

Contents list available at IJRED website
Int. Journal of Renewable Energy Development (IJRED)

Journal homepage: https://ijred.undip.ac.id

Effect of Hydrogen Peroxide on Biohydrogen Production from Melon Fruit (*Cucumis melo* L.) Waste by Anaerobic Digestion Microbial Community

Agung Dian Kharisma^{a,*}, Yumechris Amekan^a, Sarto^b, Muhammad Nur Cahyanto^c

^aBiotechnology Study Program, The Graduate School, Gadjah Mada University, Yogyakarta 55281, Indonesia

^bDepartment of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Yogyakarta 55281, Indonesia

^cDepartment of Food Sciences and Technology Department, Faculty of Agricultural Technology, Gadjah Mada University, Yogyakarta 55281, Indonesia

Abstract. Biohydrogen (H₂) production has the potential to provide clean, environmentally friendly, and cost-effective energy sources. The effect of increasing oxidative stress on biohydrogen production by acid-treated anaerobic digestion microbial communities was studied. The use of varying amounts of hydrogen peroxide (H₂O₂; 0.1, 0.2, and 0.4 mM) for enhancing hydrogen production from melon fruit waste was investigated. It was found that H₂O₂ amendment to the H₂-producing mixed culture increased hydrogen production. Treatment with 0.4 mM H₂O₂ increased cumulative H₂ output by 7.7% (954.6 mL/L), whereas treatment with 0.1 mM H₂O₂ enhanced H₂ yield by 23.8% (228.2 mL/gVS) compared to the untreated control. All treatments showed a high H₂ production rate when the pH was 4.5 – 7.0. H₂O₂-treated samples exhibited greater resilience to pH reduction and maintained their H₂ production rate as the system became more acidic during H₂ fermentation. The application of H₂O₂ affected the volatile fatty acid (VFA) profile during biohydrogen fermentation, with an increase in acetic and propionic acid and a reduction in formic acid concentration. The H₂O₂ treatment positively affects H₂ production and is proposed as an alternative way of improving H₂ fermentation.

Keywords: Biohydrogen, dark fermentation, fruit wastes, mixed culture, oxidative pressure

Article History: Received: 25th August 2021; Revised: 27 Sept 2021; Accepted: 2nd Oct 2021; Available online: 10th Oct 2021 How to Cite This Article: Kharisma, A.D., Amekan, Y., Sarto, S., Cahyanto, M.N. (2022) Effect of Hydrogen Peroxide on Biohydrogen Production from Melon Fruit (Cucumis melo L.) Waste by Anaerobic Digestion Microbial Community. *Int. J. Renew. En. Dev.*, 11(1), 95-101 https://doi.org/10.14710/ijred.2022.40883

1. Introduction

The development of bioenergy from waste is vital to minimize dependence on fossil fuels as the global primary energy source and contribute to the security of sustainable and environmentally friendly energy supply (Amekan 2020; Hao and Shao 2021; Martins et al. 2019). In Indonesia, the government has supported the development of renewable energy sources via the issuance of Presidential Regulation No. 5 of 2006 (Amekan and Guntoro 2017). Biohydrogen is one of the feasible alternative energy sources as it has a higher energy density than fossil fuels (Choi and Ahn 2014) and its utilization seems cleaner and carbon-free (Kim et al. 2021).

Hydrogen (H₂) can be produced biologically via photosynthesis, fermentation, and combination of photo/dark fermentation (Ding *et al.* 2016; Eroglu and Melis 2011; Hassan *et al.* 2020). Biological hydrogen production via fermentation is simpler as it does not require light and can be applied to a wide range of biomass wastes or residues (Amekan *et al.* 2018; Kumar *et al.* 2015; Shaojie *et al.* 2020; Sivagurunathan *et al.* 2016). Current research has studied various types of agricultural wastes as feedstock for biohydrogen production, such as extracts of pineapple wastes (Reungsang and Sreela-or 2013), cassava starch (Tien *et al.*, 2016), sweet potato (Chu *et al.* 2012), sugarcane bagasse (Reddy *et al.* 2017) and melon waste (Amekan *et al.* 2018; Cahyari et al. 2019). Melon waste meets the criteria as a substrate for biohydrogen production because it has high carbohydrate content, such as lignin (8.26%), hemicellulose (22.71%), cellulose (19.01%), soluble starch (17.22%), total sugar (30.42%), lipid (6.91%), total N (0.89%), total solids (7.67%) and volatile solids (6.45%) (Amekan *et al.* 2018)

In a fermentation-based system, hydrogen-producing bacteria (anaerobes and facultative anaerobes) break down organic matter to produce hydrogen via hydrogenase enzymes that catalyze the reversible oxidation of H₂ (Choi and Ahn 2014; Das *et al.* 2006). *Clostridia* are potential hydrogen producers that is widely found in sewage sludge, cow dung, and pig manure (Sivagurunathan *et al.* 2014a). However, *Clostridia* are obligate anaerobe (oxygensensitive bacteria) that can lose viability when oxygen

^{*} Corresponding author: agungbiotech@gmail.com

concentration exceeds 1% (Kawasaki et al. 1998). Nonetheless, it is known that Clostridia may tolerate transient oxygen exposure and be able to detoxify it by accepting electrons from NADH-dependent rubredoxin oxidoreductase (NROR) and then reducing them to hydrogen peroxide (H₂O₂) (Hillmann et al. 2008). C. acetobutyricum defends itself against the lethal effect of oxygen by using the anaerobic pathway of detoxification of reactive oxygen species (ROS). C. acetobutyricum express scavenging enzyme, such as superoxide reductases (SOR), peroxidases or oxygen reductases which act as electron carriers from NADPH to O2⁻ (superoxide), H2O2 or O2 providing a reductive environment that enables cells to nullify the ROS. NADH, unlike NADPH, is a potent prooxidant that produces the majority of the ROS generated by the cells under oxidative stress. Alternatively, Clostridia-type fermentations can generate H₂ via NADH oxidation (Hallenbeck 2009). Hence, increased oxidative stress by excessive ROS exposure could possibly evoke a metabolic adaptation of hydrogenproducing bacteria to limit NADH consumption as a prooxidant and trigger H₂ production via NADH oxidation in the cell.

Therefore, in the present study, the effect of H₂O₂ exposures to induce oxidative stress on mixed culture of hydrogen-producing bacteria during biohydrogen production from melon fruit (Cucumis melo L.) waste was investigated. Anaerobic digestion microbial communities were used as the source of hydrogen-producing bacteria as it provides diverse metabolic, high productivity, and economic advantages over pure culture (Shaojie et al. 2020). During biohydrogen fermentation, the gas production (H₂ and CO₂) and soluble organic acids profile were monitored. This is the first study to look at the effect of radical agent treatment on hydrogen production from agricultural organic wastes using a mixed cultures inoculum. The findings offer new insight into an alternative approach for increasing biohydrogen production from agricultural waste substrate using a dark fermentation.

2. Materials and Methods

$2.1 \ Hydrogen-producing \ mixed \ culture \ and \ substrate \\ preparation$

The seed sludge was collected from biogas digester treating fruit waste at Gemah Ripah fruit market (Yogyakarta, Indonesia) for enriching the hydrogenproducing bacteria. The seeds were acidified to pH 3 by adding 2 M HCl and then maintaining for 24 hours and then adjusting back to pH 6.8 with the addition of 2 M NaOH (Amekan et al. 2018: Damavanti et al. 2020) to inactivate the hydrogen-consuming microbes before use in the enrichment of hydrogen-producing bacteria using glucose as the sole carbon source. The melon fruit waste used in this study was collected from Gemah Ripah fruit market located in Yogyakarta. The melon slurry was prepared by chopping melon fruit wastes into small pieces and mashing them with a kitchen blender. The melon slurry, which contained 9.625 g/L of volatile solids (VS), was adjusted to pH 7 before being used as substrates for H₂ fermentation. The melon slurry was stored at 4 °C until

used as the hydrogen fermentation substrate (Amekan et al., 2018).

2.2 Enrichment of hydrogen-producing mixed cultures

The mixed cultures were enriched using glucosebased media to increase hydrogen-producing bacteria (Sivagurunathan et al. 2014a). Enrichment of hydrogenproducing mixed cultures was carried out in 100 mL serum vials with a 50 mL working volume as described in Amekan et al. (2018). The peptone-yeast extract-glucose (PYG) medium containing glucose 10 g/L, yeast extract 10 g/L, peptones 10 g/L, L-cysteine-HCl 0.5 g/L, and resazurin 0.001 g/L was prepared as the enrichment media for hydrogen-producing bacteria. L-cysteine-HCL and resazurin were applied to reduce the oxygen content in the substrate and anaerobic indicator, respectively. The PYG medium was inoculated with 2 mL of enriched hydrogen-producer mixed culture and incubated at 37 °C for 24 h. Freshly grown (24 h) enriched mixed cultures were used as the inoculum for all the fermentation experiments.

2.3 Hydrogen peroxide treatments in hydrogen production

Batch experiments were carried out under strictly anaerobic conditions in 100 mL serum vials with a 50 mL working volume (5 ml inoculum, 15 ml substrate, and 30 ml nutrition). Melon fruit waste was used as substrate with the addition of micronutrients (peptone 5 g, yeast extract 0.5 g, KH₂PO₄ 1.2 g, Na2HPO₄ 5.1 g, MgSO₄.7H₂O 0.5 g, and L-sistein-HCl 0.5 g). The pH was adjusted to pH 7 using either 1 M HCl or 1 M NaOH before sterilization. 2 M H₂O₂ stock solution was made by dissolved H₂O₂ in sterilized water and then injected aseptically into the sterile media prior to the addition of inoculum to obtain 0.1, 0.2, and 0.4 mM H₂O₂ final concentrations. Nontreated (NT) sample was included as a control. Each treatment was conducted in duplicate. The vials were capped with rubber bungs, sealed with aluminum rings, and flushed with nitrogen gas for 3 minutes to provide anaerobic conditions. All batch 100 mL vials were incubated at 37 °C and agitated continuously at 120 rpm. Gas samples for H₂, CO₂, CH₄, and volatile solids (VS) were collected four times during seven days of fermentation, while volatile fatty acids (VFAs) samples were collected at the end of the fermentation process.

2.4 Analysis of fermentation products

The volume of biogas was measured using an airtight glass syringe. The analysis of biogas (H₂, CH₄, and CO₂) was performed by gas chromatography equipped with a thermal conductivity detector (GC-14B, Shimadzu, Japan) and a molecular column sieve 5A (MS-5A). Nitrogen was applied as the carrier gas at 100 kPa. Volatile fatty acids (VFA) were determined by gas chromatography equipped with a flame ionization detector (Hewlett Packard 5890 Series II). Standard of VFA analysis was obtained from Sigma-Aldric (Standard Volatile Free Acid No. Cat: 46975-U Supelco). The analytical procedures of standard methods (APHA, 1998) were used to determine the pH and VS.

$3.1 H_2O_2$ effect on biohydrogen production from melon fruit waste

No methane was detected in all samples during biohydrogen production via anaerobic degradation of melon waste organic content. It suggests that acid treatment (pH 3, 24 h) has successfully eliminated hydrogen-consuming bacteria and archaea from anaerobic microflora used in this study. All H_2O_2 treatments are capable of producing gas consisting of H_2 (48 – 52%) and CO_2 (48 – 52%) (Table 1).

Cumulative hydrogen production of all H_2O_2 treated samples were higher than untreated sample. 0.4 mM H_2O_2 treatment produced the highest hydrogen (954.6 mL/L; Table 1) among the H_2O_2 treatments. This is 7.7% higher than the untreated samples (NT; 880.6 mL/L; Table 1; Fig. 1a), while 0.1 and 0.2 mM H_2O_2 increased H_2 production by 1.2% and 1.6%, respectively. Our results showed higher H_2 production by 22 – 88% compared to the reported hydrogen production from melon waste by Amekan *et al.* (2018) using inoculum from fruit waste (743 mL/L), cow

Table 1

Hydrogen production from melon fruit waste by acid treated anaerobic digestion microbial community under H_2O_2 stress (initial pH 7, 37°C, VS 9.625 g/L).

Treatment	Final pH	Total gas	Total CO ₂	Total H ₂	Yield H ₂
		(mL/L)	(mL/L)	(mL/L)	(mL/gVS)
NT	4.04 ± 0.01	$1,\!828\pm33$	947 ± 10	880.6 ± 33	175.5 ± 9
$0.1 \text{ mM H}_2\text{O}_2$	3.85 ± 0.02	$1,\!847\pm24$	955 ± 13	891.6 ± 24	228.2 ± 47
$0.2 \text{ mM H}_2\text{O}_2$	3.82 ± 0.01	$1,798\pm58$	902 ± 25	895.1 ± 58	161.7 ± 44
$0.4 \text{ mM H}_2\text{O}_2$	3.74 ± 0.04	$1,\!821\pm16$	866 ± 17	954.6 ± 16	190.2 ± 8

Notes: Total CO_2 and H_2 represented the cumulative gas production and yield H_2 showed the total yield H_2 during 7 days fermentation periods. NT: Control with no H_2O_2 .

Fig. 1 Cumulative H_2 production (a), yield H_2 (b), and H_2 production rate (c) during H_2 fermentation with melon wastes as substrates and inoculum from fruit waste digester (37°C, start pH 7). Error bar represented standard deviation of experimental data.

dung (426 mL/L), and tofu waste digester (323 mL/L) (Table 1; Fig. 1a). The results indicate that increased H₂O₂ exposure induced H₂-producing bacteria to produce more H_2 seemingly via NADH oxidation (Hallenbeck 2009). Interestingly, 0.1 mM H₂O₂ showed higher yield with 228.2 mL/gVS relative to 0.4 mM (190.2 mL/gVS; Table 1; Fig 1b). Overall, the increase in H_2 production was likely caused by changing metabolism pathways after H₂O₂ treatment. Here, the application of H2O2 seemingly affected the metabolism pathways of anaerobic microbial H₂ production, resulting in the detoxification system activation by NADH oxidation. This pathway was used by the H₂-producing bacteria to overcome ROS and possibly affect hydrogen production (in surplus NADH condition) by oxidizing NADH-ferredoxin oxidoreductase and hydrogenase. Tanisho and Ishiwata (1995) reported that the ratio of NADH in the cell would adjust to overcome the effect of free radicals, such as H₂O₂. These results suggest that 0.1 mM H₂O₂ is an efficient alternative method for increasing H₂ yield by inducing NADH formation. Future investigation is required to ensure the role of NADH in fermentative H₂ production under ROS conditions.

The H₂ yield was decreased as the H₂O₂ concentration increase, suggesting that 0.4 mM H₂O₂ seemingly induced too much oxidative stress that slowed down the activity of H₂-producing bacteria. The highest hydrogen production rate was achieved on day-1 of fermentation, and it slowed down gradually as fermentation progressed up to day-7. The highest production rate was achieved when the pH was around 7 and then slowed down as pH decreases caused by the accumulation of VFAs in the media. Hydrogen production stopped when pH \sim 4 (Table 1; Fig. 1c). Interestingly, all H₂O₂ treatment still show higher H₂ production rate (0.1 mM - 190.45 mL/L.day; 0.2 mM -199.72 mL/L.day; 0.4 mM - 203.43 mL/L.day) compared to the NT (68.34 mL/L.day) at the day-5 of H₂ fermentation (Fig. 1c). It suggests that H₂O₂ treated samples have higher resistance with decreases in pH and maintained their H₂ production rate where the systems became more acidic at day-5 of H₂ fermentation. The pH at day-5 fermentation of 0.1, 0.2, 0.4 mM H₂O₂, and control (NT) were 3.91, 3.88, 3.83 and 4.13, respectively (Fig. 2a).

3.2 The change of initial pH and total volatile solids degradation after H_2O_2 treatment

In the H₂ fermentation process, pH is crucial factor in controlling enzyme activity and metabolic transporters of H₂-producing bacteria (Cappai *et al.* 2014). The result shows that pH decreased gradually from pH 7 on day-1 to pH 3.7 - 3.8 at the end fermentation periods in all treatments and control samples (Fig. 2a). The H₂ production showed the highest rate at 24 h fermentation, in line with optimum pH for H₂ generation in the pH range 4.5 to 7.0 (Hawkes et al. 2002; Wei et al. 2010). As the pH decreased, the H₂ production slowed down gradually. The H_2 production was ceased when the pH reached 3.7 - 3.8at day-7 fermentation. The decrease in pH was caused by the accumulation of organic acids produced as endproducts during the acidogenesis (Fig. 2a). Moreover, it affects hydrogen-producing microbial growth and their metabolic activity, resulting in the inhibition of metabolic pathways and then stopping hydrogen production (Melis and Melnicki 2006). The trend of initial pH after H₂O₂

treatment was noticeably similar to NT, indicating that the change of pH was not affected by H_2O_2 treatment during H_2 fermentation.

Degradation of organic material in melon waste for H_2 production was monitored by determining VS every 24 h of fermentation. The hydrogen yields were calculated by using Eq. 1 (Chen *et al.* 2006; Dong *et al.* 2009):

$$Yield = \frac{volume of hydrogen produced (mL)}{volatile solids consumed (gVS)}$$
(1)

The VS concentration was gradually decreased during H₂ fermentation as the H₂-producing bacteria consumed it. The higher consumption coincided with the optimum pH in the system at day-1 fermentation and getting slow as the system became more acidic (lower pH). The highest consumption of VS was detected by $0.1 \text{ mM } H_2O_2$ treatment with 61% VS consumption, while other H₂O₂ treatments showed similar or lower than control (NT) during fermentation with an average of 51.9% VS consumption (Fig. 2b). Generally, microbes used organic materials as an energy source for growth and gas production or other products (Table 2). The treatment of 0.1 mM H_2O_2 seemingly not limiting consumption of VS by the H₂-producing bacteria during the fermentation process to produce a fermentation product. An important question for future studies is to provide better information regarding the relationship between VS consumption and ROS condition in fermentative hydrogen production.

Fig. 2 The profile of pH (**a**) and total volatile solids consumption (**b**) during dark fermentation of melon waste by inoculum from fruit waste digester (37°C, start pH 7). Error bar represented the standard deviation of experimental data.

3.3 Organic acid production during hydrogen fermentation after H₂O₂ treatment

The profile of organic acids production was collected from each fermentor at the end of H₂ fermentation process (7 days). Various organic acids production describes the hydrogen producer's metabolism pathway and affects fermentation (Cai et al. 2011). Our result shows that six organic acids were detected at the end fermentation periods: acetic, propionic, formic, butyric, iso-butyric, caproic, and valeric acids. The acetic dan butyric fraction range in total VFAs was 14.2 - 41% and 16.1 - 2.22%, respectively (Fig. 3). Acetic production increased in all H_2O_2 treatments (0.1 mM - 517.7 mg/L; 0.2 mM - 607.3 mg/L; 0.3 mM - 550.0 mg/L) compared to NT (327,9 mg/L). Butyric production was detected equal to or lower than NT as it is less profitable in the ROS detoxification process (Hillmann et al. 2008). The increase of acetate is theoretically correlated with increased hydrogen yield (Lee et al. 2008), which was converted to 4 mol hydrogen yield. For this reason, acetic acid is considered as a critical factor to obtain higher hydrogen production (Khanal et al. 2004; Li et al. 2009). The results showed an increased acetic acid production under H₂O₂ treatment during H₂ fermentation, positively correlating with the high H₂ production (Table 1). Acetic acid is generated from pyruvate, where the regeneration of NADH and ATP production also occurred (Saady 2013). Acetic acid pathways appear to be utilized by H₂-producing bacteria under H₂O₂ treatment, suggesting that H₂O₂ treatment in all concentrations potentially triggers more acetic acid synthesis that enhances H₂ production.

Formic acid was detected in low concentrations in all H_2O_2 treatments (<40%) than in the NT (51.3%) (Fig. 3). Formic acid is considered a positive metabolic synthesis pathway because of its potential as a source of H_2 production (Wang *et al.* 2018). However, the low formic acid production under H_2O_2 treatment indirectly affected the H_2 yield. Another possibility for this phenomenon is that most formic acid produced may be metabolized by microbes to generate ATP and yield H_2 as a byproduct, resulting in a low formic acid concentration at the end fermentation process. In some studies, the synthesis of several metabolic end-products (such as propionic acid and ethanol) can decrease H_2 production (Bundhoo 2019; Lee *et al.* 2008).

In this study, an increase in propionic acid concentration in all H_2O_2 treatments was observed. It was most likely produced by a rise in hydrogen partial pressure in the system, as our inoculum contained no H_2 consuming microorganisms that had been killed by acid treatment prior to use as inoculum. Moreover, microbial valeric and caproic acid synthesis also consumed molecular H_2 (Luo *et al.* 2011). The presence of valeric and caproic acid causes a decrease in H_2 yield during H_2 fermentation process.

3.3 Mass balance in the hydrogen fermentation of melon waste under H₂O₂ treatment

Volatile solids degradation is typically used to evaluate digestion effectiveness. Here, mass balance was calculated based on the conversion of VS to our parameter targets, such as H_2 , CO_2 , and VFA, during the fermentation periods (Table 2). The VS conversion by the mixed culture of H_2 -producing microbes under 0.1, 0.2, and 0.4 mM H_2O_2 treatment mainly resulting in H_2 , CO_2 , and VFA, although varying in concentration (Table 2). 0.1 mM H_2O_2 treated sample was the highest VS degraders (up to 94.4%) among all treated samples. It suggests that under 0.1 mM H_2O_2 , the H_2 -producing microbes showed high effectiveness in producing more fermentation products.

Fig. 3 The percent fraction of VFA and total VFA concentration.

Table 2

Distribution of volatile solids (VS) on the gas $(CO_2 \text{ and } H_2)$ and volatile fatty acid (VFA) production during seven days fermentation periods.

Treatment	VS availabity (g)	Total production (g)			Tota consun	l VS nption	Other
		VFA	\mathbf{H}_2	CO_2	(g)	(%)	product (g)
NT	5.020	2.301	0.072	1.704	4.077	81.2	0.943
$0.1 \text{ mM H}_2\text{O}_2$	4.060	2.040	0.074	1.719	3.833	94.4	0.227
$0.2 \text{ mM H}_2\text{O}_2$	5.890	1.760	0.074	1.624	3.458	58.7	2.432
0.4 mM H2O2	5.030	2.215	0.078	1.558	3.852	76.6	1.178

Note: Total VS consumption was calculated by adding up the total gas production (H₂ and CO₂ [g]) and VFA (g)

4. Conclusion

The findings of this study proposed a promising H₂O₂ treatment approach for increasing hydrogen production from melon fruit waste (Cucumis melo L.). The application of 0.4 mM H₂O₂ fairly increased the cumulative hydrogen production up to 7.7 %, while 0.1 mM H₂O₂ enhanced hydrogen yield up to 23.8 %. The primary end products of hydrogen production were acetic, propionic, formic, and butyric acid. The acetic acid was increased by H₂O₂ treatment, leading to enhance H₂ production during fermentation periods. The H₂O₂ treatment appears to positively affect H₂ production and is proposed as an alternative method to enhance H₂ fermentation. This approach is promising and should be explored in the future for providing an in-depth understanding as an alternative method to improve fermentative H₂ production. A further investigation is required to identify NADH profiles under treatment and microbial community analysis to obtain clear information of its mechanism under H₂O₂ treatment as potential alternative methods in H₂ production.

Acknowledgments

This research was supported by Indonesia Endowment Fund for Education (LPDP). The authors also thank Yeni Indra Kumalasari as technical personnel.

References

- Amekan, Y. and Guntoro (2017) Bioethanol production using alginate from Sargassum binderi as an immobilization matrix for Saccharomyces cerevisiae D.01 cells in a batch reactor with circulation. Research Journal of Pharmaceutical, Biological and Chemical Science. 8(2), 1925-1933
- Amekan, Y. (2020). The influence of microbial community dynamics on anaerobic digestion efficiency and stability: A review. International Journal of Renewable Energy Development, 9(1), 85–95. https://doi.org/10.14710/ijred.9.1.85-95
- Amekan, Y., Wangi, D. S. A. P., Cahyanto, M. N., Sarto, and Widada, J. (2018). Effect of different inoculum combination

on biohydrogen production from melon fruit waste. International Journal of Renewable Energy Development, 7(2), 101–109. https://doi.org/10.14710/ijred.7.2.101-109

- Bundhoo, Z. M. A. (2019). Potential of bio-hydrogen production from dark fermentation of crop residues: A review. *International Journal of Hydrogen Energy*, 44(32), 17346– 17362. https://doi.org/10.1016/j.ijhydene.2018.11.098
- Cahyari, K., Hidayat, M., Syamsiah, S., and Sarto. (2019). Optimization of hydrogen production from fruit waste through mesophilic and thermophilic dark fermentation: Effect of substrate-to-inoculum ratio. *Malaysian Journal of Analytical Sciences*, 23(1), 116–123. https://doi.org/10.17576/mjas-2019-2301-14
- Cai, G., Jin, B., Monis, P., and Saint, C. (2011). Metabolic flux network and analysis of fermentative hydrogen production. *Biotechnology Advances*, 29(4), 375–387. https://doi.org/10.1016/j.biotechadv.2011.02.001
- Choi, J., and Ahn, Y. (2014). Characteristics of biohydrogen fermentation from various substrates. International Journal of Hydrogen Energy, 39(7), 3152–3159. https://doi.org/10.1016/j.ijhydene.2013.12.050
- Chu, C. Y., Sen, B., Lay, C. H., Lin, Y. C., and Lin, C. Y. (2012). Direct fermentation of sweet potato to produce maximal hydrogen and ethanol. *Applied Energy*, 100, 10–18. https://doi.org/10.1016/j.apenergy.2012.06.023
- Damayanti, A., Sarto, and Sediawan, W. B. (2020). Biohydrogen production by reusing immobilized mixed culture in batch system. International Journal of Renewable Energy Development, 9(1), 37–42. https://doi.org/10.14710/ijred.9.1.37-42
- Das, D., Dutta, T., Nath, K., Kotay, S. M., Das, A. K., and Veziroglu, T. N. (2006). Role of Fe-hydrogenase in biological hydrogen production. *Current Science*, 90(12), 1627–1637.
- Ding, C., Yang, K. L., and He, J. (2016). Biological and fermentative production of hydrogen. In J. C. Rafael Luque, Carol Sze Ki Lin, Karen Wilson (Ed.), *Processes and Technologies* (Second Edi, Issue December 2016). Handbook of Biofuels Production Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100455-5.00011-4
- Eroglu, E., and Melis, A. (2011). Photobiological hydrogen production: Recent advances and state of the art. *Bioresource Technology*, 102(18), 8403–8413. https://doi.org/10.1016/j.biortech.2011.03.026
- Hallenbeck, P. C. (2009). Fermentative hydrogen production: Principles, progress, and prognosis. International Journal of Hydrogen Energy, 34(17), 7379–7389. https://doi.org/10.1016/j.ijhydene.2008.12.080
- Hao, F., and Shao, W. (2021). What really drives the deployment of renewable energy? A global assessment of 118 countries.

Energy Research and Social Science, 72(November 2020), 101880. https://doi.org/10.1016/j.erss.2020.101880

- Hassan, N. S., Jalil, A. A., Vo, D. V. N., and Nabgan, W. (2020). An overview on the efficiency of biohydrogen production from cellulose. *Biomass Conversion and Biorefinery*. https://doi.org/10.1007/s13399-020-01125-x
- Hawkes, F. R., Dinsdale, R., Hawkes, D. L., and Hussy, I. (2002). Sustainable fermentative hydrogen production: Challenges for process optimisation. *International Journal of Hydrogen Energy*, 27(11–12), 1339–1347. https://doi.org/10.1016/S0360-3199(02)00090-3
- Hillmann, F., Fischer, R. J., Saint-Prix, F., Girbal, L., and Bahl, H. (2008). PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Molecular Microbiology, 68(4), 848–860. https://doi.org/10.1111/j.1365-2958.2008.06192.x
- Kawasaki, S., Nakagawa, T., Nishiyama, Y., Benno, Y., Uchimura, T., Komagata, K., Kozaki, M., and Niimura, Y. (1998). Effect of oxygen on the growth of *Clostridium butyricum* (type species of the genus *Clostridium*), and the distribution of enzymes for oxygen and for active oxygen species in *clostridia*. Journal of Fermentation and Bioengineering, 86(4), 368–372. https://doi.org/10.1016/S0922-338X(99)89006-0
- Khanal, S. K., Chen, W. H., Li, L., and Sung, S. (2004). Biological hydrogen production: Effects of pH and intermediate products. International Journal of Hydrogen Energy, 29(11), 1123–1131. https://doi.org/10.1016/j.ijhydene.2003.11.002
- Kim, S. H., Kumar, G., Chen, W. H., and Khanal, S. K. (2021). Renewable hydrogen production from biomass and wastes (ReBioH2-2020). *Bioresource Technology*, 331. https://doi.org/10.1016/j.biortech.2021.125024
- Kumar, G., Sen, B., Sivagurunathan, P., and Lin, C. Y. (2015). Comparative evaluation of hydrogen fermentation of deoiled Jatropha waste hydrolyzates. *International Journal* of Hydrogen Energy, 40(34), 10766–10774. https://doi.org/10.1016/j.ijhydene.2015.06.118
- Lee, H. S., Salerno, M. B., and Rittmann, B. E. (2008). Thermodynamic evaluation on H₂ production in glucose fermentation. *Environmental Science and Technology*, 42(7), 2401–2407. https://doi.org/10.1021/es702610v
- Li, J., Zheng, G., He, J., Chang, S., and Qin, Z. (2009). Hydrogenproducing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor. *Biotechnology Advances*, 27(5), 573–577. https://doi.org/10.1016/j.biotechadv.2009.04.007
- Luo, G., Karakashev, D., Xie, L., Zhou, Q., and Angelidaki, I. (2011). Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: Homoacetogenesis and methanogenesis as competitors to hydrogen production. *Biotechnology and Bioengineering*, 108(8), 1816–1827. https://doi.org/10.1002/bit.23122
- Martins, F., Felgueiras, C., Smitkova, M., and Caetano, N. (2019). Analysis of fossil fuel energy consumption and environmental impacts in european countries. *Energies*, 12(6), 1–11. https://doi.org/10.3390/en12060964

- Reddy, K., Nasr, M., Kumari, S., Kumar, S., Gupta, S. K., Enitan, A. M., and Bux, F. (2017). Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles. *Environmental Science and Pollution Research*, 24(9), 8790–8804. https://doi.org/10.1007/s11356-017-8560-1
- Reungsang, A., and Sreela-or, C. (2013). Bio-hydrogen production from pineapple waste extract by anaerobic mixed cultures. *Energies*, 6(4), 2175–2190. https://doi.org/10.3390/en6042175
- Saady, N. M. C. (2013). Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge. International Journal of Hydrogen Energy, 38(30), 13172–13191. https://doi.org/10.1016/j.ijhydene.2013.07.122
- Shaojie, W., Zhang, T., Bao, M., Su, H., and Xu, P. (2020). Microbial Production of Hydrogen by Mixed Culture Technologies: A Review. *Biotechnology Journal*, 15(1), 1–8. https://doi.org/10.1002/biot.201900297
- Sivagurunathan, P., Kumar, G., Bakonyi, P., Kim, S. H., Kobayashi, T., Xu, K. Q., Lakner, G., Tóth, G., Nemestóthy, N., and Bélafi-Bakó, K. (2016). A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. *International Journal of Hydrogen Energy*, 41(6), 3820– 3836. https://doi.org/10.1016/j.ijhydene.2015.12.081
- Sivagurunathan, P., Sen, B., and Lin, C. Y. (2014a). Batch fermentative hydrogen production by enriched mixed culture: Combination strategy and their microbial composition. Journal of Bioscience and Bioengineering, 117(2), 222–228. https://doi.org/10.1016/j.jbiosc.2013.07.015
- Sivagurunathan, P., Sen, B., and Lin, C. Y. (2014b). Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. *International Journal of Hydrogen Energy*, 39(33), 19232-19241. https://doi.org/10.1016/j.ijhydene.2014.03.260
- Tanisho, S., and Ishiwata, Y. (1995). Continuous hydrogen production from molasses by fermentation using urethane foam as a support of flocks. *International Journal of Hydrogen Energy*, 20(7), 541–545. https://doi.org/10.1016/0360-3199(94)00101-5
- Wang, X., Meng, Q., Gao, L., Jin, Z., Ge, J., Liu, C., and Xing, W. (2018). Recent progress in hydrogen production from formic acid decomposition. *International Journal of Hydrogen Energy*, 43(14), 7055–7071. https://doi.org/10.1016/j.ijhydene.2018.02.146
- Wei, J., Liu, Z. T., and Zhang, X. (2010). Biohydrogen production from starch wastewater and application in fuel cell. *International Journal of Hydrogen Energy*, 35(7), 2949– 2952. https://doi.org/10.1016/j.ijhydene.2009.05.035
- Xiao, B., and Liu, J. (2009). Effects of various pretreatments on biohydrogen production from sewage sludge. Chinese Science Bulletin, 54(12), 2038–2044. https://doi.org/10.1007/s11434-009-0100-z

 \odot 2022. By Authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA) International License (http://creativecommons.org/licenses/by-sa/4.0/)