtained over 150 runs (Stafford. 2021). It 
is to be noted that, for each simulation run, which 
corresponds to a specific combination of weights, the 
following constraint should be taken into account: 

  (11) 
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Table 1  
Operating cost parameters of conventional energy sources and main grid  

 Prated Fuel or gas cost coefficients Start-up cost O&M cost 

 [kW] [$/h] [$/kWh] [$/kW2h] [$/h] [$/h]  [$/kWh] 

DG 40 2.22 0.2328 0.0024 0.3 0.4 5.2 0.01258 
FC 50 0.1037 0.1855 0.0009 0.35 0.26 5.2 0.00419 
MT 65 2.898 0.2668 — 0.4 0.28 7.1 0.00587 

Grid 50 — — — — — — — 

Table 2 
Externality costs parameters and the emission coefficients 

   
[$/kg] 

DG 
[kg/MWh] 

FC 
[kg/MWh] 

MT 
[kg/MWh] 

Main 
grid 

[kg/MWh] 
NOx 9.1714 9.8883 0.0136 0.1995 1.6021 
SO2 2.1617 0.2059 0.0027 0.0036 1.8016 
CO2 0.0305 0.6495 0.4889 0.7239 1.8891 
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Fig. 5 Combination of weight coefficients adopted in the 
scalarization approach 

 
Once all the feasible solutions are generated, the next 

step requires the determination of the Pareto optimal 
solutions from the feasible set. Assumed that  and 

 are two solutions of the MOOP, two cases are 
possible: one solution dominates the other or none 
dominates the other (Zhang, Gong and Ding. 2012). 
Therefore  is considered to dominate  if and only 
if: 

  (12) 

The non-dominated solutions of the entire feasible 
search space are called Pareto optimal solutions. Which 
form the Pareto optimal set (Zhang, Gong and Ding. 
2012; Feng et al. 2020). 

3.2. Pareto Method 

The second approach to deal with the MOOD problem is 
by applying evolutionary multi-objective optimization  
(Mirjalili et al. 2017). Using such algorithms have the 
advantage of producing the Pareto optimal front in a 
single run (Sundaram. 2020). Therefore, MOMVO 
algorithm is selected to handle the formulated 
optimization problem. 

Unlike the scalarization method whose objective 
functions are related to each other by weight 
coefficients. The Pareto method (Gunantara. 2018), 
(Dey and Choudhury. 2017) handle the MOOD problem 
independently. The mathematical model of the 
optimization problem is represented bellow (Sundaram. 
2020): 

  (13) 

  (14) 

  (15) 

  (16) 

 

Where 
•  is the number of inequality constraints 

, 
•  is the number of equality constraints 

, 
•  is the lower bound of the decision 

variable ,  
•  is the upper bound of the decision 

variable , and  
•  is the feasible search space.  

 
The decision variable  contains the power output of 

the three CESs represented respectively by DE, FC and 
MT, as well as the exchanged power with the main grid. 

3.3. Overview of Single and Multi-Objective Version of 
MVO Algorithm 

The Multi-verse optimizer algorithm, is first introduced by 
Seyedali Mirjalili et al. in 2016 (Mirjalili, Mirjalili and 
Hatamlou. 2016). It mimics one of the theory in physics 
related to the existence of multiple universes in the world. 
The mathematical modelling of three concepts in 
cosmology (white hole, black hole and wormhole) are 
developed to perform exploration, exploitation and local 
search in the MVO. 

This algorithm seems to be a promising solution to 
solve real-world problem, since the comparison results 
prove its ability to provide very competitive results and 
outperforms well-known algorithms in literature 
(Mirjalili, Mirjalili and Hatamlou. 2016). Thus, this 
work employs the single and multi-objective version of 
MVO (Mirjalili et al. 2017) algorithm to deal with the 
MOOD problem in MG power system. 

Generally, the objects in the universes tend always to 
move from high inflation rate universe toward low 
inflation rate one via white/black hole tunnels, to 
accomplish a stable state.  

Assuming that, we have  number of universes 
(candidate solutions in MVO), with  objects (refers to 
variables in MVO). 

  (17) 

Mathematically, the mechanism of exchanging 
objects between universes is formulated as follows 
(Mirjalili, Mirjalili and Hatamlou. 2016): 

  (18) 

Where  
•  is the normalized inflation rate of  

universe. 
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The exploitation mechanism is explained using the 
following formula (Mirjalili, Mirjalili and Hatamlou. 
2016): 

  
(19) 

where 
• to  are random numbers in [0,1] interval, 
•  is coefficient stand for wormhole 

existence probability, 
•  is coefficient stand for travelling 

distance rate, 
•  is the  parameter of best universe 

formed, 
• is the upper bound of  parameter of 

best universe formed and  
• is the lower bound of  parameter of best 

universe formed. 
 
The formula used to calculate the wormhole existence 

probability and the travelling distance rate are as 
follows (Mirjalili, Mirjalili and Hatamlou. 2016): 

  (20) 

  (21) 

Where 
•  is the minimum of wormhole 

existence probability, it is set to 0.2, 
• denotes the maximum of wormhole 

existence probability, it is set to 1, 
•  is current iteration, 
• is maximum iteration, and 
•  is the exploitation accuracy over the 

iterations, it has a typically value of 6 
(Mirjalili, Mirjalili and Hatamlou. 2016). 

  
The flowchart of Fig. 6 summarized  the main steps of 

MVO algorithm (Fathy and Rezk. 2018).  It is to be 
noted that the search mechanism in the multi-objective 
version of MVO is similar to the one provided with the 
above steps in the single version of MVO. Moreover, an 
archive with a leader selection updating mechanism are 
also employed to improve the diversity of non-
dominated solutions (Mirjalili et al. 2017; Sundaram. 
2020). 

 

3.4. Compromise Solution based on Fuzzy Logic Theory 

For this case study, a fuzzy logic approach is adopted to 
identify the appropriate solutions from the obtained 
Pareto optimal sets. 

 

 
Fig. 6 The main steps of multi-verse optimizer algorithm 

The first step in the fuzzy logic method is to convert 
each objective function  into its corresponding fuzzy 
membership function. It represents the degree of the 
membership  in the fuzzy sets. Mathematically, 
this is formulated using the following equation: 

  (22) 

It is worth mentioning that a null membership value 
refers to incompatibility of the membership with the 
fuzzy sets. While a value of 1 corresponds to a full 
compatibility (Mondal, Bhattacharya and nee Dey. 
2013). 

The next step, involves calculating the normalized 
membership function  given as follows (Mondal, 
Bhattacharya and nee Dey. 2013; Hou et al. 2020): 

  (23) 
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Where  
•  indicates the number of non-dominated 

solutions, and  
•  represents the considered objective 

functions in number. 

4. Results and Discussions 

In this section, the proposed two approaches have been 
successfully implemented to solve the MOOD problem in 
MG power system. To validate the performance, 
simulation is carried out for a day ahead energy 
management of a typical MG running under grid 
connected mode. The optimization problem is modelled 
and simulated in MATLAB/Simulink environment, with a 
time step of ΔT=15 min (Aluisio et al. 2017; Cheng et al. 
2020). The aim is to find the best compromise between the 
above described contradictory objective functions. Taking 
into account maximize the generation from RESs, optimal 
charging/discharging of BSS based on a fuzzy logic control, 
and the system technical constraints. 

4.1. Result Analysis of the Multi-Objective Model 

In the search space, to obtain the feasible solutions, the 
scalarization approach is based on assigning different 
combinations of weight coefficients (  and ) to the 
formulated objective function. In addition, to capture the 
non-dominated solutions only the formula provided in Eq. 
(12) is applied. Finally, a fuzzy set approach is adopted for 
selection of the best compromise solution in the Pareto 
optimal set. 

Fig. 7 shows the POSs obtained using both 
approaches and considering the operating cost and 
emissions level as objective functions to be minimized. 
Whereas, the distribution of the POSs using both 
approaches and considering the minimization of the 
three conflicting objective functions is illustrated in 
Fig. 8. Where, the best compromise results of both 
approaches using the fuzzy set are provided in Fig. 9. 
The operating cost and pollutant emission value were, 
respectively, plotted on the X-axis and the Y-axis. While 
the Z-axis was reserved to represent the value of power 
loss. 

By comparing the Pareto optimal sets obtained for a 
fixed load demand PD=32 kW, it is clearly seen that the 
Pareto approach provides more closely and uniform set. 
Therefore, it is obvious that the Pareto approach is not 
only able to give better diversity and better quality 
solutions than the scalarization technique, but also a 
better compromise solution. In addition, contrary to the 
scalarization method that requires multiple simulation 
runs. The Pareto method (Gunantara. 2018) , presents 
the advantage to find the Pareto optimal set in a single 
run and in less computational time. Moreover, 
according to (Zhang, Gong and Ding. 2012) the 
scalarization technique is expected to fail to provide a 
well distributed solutions in case of nonconvex problem. 

It is worth mentioning that, the single and multi-
objective version of MVO applied in both approaches for 
solving the optimization problem are running using a 
population size of 40 and maximum iterations of 200. 

 

 
Fig. 7 Obtained POSs using both approaches considering the 
operating cost and emissions level as objective functions 

 

 
Fig. 8 Obtained POSs using both approaches considering 
simultaneously the three objective functions 

 

 
Fig. 9 Obtained best compromise solution using both approaches 
considering simultaneously the three objective functions 

4.2. Daily Simulation of the MG Operation under Grid 
Connected Mode 

The MG power system under study, is equipped with RESs 
in the form of solar PV, BSS, and WT unit with the aim to 
achieve less dependence on the power generated from the 
CESs and a cost saving. 

For this case study, the demand is primarily supplied 
by both RESs and the BSS during discharging cycles. 
Fig. 10 illustrates the daily produced power by both PV 
and WT unit, the optimal charging/discharging power 
of BSS based on a fuzzy logic control (Lagouir, Badri 
and Sayouti. 2021), and the evolution of the battery 
SoC. Where the maximum output power values are 

M

ON
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considered as 40 kW for PV unit and 45 kW for WT 
power source. The energy capacity of the BSS is set to 
144 kWh, with a maximum charging, discharging power 
of -20 kW, 20 kW, respectively. While its SoC is bounded 
between 20% and 80%, respectively.   

As shown in Fig. 10, the initial capacity of the battery 
is 72 kWh and during the daily MG operation the 
battery SoC is maintained at optimal levels, avoiding 
full charges-discharges cycles. In the figure, a positive 
value indicates that the battery generates power during 
discharging cycles, while a negative value means that 
the battery stores the excess of power for future use. 

Moreover, it can be observed that, if the available 
power from both RESs and BSS during discharging 
cycles is not enough the match the load demand. The 
developed EMS incorporates the three dispatchable 
sources in the energy management, while starting the 
transaction with the main grid through exchanging 
power. The optimal generation of the installed CESs 
and the imported power from the main grid for daily MG 
operation are shown in Fig. 11. It is clear that in order 
to achieve, a reasonable compromise between the 
contradictory objective functions. The remaining load, 
which is defined as the difference between the actual 
load and the power output of both PV and WT modules 
including the generated power from the BSS during 
discharging cycles, is mainly supplied by the FC unit 
and MT unit. The DE, as the most expensive unit, was 
dispatched for a limited period of time and with less 
power generation, only when the remaining load 
becomes higher, or in case when the transaction with 
the main grid is inappropriate to get a better 
compromise between the considered objective functions. 
The proposed scenario proves the reliability and the 
efficiency of the developed EMS, since the supply of load 
is made without interruption, and without load 
shedding as shown in Fig. 12. 

It is worth mentioning that the previously described 
figures are plotted using the Pareto method to handle 
the MOOD during 24 h operation of the DC microgrid 
system. Additionally, the considered daily load profile 
is assumed to be purely resistive, with a daily total 
energy demand of 11.1101 MWh and a peak load of 
204.7 kW. 

To further examine the performance of the proposed 
two methodologies for handling the MOOD problem. 
The results obtained using the Pareto method were 
compared with those provided using scalarization 
technique. Table 3 summarizes the obtained results 
using both approaches for a daily MG operation. The 
obtained simulation results have shown that the Pareto 
approach provides a considerable decrease in the daily 
operating cost by 28.96 $/day, a slight decrease in the 
daily power loss of converters from 419.79 kWh to 
419.29 kWh, while the daily pollutant gas emission was 
increased from 11.54 kg/day to 12.21 kg/day. This small 
increase is totally tolerable. The following formula is 
used to calculate the total daily treatment cost which is 
defined as the multiplication of the externality cost by 
its associated deviation in the daily emission level: 

  (24) 

Where  
•  is the total treatment cost of the 

pollutants related to the deviation in daily 
emissions level using both methods, and  

•  denote the daily 
emission level of emission type  obtained 
using Pareto method and scalarization 
method, respectively. 

 
The total daily treatment cost obtained using the data 

provided in Table 3 is = 5.55 $/day. Subtracting 
this value from the variance in the daily operating cost 
obtained using Pareto and Scalarization methods, a 
daily cost saving of 23.41 $/day is yielded. Therefore, 
the considerable reduction in the daily operating cost 
obtained using the Pareto method allows to compensate 
the slight increment in the daily emission level as well 
as a considerable cost saving. 

By comparing Fig. 13 (a) and (b), it can be seen that 
the contribution rate of the main grid was increased 
from 8.43% to 8.70% when the Pareto technique is 
implemented to solve the MOOD problem. This increase 
could be explained by the fact that the Pareto method 
encourages importing power from the main grid as an 
appropriate alternative. This means more dependence 
on the power generated from the main grid. Which 
explains the slight rise in the daily pollutant emission 
level, due to the highest value of emission coefficients 
of the main grid used in this research work.  

 In summary, the Pareto method is most effective and 
outperforms the scalarization technique in terms of 
providing better quality solutions, easy to implement, 
handles the objective functions simultaneously and 
independently. Furthermore, it requires less 
computational time to solve the MOOD problem in MG. 
Since the total execution time using the Pareto 
technique for 24 h MG’s operation is approximately 
2015.59 s with an average computational time of 21 s 
for each time interval ΔT, using a personal computer 
with the following specifications: Processor speed of 
2.20 GHz and a memory RAM of 4 GB. 

 Those are satisfactory reasons of choosing the Pareto 
approach based MOMVO as an optimization algorithm 
to handle the MOOD problem. 

 

 
Fig. 10 Output power of RESs and the optimal 
charging/discharging cycles of BSS ( ), ,
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Fig. 11 Optimal power generation of CESs and the main grid 

 
Fig. 12 Microgrid system power balance 

 

 
(a) 

 
(b) 

Fig. 13 Contribution of each generation source in power 
management using (a) scalarization approach, (b) Pareto 
approach 

4.3. Analysis of the Impact of the Exchanged Power 
Range with the Main Grid on the Formulated 
Optimization Dispatch Problem 

In Fig. 14 and Fig. 15, respectively, the impact of changing 
the range of the exchanged power with the main grid on 
the formulated optimization dispatch problem was 
analyzed. The results show that the adjustment of the 
maximum power exchanged with the main grid will affect 
the considered objective functions. From the simulation 
results, it is clearly seen that in order to ensure a better 
compromise between the contradictory objective functions. 
The transaction with the main grid is taken as the third 
best alternative to be used. 

By comparing, the results curve of Fig. 14 and Fig. 
15, respectively. They show that extending the range of 
the transaction with the main grid is most beneficial. It 
provides a considerable reduction in the daily operating 
cost and the pollutant emission level of the MG system 
by almost 15.55 $/day and 1.88 kg/day, respectively. 
Whereas, extending the range of the exchanged power 
with the main grid may result in higher power loss of 
the converters from 413.48 kWh to 424.82 kWh, when 
the generated power is increased from 40 kW to 120 kW. 
This is mainly due to the high power loss coefficient of 
the main grid converter.  

 

 
Fig. 14 Impact of range of exchanging power with the main grid 
on the daily operating cost and power loss of converters 

Table 3  
Obtained simulation results using both approaches 

Output Variables Scalarization 
approach 

Pareto 
approach 

Daily Operating cost [$/day] 2826.0696 2797.1077 
Daily Emissions level [kg/day] 11.5432 12.2113 
Daily Power Loss of conversion 
[kWh] 419.7945 419.2941 
Daily Power Generated by 
RESs [kWh] 2240.3219 2240.3219 
Daily Power Generated by 
CESs [kWh] 7755.0602 7724.6197 
Daily Power Generated by FC 
[kWh] 4231.8701 4181.2486 
Daily Power Generated by MT 
[kWh] 3315.1929 3279.9245 

Daily Power Generated by DE 
[kWh] 254.1582 263.4466 

Daily Imported Power from 
main grid [kWh] 954.4909 984.9274 

Daily Emission level of NOx 
[kg/day] 

4.3048 4.8942 
Daily Emission level of SO2 
[kg/day] 

1.7858  1.8518 
Daily Emission level of CO2 
[kg/day] 

5.4525 5.4654 
Computational time [s] 2956.6186 2015.5863 
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Fig. 15 Impact of range of exchanging power with the main grid 
on the daily emissions level 

 

Expanding the range of the transaction with the 
main grid to 120 kW, will totally favor the supply from 
the main grid, instead of the power generated from the 
DE. Therefore, in addition to the generation of both 
RESs and the BSS during discharging cycles. The 
remaining load will be mainly supplied by the FC and 
MT unites. While encouraging the import of power from 
the external grid instead of using the DE. 

5. Conclusion 

This paper deals with the optimization dispatch problem 
in MG power system, and proposes two approaches to 
solve the MOOD issue. The problem was formulated as 
minimizing the operating cost, pollutant emission level of 
(NOx, SO2 and CO2) and the power loss of conversion 
devices. 

The scalarization and Pareto techniques are both 
adopted to obtain Pareto optimal solutions. In addition, a 
fuzzy logic theory is employed to find the best compromise 
solution. Both methods are evaluated in terms of 
responding to the system load and technical constraints, 
effectiveness and accuracy to provide better distribution of 
solutions and better quality results in less computational 
time. The simulation results demonstrate the reliability of 
the proposed Pareto method in dealing with the MOOD 
problem in MG system, having achieved a considerable 
reduction in the operating cost by almost 28.96 $/day, a 
small decreased in the power loss of converters by almost 
0.5 kWh per day. Whilst a slight rise may be observed in 
the value of the daily pollutant emission level from 11.54 
kg/day to 12.21 kg/day, which can be totally compensated 
due to the considerable decrease in the daily operating cost 
achieved using the Pareto method.  

Furthermore, the impact of the range of exchanging 
power with the main grid were analyzed. The obtained 
simulation results show, that expanding the range of the 
exchanged power, will guarantee a cost saving of 15.55 
$/day and a considerable decrease in daily MG’s pollutant 
emission level by almost 1.88 kg/day. Whereas the daily 
power loss of converters will become higher, with an 
increase of 11.34 kWh, when expanding the range of the 
transaction with the main grid from 40 kW to 120 kW. 

Through the numerous advantages that the 
evolutionary multi-objective algorithms present to 
approximate the Pareto set and to handle the non-convex 

multi-objective optimization problem. The future work 
involves the implementation of various evolutionary 
multi-objective optimization for handling the MOOD 
problem in MG and compare their performance, while 
taking into account challenging constraints such as valve-
point effects, prohibited operating zone and ramp rate 
limits. Besides solving the MOOD, the unit commitment 
which is the process of deciding when and which 
generating units to start-up and shutdown is another 
issue that should be addressed in upcoming studies. 
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