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Abstract. In this study, a robust optimisation method (ROM) is proposed with aim to achieve optimal scheduling of virtual power plants 

(VPPs) in the day-ahead electricity markets where electricity prices are highly uncertain. Our VPP is a collection of various distributed 

energy resources (DERs), flexible loads, and energy storage systems that are coordinated and operated as a single entity. In this study, 

an offer and bid-based energy trading mechanism is proposed where participating members in the VPP setting can sell or buy to/from the 

day-ahead electricity market to maximise social welfare (SW). SW is defined as the maximisation of end-users benefits and minimisation 

of energy costs. The optimisation problem is solved as a mixed-integer linear programming model taking the informed decisions at various 

levels of uncertainty of the market prices. The benefits of the proposed approach are consistency in solution accuracy and traceability due 

to less computational burden and this would be beneficial for the VPP operators. The robustness of the proposed mathematical model and 

method is confirmed in a case study approach using a distribution system with 18-buses. Simulation results illustrate that in the highest 

robustness scenario, profit is reduced marginally, however, the VPP showed robustness towards the day-ahead market (DAM) price 

uncertainty.   

Keywords: Migration to smarter energy systems, Renewable energies, Distributed generation, Robust optimisation, Energy storage systems 

Article History: Received: 19th June 2021; Revised: 31st August 2021; Accepted: 30th Sept 2021; Available online: 5th Oct 2021 

How to Cite This Article: Ullah, Z., Mirjat, Baseer, M. (2022). Optimisation and Management of Virtual Power Plants Energy Mix Trading 

Model. Int. J. Renew. Energy Dev. 11(1), 83-94 

https://doi.org/10.14710/ijred.2022.39295

1. Introduction 

      Present-day electricity grids have been built under the 

technological limitations of the past. In many ways, their 

fundamental structures have been little upgraded since 

they were built a long time ago. Under the existing power 

system design, centralised high-capacity power stations, 

which are mainly carbon-dependent energy producers, 

play a predominant role in power generation and supply 

of energy services (Rangu et al. 2020; Podder et al 2020). 

On the other hand, the integration and participation of 

distributed energy resources (DERs), a decentralised 

small-scale power generating units with traditional bulk 

power stations have been limited by the existing passive 

distribution networks, driven by a one-way energy flow 

mechanism (Ullah & Mirjat, 2021). 

      Climate concerns have also accelerated renewable 

power generation (Sun et al. 2019). However, despite 

considerable technological advancements over the past 

decade, many operational challenges are still impeding 

the wide integration of renewable energy output into 

existing generation portfolios. Their intermittent and 

weather-driven output is one of the obstacles to their 

participation in energy markets (Shayegan et al 2019; Lin, 

et al. (2020). One possible solution is the coupling of 
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renewable energy sources (RES), including photovoltaics, 

wind turbines and hydropower with other smart 

technologies such as traditional high-capacity generation 

plants, storage installations, and flexible loads could 

either solve energy supplies when the output of RES is low 

or store energy when the generation of RES is high. This 

combination gives rise to the idea of the VPP, described to 

be a collection of various DERs functioning as a single 

entity (Ju et al 2019; Sarker et al 2021; Pudjianto, et al 

2007). An appropriate illustration of the VPPs in real life 

could be found in (Ullah & Mirjat, 2021). Furthermore, the 

interested readers are directed to (Ullah et al. 2019) for a 

“comprehensive review of VPPs planning, operation and 

scheduling considering the uncertainty of renewable 

energy sources” 

      This work gives an overview of a VPP offers and bids 

trading mechanism within the scope of the energy market 

environment where participating members can sell or 

purchase to/from the DAM to maximise SW. The VPP 

under study is a collection of DERs, flexible loads, and 

energy storage systems. The scheduling problem decides 

the amount of energy to be traded in the market one day 

in advance. The only uncertainty taken into account in 

this study is market price. A robust optimisation method 

Research Article 



Citation: Ullah, Z., Mirjat, Baseer, M. (2022). Optimisation and Management of Virtual Power Plants Energy Mix Trading Model. Int. J. Renew. Energy Dev., 11(1), 83-94, doi: 
10.14710/ijred.2022.39295 

84| 

 

IJRED-ISSN: 2252-4940.Copyright © 2022. The Authors. Published by CBIORE 

 

is used to manage the uncertainties of market price as 

uncertainty sets. The method assesses the optimal 

scheduling of the VPP over the short-term planning 

horizon, which is specific to this study. Simulation studies 

have shown robustness in response to the day-ahead 

market price volatility. 

      Some of the suitable and closely related studies on 

VPPs proposed in the literature review are as follows: A 

price-based unit commitment mechanism is implemented 

by (Saniei, 2013) to effectively manage the VPP bidding 

strategy. The authors of (Zhao, 2015), find a solution to 

devise a VPP cheapest bidding strategy in the DAM and 

balancing market (BM) through the implementation of 

two-stage stochastic optimization. A robust, non-recourse 

method is applied by (Rahimiyan & Baringo, 2015) to solve 

the VPP bidding strategy in the DAM and real-time 

market (RTM) markets despite volatile market prices and 

output of wind power. The risk-averse offering approach is 

discussed by (Correa et al. 2015) in response to a VPP 

energy and reserve trade. The authors of (Shabanzadeh et 

al. 2017) have suggested a stochastic medium-term 

optimization of the VPP schedule, which works closely 

with adjacent VPPs and exchanges energy with the 

electricity market. A proactive concept of a VPP offering 

strategy in the energy market is presented in recent work 

(Baringo, & Baringo 2016) where volatilities in the market 

prices and output of wind power are modeled on trust 

limits. In (Sučić, 2011), the authors have proposed an 

advanced VPP control system mechanism for the provision 

of ancillary services. In (Liu et al. 2015), a centralised VPP 

control scheme consisting of several solar panels and 

flexible loads is used to sustain and support frequency 

services of island microgrids. The authors of (Mohammad 

et al 2011; Pandzic et al 2013; Riveros et al 2015), proposed 

a trading mechanism for a VPP that maximises their 

anticipated daily profit in the pool-based energy market. 

      Some relevant research studies in the literature exist, 

elaborated VPPs in-depth, and potentially highlighted the 

possible advantages of integrating different forms of DERs 

within the VPP environment. However, what is lacking in 

the literature reviewed is a systematic investigation of the 

VPP energy trading model’s response to market price 

uncertainty. The use of the stochastic optimisation model 

will generate a huge number of scenarios and will impose 

a massive computational burden, therefore, in this study; 

we propose a model based on ROM to handle the financial 

risk related to the day-ahead market prices. The following 

are the main contributions of this work in relation to the 

literature reviewed. 

 

1. To model a cluster of diversified DERs, flexible 

loads, and energy storage systems as a VPP that 

purchases power during off-peak hours, stores and 

sells it at appropriate times. 

2. A robust optimization method is employed to 

address market price uncertainties as a new non-

possibilistic approach, allowing a VPP to make an 

informed decision concerning the contribution of its 

participating members. 

3. To illustrate the performance of the proposed 

method by thoroughly evaluating the findings 

through a case study.  

2.  Methods 

      This section proposes a VPP electricity market model. 

The electricity market model is a platform that facilitates 

end-users to participate in the electricity market in order 

to achieve economic benefits. It also regulates power 

procurement of operational facilities through bilateral 

contracts or the wholesale energy market. 

2.1. VPP electricity market model and description 

 

      The generators (stochastic and dispatchable) units 

submit their hourly active power offer with prices to the 

VPP- market operator (MO) platform in form of blocks as 

shown in Fig 1, whereas flexible loads (FLs) submit their 

hourly bid of load with prices to the VPP-MO platform in 

form of blocks. The difference between offers and bids of 

distributed generators and flexible loads are known as 

social welfare that can be calculated as follows: 

Maximise SW = Bid (cost of loads) – Offer (cost of 

generators). 

 

 

 
Fig. 1 Proposed VPP Electricity Market Structure. 
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Within the proposed electricity market design, the VPP-

MO has two main tasks, and their operation is explained 

as follows:  

1. The VPP-MO, receives offers and demand bids 

information from the VPPM and a joint bid to the 

wholesale power market. 

2. The VPP-MO also receives wholesale energy 

market schedule requests for FLs, stochastic and 

dispatchable units a day-ahead at the market 

prices. Flexible loads (FLs) and generators 

(stochastic and dispatchable) are bound to 

present their quantity of power and associated 

offer and bid prices one day ahead of operation. 

VPPM will send its bids to the VPP-MO and the quantity 

of power awarded would be informed later by the VPP-

MO. VPP- market operator (MO) allocates the quantity of 

power exchange with the distribution grid; therefore, the 

VPP-MO is known in advance, which helps in reducing the 

variability’s generated by the VPPM. Once the transfer of 

power with the distribution network and VPPM schedule 

is known one day ahead of operation. The VPPM could 

resolve the energy market scheduling problem to boost the 

scheduling of its flexible loads and distributed generators. 

2.2 Modelling approach 

      GAMS, optimisation software has been used to test the 

proposed approach. The robust optimisation model of 

energy management of a VPP is solved on a personnel 

computer with an i7 CPU and 16 GB RAM. Optimal active 

power flow on the power market is being used to maximise 

SW subject to system constraints. The stepwise solution 

structure of the proposed approach is presented as follows: 

 

Step 1 :  Initialize t = 1 

Step 2 : Collecting the historical data of the day-

ahead market price, DERs power output, load 

demand and specifying the technical limits of 

the VPP elements. 

Step 3 : The VPP operators receive information of 

energy offer price from the main grid at the 

current time period t. 

Step 4 :  the DGs owners send their power-producing 

capacity in each hour t to the VPP operators. 

Step 5 : Price-responsive flexible loads offer their 

load levels and services to the VPP operators 

for current hour t and rest of the day hours. 

Step 6 :  The VPP operators using the historical data 

of the day-ahead market price and DERs 

power output, to determine upper and lower 

bounds for the midpoint of DERs production 

and energy prices for the next 24 hours of the 

day. 

Step 7 :  Solving the VPP robust model and gets the 

energy fractions to be delivered by the utility 

grid, the DERs units, and the storage unit, 

and also, the energy delivered to each load, the 

energy fraction to be stored, and the energy 

fraction sold to the utility grid at each period 

of time t. 

Step 8: the VPP operators convey the decision 

procured to both the load demands and the 

energy suppliers. 

3. Deterministic model 

      The VPP model is designed through the integration of 

various DERs, energy storage systems, and flexible loads. 

A VPP sells energy to its associated customers and 

delivers the distributed generators (DGs) owners surplus 

production capacity to the day-ahead power market. All 

decisions made are based on the viewpoint of the VPP, 

under which the owners of the DGs do not intervene with 

the decision. The DERs owners are responsible for the 

uncertainty of RESs and their associated risks (Kardakos 

et al 2015; Kang, 2017; Luo et al 2018). 

 

3.1. Objective function 

      The aim of the VPP optimisation problem is the 

maximisation of social welfare (SW) (1) under the short-

term planning horizon. Collectively, it maximises the 

benefits of the consumers and minimises the total energy 

costs. The objective function (1) maximises the SW 

function determined based on the projected income minus 

total costs for a given time period. The first term refers to 

the income earned from the trade-in of energy to its 

associated customers. The second term refers to the 

revenue earned from selling or buying the DERs owners 

surplus production capacity to the day-ahead power 

market at different grid supply points (GSPs), a point of 

common coupling for a given time period. The third term 

shows the cost of charging/discharging of energy storage 

system at time t. The fourth and the fifth elements are the 

costs of dispatchable and stochastic units’ power 

generation. And the final element is the cost of curtailing 

is viewed as a peak load demand reduction over each 

period of time. 

3.2. Constraints 

      The volume of energy exchanges hourly between the 

electricity market and the VPP through GSPs is 

constrained to the required consumer demand per hour 

and interconnection capacity with the main grid. When a 

VPP requires to buy power from the grid, the first part of 

Eq (2) is enforced but when the VPP wants to sell energy 

through GSPs, then the second part of Eq (2) is enforced. 

Eq (3) indicates that the necessary contractual and 

requested amount of power in the VPP setting should be 

satisfied.  

      Eq (4) specify the commitment of each flexible load 

over each period of time. This commitment is viewed as a 

peak load demand reduction. Eq (5) implements the 

max/min power output limits of non-dispatchable DGs. 

Based on historical data and estimation, the owners 

should assess the maximum capacity of their Stochastic 

generators (SGs), and provide this information to the VPP 

to achieve optimal scheduling. Eq (6) implements the 

max/min power output limits of dispatchable DGs. 

Similarly, the commitment (0, 1) of dispatchable units and 

the start-up/shut-down status are stated as (7) and (8). 

Eqs (9) and (10) represent up/down ramp rate of 

dispatchable DGs. ∆BC in Eqs (11) and (12) indicates the 

allowable discrepancy between the energy delivered and 

the contract with a permissible deviation. While Eq (13) 

ensures that the contractual and supplied energy during 

the 24h planning horizon should be equal. 
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Fig. 2 Solution structure of the proposed algorithm. 

 

 

 

 
 

 

Eqs (14) and (15) indicate the max/min bounds of battery 

charge/discharge of unit b at time t. While the max/min 

energy storage capacity of unit b at time t is represented 

by (16). Battery SOC is formulated by using Eq (17). Eq 

(18) indicates that the storage device cannot be 

charged/discharged at the same time period 

4. Robust optimisation model 

      In the literature exist, different methods have been 

suggested for coping with the uncertainties of the 

parameters described above. These methods are classified 

as possibilistic and probabilistic methods and/or 

(combination of both). All of the above methods require 

some historical data on the nature of the parameter’s 

uncertainties (Soroudi & Amraee, 2013). If a VPP is 

subject to major variability (i.e. unavailability of 

information regarding the behavior of unknown 

parameters) then the aforementioned techniques may not 

be very helpful and advantageous. 

      ROM has come out to be a useful strategy of 

optimisation, lowering the sensitivity of the desired 

outcome in parameter values deviations. This approach 

can be viewed as a replacement for the stochastic approach 
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in dealing with uncertainty in mathematical models. ROM 

is a risk management technique with the less 

computational burden compared to the above methods 

(Soroudi & Ehsan, 2012). ROM is used in this study 

because of three main advantages over the stochastic 

method as follows: 

1. Good computational traceability of results in 

contrast to stochastic programming due to less 

calculations. 

2. Reliability of results due to worst-case scenario 

consideration. 

3. It does not require distribution of probabilities, 

unlike stochastic programming. 

 

In the deterministic decision-making model of VPP (1) - 

(18), the market price is the only uncertain parameter that 

exists in the objective function, which is formulated in 

robust form as shown in Appendix 1. The main variable of 

the optimisation problem (19)-(25) is yt interacting with 

VPP power interchanges with the day ahead market 

(DAM), where energy can be sold/purchased for the next 

24h via various GSPs of the grid. The dual variables of the 

main problem are Z and which is used to take into 

consideration the variance of coefficients
Chrge

t , and the 

auxiliary variable t  is being used to acquire 

corresponding linear expressions. Γ0 takes values at the 

interval {0, 24}, if , while Γ0 = 0, if 

. 

 

 

5. Case study  

The performance of the proposed approach is validated by 

simulation studies using a distribution network of 18 

buses (Fig 3) (Bertsimas & Sim, 2003). This system was 

derived from the known IEEE 30-bus system and we are 

only giving consideration to 33 kV network. The VPP 

setting integrates and regulates four Dispatchable and 

two stochastic DGs and a storage unit. Buses 2, 7, 8, and 

14 are assumed to be four possible locations for the 

installation of dispatchable DGs, while buses 15 and 18 

are assumed to be two possible locations for the 

installation of stochastic DGs. Bus 17 is assumed to be a 

possible location for the installation of the storage unit. 

Also, the energy trade with the market is carried out by 

three substations with different LMPs clustered at buses 

1, 11, and 16 (Fig 3). At these three GSPs, the day-ahead 

market prices are thus projected to be 95, 105, and 100% 

of market price predictions ( ). 

Therefore, the 
0

a value is set to 1, while the different 

ratings on each substation transformer can be seen in Fig 

2. Parameters (#a and #b) are assumed to be 0.07 and 8. 

The main characteristics of DERs included in the VPP 

setting, energy storage data, the day-ahead market price 

information, and flexible loads information for 24 hours 

are reported in Tables 1-4. Market-based optimal power 

flow scheduling is used to maximise the social welfare of 

VPP in both generation and demand portfolios. 

 
Fig. 3 Single line diagram of 18-bus distribution system  

 

5.1.  Numerical studies 

      The case study presented shows the proposed 

algorithm’s ability to make optimal decisions under 

uncertainty in order to determine the best possible self-

scheduling of a VPP in the day ahead electricity market to 

maximise the economic gains of its coalition members. The 

outcome of the simpler deterministic and robust 

optimization models is compared and presented in this 

section. In a deterministic approach, the value of benefits 

earned in a short-term planning horizon (i.e. 24 hours) is 

$16,846. Γ0 represents the degree of robustness in the 

ROM. This parameter controls the robustness level of the 

solution within the objective function in relation to market 

price uncertainty. Allocating the value of Γ0 = 0 ignores 

the degree of robustness of the objective function and 

which is consistent with the result of a simpler 

deterministic model ($16846), while maximum robustness 

is achieved by allocating Γ0 = 24, and as a result, the 

minimum benefit is equal to ($15774). The VPP can 

handle the financial risk as a decision-maker by correctly 

choosing the control parameter value (Γ0). The profit 

differential between Γ0= 0 and Γ0 = 24 is equivalent to 

$1072 (15% of $16846) demonstrates the value of VPP 

robustness. Fig 4, highlights when the control parameter 

Γ0 value is increased, the degree of robustness will be 

increased, resulting in a more conservative solution.  

 

5.2. Simulation and Results 

      To assess the ability of the proposed decision-making 

mechanism, both the simpler deterministic model and the 

robust optimisation approach must be solved in 

comparison. The VPP benefits from the ROM for all other 

Γ0 values (i.e. Γ0 = 1…, 24) is demonstrated via Fig 4. The 

power exchanged between GSPs (#1, #11, and #16) and the 

upstream grid is shown in Figs 5a, 5b, and 5c. It is worth 

mentioning that, +ve sign indicates the power sold, and 

the –ve sign indicates the power procured from the grid. It 

is also worth mentioning that, in certain hours, the VPP 

acts like an arbitrator because, through the cheapest bus 

1, it buys energy from the market rather than its needs 

and sells it especially to the market through high-priced 

bus (#11).  
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      Table 1 

       Market price forecasts for 24 hours of the day   
 

t(h) 
($/MWh) 

 

t(h) 
($/MWh) 

 

t(h) 
($/MWh) 

1 46.03 9 76.95 17 108.31 

2 45.14 10 69.09 18 89.54 

3 45.50 11 65.84 19 76.83 

4 45.70 12 59.47 20 73.60 

5 55.80 13 56.47 21 59.59 

6 82.28 14 53.77 22 52.47 

7 84.80 15 52.90 23 47.77 

8 83.44 16 71.44 24 39.17 

 
 

 

 

Table 2  

Energy storage system data 

Parameters Data Parameters Data 

E0 0.2 PDmax 0.15 

Emax 0 PDmin 0 

PCmax 0.6  ɳC 95% 

PCmin 0  ɳd 90% 

 

 
 

Table 3  

Characteristics of dispatchable and stochastic units 

DER 

Type 

Pmin 
(MW) 

Pmax 
(MW) 

DGcost 
($/MWh) 

DGrup 
(MW/h) 

DGrdn 
(MW/h) 

SUC 

($) 

SDC 

($) 

DG 0 4 37 1 1 20 25 

DG 0 5 40 1.25 1.25 20 25 

DG 0 5.5 35 1.375 1.375 50 25 

DG 0 7 45 1.75 1.75 50 25 

SG 0 9 65     

SG 0 7 55     

 

 

             

  
      Table 4 

                                                        Flexible loads characteristics for 24 hours of the day 

 

t(h)  
(MW) 

 
($/MWh) 

 

t(h)  
(MW) 

 
($/MWh) 

1 0.591 37.30 13 0.660 46.93 

2 0.585 40.96 14 0.689 51.04 

3 0.426 51.52 15 0.700 58.35 

4 0.589 53.83 16 0.799 85.61 

5 0.610 57.80 17 1.017 105.10 

6 1.132 74.83 18 0.859 85.44 

7 0.852 99.91 19 1.067 81.78 

8 1.217 89.50 20 0.696 75.91 

9 1.021 61.96 21 0.557 68.03 

10 0.871 66.88 22 0.474 44.10 

11 0.601 63.87 23 0.656 41.69 

12 0.643 50.12 24 0.533 43.90 

 

 

 

 

 

 

,maxFL

tP
,costFL

t
,maxFL

tP
,costFL

t
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Fig. 4 VPP short-term profit for different control parameter (Γ0) values. 

 

 

 

 
(a)  

(b) 

 

 
(c) 

 
(d) 

Fig. 5a, b, and c shows Power transaction between upstream substations and bus (#1, #11, and #16) respectively, while Fig. 5d shows 

Power transactions with day-ahead electricity market. 

 

 

 

 

 

 

 

x 104 
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Fig. 6 Total flexible loads contributions 

 

 
Fig. 7 Power supplied through bilateral contracts 

 

 

 
Fig. 8 Battery state of charge/discharge 

 

 

 
 

Fig. 9 Energy level in the storage system 

According to Fig 5a highlights that the power obtained 

from GSP (#1), is reduced by ROM compared to a simpler 

deterministic approach; it is because of obtaining more 

resilient scheduling of VPP due to market price 

uncertainty. In addition, Fig 5b, also highlights that the 

power sold through GSP (#11) is minimized by ROM 

compared to the deterministic approach and finally, Fig 

5c, highlights that the power obtained through GSP (#16) 

is minimised and the power sold is reduced compared with 

the deterministic approach. 

In fact, the VPP serves as both a consumer and a 

producer when it generates revenue from different LMPs, 

even though the coordinated distributed energy resources 

are capable of satisfying the load demands. Fig 5d, shows 

the power exchanged between the upstream grid and the 

VPP in deterministic and RO models. In comparison with 

the deterministic approach, it has been shown that the 

power obtained in ROM is reduced because VPP aims to 

become more resilient against the uncertainty of day-

ahead market prices. Thus, less power is derived from 

upstream networks, while more of its own generation is 

used to meet consumer requirements. In reality, VPP 

main objective is to increase energy sell during periods of 

high price in order to maximise economic gains from the 

day-ahead electricity market 

Flexible loads curtailment of deterministic and RO 

models is illustrated via Fig 6. In the deterministic 

approach, load interruption is greater than RO approach. 

According to Fig 6, the volume of flexible loads would be 

lower if the flexible loads price is greater than that of the 

market price, however, the volume of load curtailment 

raises in other hours when contrasting the market price 

with the flexible loads price. Due to the conservatism of 

the ROM, and it is one of the logical reasons why the RO 

solution would be less economical than a deterministic 

approach. 

The total energy supplied through bilateral contracts 

is depicted in Fig. 7. As the permitted error for bilateral 

contracts and supplied energy ∆BC can be as little as 10%. 

In the case of the deterministic approach, VPP utilises 

10% discrepancy as an opportunity and trades a reduced 

amount of power when energy prices are less, however, as 

the market price goes up, more power will be sold. 

Additional power is purchased to compensate for the 

shortage of energy supplied in hours with high market 

prices. In accordance with Fig. 7, the power supplied by 

deterministic and RO approaches are the same and did not 

change because of the predetermined price. Battery 

SOC/D of deterministic and RO models for 24 hours is 

illustrated via Fig 8. Assuming that the battery can either 

be charged by DERs and/or power bought from the 

upstream grid through the cheapest bus (#1), and it can be 

discharged by selling the power supplied to the upstream 

grid through the expensive bus (#11). +ve sign indicates 

charging and –ve sign indicates discharging of the battery. 

Fig 8 indicates the energy storage systems contribution in 

off-peak hours for both approaches are the same, while in 

a robust case, at peak hours, more power is drawn from 

the storage system. The energy storage system contributes 

by having a fast response time (due to the direct control) 

to load demand requests, when there is a supply and 

demand mismatch. It should be observed that the energy 

storage systems contribution is trivial. Finally, Fig 9, 

shows the energy stored in the battery system. During the 

high demand hours when the market price increases, the 
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energy stored in the battery system is released to satisfy 

some of the demand. It is therefore apparent that the 

battery is charging in off-peak hours, and the energy 

stored is used in the high price hours. It is important to 

note, that the energy storage system cannot charge and 

discharge simultaneously, it is due to the optimisation 

model imposes a charge and discharge constraint. 

 

6. Conclusion  

 

      In this study, a robust optimisation technique is 

utilised within the VPP setting to guarantee a minimum 

level of social welfare for its participating members in the 

day-ahead electricity market. The market price 

uncertainty was modelled via uncertainty sets and the 

optimisation problem is solved as a MILP problem 

utilising GAMS optimisation software to maximise SW. 

The usefulness of this approach is its flexibility in terms 

of better solution accuracy and less computational burden. 

A case study simulation results indicate that despite the 

use of robust optimisation method, the social welfare of 

VPP has been reduced marginally due to market price 

uncertainty; however, this method demonstrated 

robustness towards market price volatility. The proposed 

method of energy management can be advantageous 

because of its simplicity in terms of the risk management 

approach. The specific conclusions are given as follows; 

1) The proposed model, through a robust 

optimisation technique, enables the VPP to 

reflect uncertain data in an acceptable manner. 

2) The proposed model makes it possible for the VPP 

to manage its DERs to purchase and sell energy 

according to its goals at the required time. 

3) The risk management strategy implemented in 

this study has an impact on the bidding strategy 

and the power that a VPP trades. 

In the future, energy efficiency will continue to be 

improved through multi-energy system designs. Thus, 

future research will concentrate on investigating optimal 

dispatch mechanisms, which will enable multi-energy 

systems with more complex frameworks operating in 

energy markets 

 

Nomenclature                                                  

 
ROM : robust optimisation method 

VPP : virtual power plant 

DER : distributed energy resources 

SW : social welfare 

DAM : day ahead market 

RES : renewable energy sources 

RTM : real time market 

VPPM : virtual power plant market 

VPP-MO : virtual power plant market operator 

FLs : flexible loads 

DGs : distributed generators 

SG : stochastic generators 

LMPs : locational marginal prices 

BC : bilateral contracts 

MILP : mixed integer linear programming 

T : set of time period 

DG : set of dispatchable DGs 

SG : set of stochastic DGs 

GSP : grid supply points for upstream grid 

connection 

FL : set of flexible loads 

BESS : set of battery storage systems 

t : index of time periods 

k : index for GSPs 

i : index for DGs 

j : index for SGs 

l : index for FLs 

b : index for BESS 

a, b : parameters for demand estimation in the 

distribution network  
0

  : the ratio of VPP customer’s charge to the 

upper limit of the market price forecast 
𝛥𝐵𝐶 : hourly permissible deviation between the 

energy contracted and delivered via BC 
Demand

tP  : VPP’s customers active power demand in 

time period t  
Chrge

t  : price that is charged to the VPP’s 

customers in time period t 
GSP

ktP  : power exchange with the DAM at the 

GSPs in time period t 
LMP

kt  : locational marginal price at the GSPs in 

time period t 
B

tC  : operating cost of unit b at time period t   

COST

i  : generation cost of DG unit i 

COST

itSUC
 

: start-up cost of unit i at t ($) 
COST

itSDC
 

: shut-down cost of unit i at t ($) 
Contract

tP  : contracted energy delivered through BC 

in time period t 
COST

j  : generation cost of SG unit j ($) 

_costFL

t  : curtailment cost of the FLs in time 

period t  
MAX

kP  : power connection capacity of the GSP k, 

with the main grid 
Γ0 : uncertainty control parameter in the 

ROM 
S

btP  : the stored energy in unit b in time 

period t 
Chrge

btP / Dischrge

btP  :  energy charge/discharge of unit b in 

time period t  
Chrge

btP  / Dischrge

btP
 : max charge/discharge of unit in time 

period t 

/
Chrge Dischrge

bt btU U  : binary variables, one if charge                           

or discharge of unit b in time period t, 

otherwise 
S

btP  / S

btP             : min/max level of energy stored in unit b 

in time period t  
Chrge

b
 / Dischrge

b
  : energy efficiency factor used for 

charge/discharge of unit b 
DG

itP    : generation cost of DG unit i in time 

period t  
SG

jtP
 :  generation cost of SG unit j in time 

period t  
FL

tP  : the quantity of curtailment by the FLs in 

time period t  
BC

tP  :  energy deliver through BC in time 

period t [MWh] 
DG

itX  : online commitment of unit i in time 

period t 

t  :  an auxiliary variable for obtaining a 

linear expressions 

t
y    

:  the main variable interacting with the 

VPP power exchanges with the DAM  

through GSPs k 

,
t

Z   : dual variables of the deterministic 

decision making problem 
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Appendix 1: Robust optimisation formulation. 

 

       ROM is a mathematical technique used to efficiently 

solve problems of optimisation with uncertain parameters. 

Unlike, stochastic programming, RO is less flexible 

technique of risk management but on the other hand it 

requires relatively very low computational burden. 

Typically, the self-scheduling problem (1) of VPP proposed 

in this article can be defined as follows: 

 

1

n

jj
j

Min C X
=

 
 

 
                                                          (26)                                                                                                                                                                

 

Subject to 

1

, 1....,
n

jij i
j

i ma bX
=

   =                                        (27)                                                                                                                                             

0 , 1....,
j

j nX  =                       (28)                                                                                                                                            

 0,1 1....,
j

for some j nX  =                                             (29)                                                                                                                                             

 

 If the coefficients cj of the objective function is regarded as 

known, then it is easy to obtain the solution to this 

problem using MILP solver. But if any of these coefficients 

are uncertain, in the objective function then we need to 

use RO technique to solve the optimisation problem. This 

is the main scenario of VPP self-scheduling problem (1) in 

which market prices are uncertain. Therefore, a robust 

counterpart can be developed of the VPP model. In order 

to achieve that, each coefficient cj is presumed to have 

values in the interval [cj, cj + dj] where dj indicates a 

divergence from the nominal coefficient. In addition, to 

develop a robust MILP problem, an integer control 

parameter representing by Γ0 is defined, that has values 

at the interval {0, /J0/}, where J0 = [j/dj>0]. This parameter 

regulates the robustness level of the objective function. If 

Γ0 = 0, the robustness level is ignored in the objective 

function, while if Γ0 = /J0/, the maximum impact of cost 

variation is taken into account, resulting to a relatively 

more conservative solution. 

Reformulation of the original problem (26) - (29), 

presented as follows: 

 

0
1 1

*
n

jj j
j j

Min ZC X 
= =

 
 + + 

 
                                 (30)                                                                                                                                   

 

Subject to Eqs (27) – (29) 

0
,

j jj
Z j jd +                                                  (31)                                                                                                                                                     

0 ≤ 𝑍                                                                                  (32)                                                                                                                                                                                         

0 , 1....,
j

j n  =                                                             (33)                                                                                                                                                                  

0 , 1....,
j

j n  =                                                             (34)                                                                                                                                                                  

, 1....,
j j

j nX   =                                                     (35)                                                                                                                                                           

 

Eqs (30) - (35) are derived from the concept of duality 

theory (Bertsimas & Sim, 2004), and a detailed 

explanation is given on how the linear robust optimization 

counterpart approach is precisely formulated is given in 

(He et al. 2016). 
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