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Abstract. Prediction of daily global solar radiation (𝐻) with simple and highly accurate models would be beneficial for solar energy 

conversion systems. In this paper, we proposed a hybrid machine learning methodology integrating two feature selection methods and a 

Bayesian optimization algorithm to predict H in the city of Fez, Morocco. First, we identified the most significant predictors using two 

Random Forest methods of feature importance: Mean Decrease in Impurity (MDI) and Mean Decrease in Accuracy (MDA). Then, based 

on the feature selection results, ten models were developed and compared: (1) five standalone machine learning (ML) models including 

Classification and Regression Trees (CART), Random Forests (RF), Bagged Trees Regression (BTR), Support Vector Regression (SVR), 

and Multi-Layer Perceptron (MLP); and (2) the same models tuned by the Bayesian optimization (BO) algorithm: CART-BO, RF-BO, 

BTR-BO, SVR-BO, and MLP-BO. Both MDI and MDA techniques revealed that extraterrestrial solar radiation and sunshine duration 

fraction were the most influential features. The BO approach improved the predictive accuracy of MLP, CART, SVR, and BTR models 

and prevented the CART model from overfitting. The best improvements were obtained using the MLP model, where RMSE and MAE 

were reduced by 17.6% and 17.2%, respectively. Among the studied models, the SVR-BO algorithm provided the best trade-off between 

prediction accuracy (RMSE=0.4473kWh/m²/day, MAE=0.3381kWh/m²/day, and R²=0.9465), stability (with a 0.0033kWh/m²/day increase 

in RMSE), and computational cost.  
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1 Introduction 

Despite the global decline in energy demand due to the 

COVID-19 crisis, the growth of renewable energies has 

remained constant. Solar photovoltaic and onshore wind 

are now the most cost-effective options to install new 

electricity-generating plants in most countries (World 

Energy Outlook 2020 – Analysis, n.d.). Morocco is 

considered as one of the leading African countries in solar 

energy thanks to its sustainable policy that aims to 

produce 20% of its electricity from solar energy by 2030 

(Merrouni et al., 2018). Nowadays, there are two types of 

large solar energy systems: Concentrated Solar Power 

(CSP) and Photovoltaic (PV). The CSP systems use direct 
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solar radiation while the PV systems use global solar 

radiation. Global solar radiation is measured by 

pyranometers commonly installed in weather stations. 

However, these measurements are not available for the 

majority of worldwide stations owing to the expensive cost 

of calibrating and maintaining these devices (Olatomiwa 

et al., 2015). An alternative way to get information about 

H is by developing estimation models, including empirical 

models (Halawa et al., 2014), reanalysis models (Dee et al., 

2011),(Gelaro et al., 2017), satellite-based models (Bamehr 

& Sabetghadam, 2021), interpolation models (Alsamamra 

et al., 2009), (Ruiz-Arias et al., 2011), and machine 

learning models. 
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Because of their strong predictive capability and their 

ability to fit nonlinear data, ML models have been widely 

used in the literature for solar simulation (Tao et al., 

2021). Kumar et al. (Kumar et al., 2015) compared 

artificial neural network (ANN) models to the regression 

models for estimating monthly global solar radiation. The 

results of this research revealed that the ANN models 

performed better than the regression methods. In ref (Piri 

et al., 2015), the authors compared the SVR algorithms to 

traditional empirical methods to predict H at two sites in 

Iran. The findings of this research indicated that SVR 

models were the most suitable for H estimation. To predict 

H in humid subtropical China, Fan et al. (Fan et al., 2018) 

compared SVR, Extreme Gradient Boosting (XGBoost), 

and four empirical models. SVR and XGBoost showed 

comparable prediction accuracy and outperformed the 

empirical models. Additionally, the XGBoost model was 

the most efficient in terms of stability and computational 

cost. Quej et al. (Quej et al., 2017a) assessed the potential 

of SVR, ANN, and Neuro-Fuzzy Inference System (ANFIS) 

models to estimate daily global solar radiation in the 

Yucatán Peninsula, México. They showed that the SVR 

model outperformed both the ANN and ANFIS techniques. 

In (Benali et al., 2019), the authors used smart persistence 

(SP), ANN, and RF models to forecast hourly components 

of solar radiation (global horizontal, beam normal, and 

diffuse horizontal) in Odeillo, France. They concluded that 

the RF method was the most robust. Benouna et al. 

(Bounoua et al., 2021) compared 22 empirical models, 

ANNs, and tree-based ensemble methods for estimating H 

in five locations in Morocco. Their results revealed the 

superiority of the RF model. Hassan et al. (Hassan et al., 

2017) investigated the efficiency of gradient boosting, 

BTR, and RF models for predicting different solar 

radiation components over five stations in the MENA 

countries (Middle East and North Africa). The tree 

ensemble models yielded comparable prediction accuracy 

with ANN and SVR models while exhibiting less 

computational cost. Fan et al. (Fan et al., 2019a) compared 

the performances of 12 variants of Ångström–Prescott 

models and 12 machine learning algorithms for estimating 

daily solar radiation in different climatic zones of China. 

The authors showed that the ML models outperformed 

generally the empirical models and recommended the 

ANFIS model due to its high prediction capability and low 

computational cost. 

Optimization techniques are frequently used to 

improve the predictive ability of ML algorithms because 

the performances of these models are highly sensitive to 

their hyperparameters. Ibrahim and Khatib (Ibrahim & 

Khatib, 2017) proposed a hybrid model incorporating the 

RF technique and the firefly algorithm (RF-FFA) for 

estimating hourly global solar irradiance. The novel model 

outperformed the conventional RF and MLP models as 

well as the optimized MLP-FFA model. Feng et al. (Feng 

et al., 2020) coupled particle swarm optimization (PSO) 

and extreme learning machine model (ELM) to estimate  

H in seven locations in China. The new model had better 

performances than ELM, SVR, Generalized Regression 

Neural Networks (GRNN), M5 model tree (M5tree), and 

autoencoder models. Lotfinejad et al. (Lotfinejad et al., 

2018) combined the MLP model with BAT (BA) algorithm 

to estimate H at four sites in Iran. The proposed model 

performed better than ANFIS and GRNN models. 

Bayesian optimization (BO) is a powerful optimization 

technique that has gained much attention in many fields 

such as agriculture (Sameen et al., 2020), geosciences (Z. 

Zhang et al., 2021), medicine (Dhamala et al., 2020), and 

engineering (Y. Wang et al., 2021), (Wu et al., 2019), (Q. 

Zhang et al., 2020). However, there is no documented 

paper on solar radiation modeling using Bayesian 

optimization to the knowledge of the authors. 

Selecting the most effective features for H prediction is 

a critical task in solar modeling. This improves the 

predictive efficiency of machine learning models, speeds 

up the training process, and eliminates redundant 

features (Almaraashi, 2018). Numerous studies have been 

conducted in recent years to identify the most significant 

features for global solar radiation estimation. Almaraashi 

(Almaraashi, 2018) integrated four feature selection 

methods and an ANN model to estimate daily solar 

radiation in eight sites in Saudi Arabia. The achieved 

results demonstrated that the models based on feature 

selection methods were better than those using all 

features. Alsina et al. (Alsina et al., 2016) employed the 

Automatic Relevance Determination method (ARD) to 

determine the most relevant inputs for an ANN model 

used to predict the monthly solar radiation in Italy. The 

best results were obtained with 7 inputs, namely, top of 

atmosphere radiation, day length, number of rainy days, 

rainfall, latitude, period, and altitude. Mgouchi et al. (El 

Mghouchi et al., 2019) identified clearness index, top of the 

atmosphere, and function of average ambient temperature 

as the optimal combination of attributes using ANNs for 

estimating H at 35 stations in Morocco and neighboring 

countries. In another study conducted in Morocco, 

Marzouq et al. (Marzouq et al., 2019) demonstrated via 

Evolutionary Artificial Neural Networks (EANN) that 

rainfall, wind direction, daily temperature gradient, and 

extraterrestrial solar radiation are the optimal 

combination of features. Using an ELM algorithm, 

Shamshirband et al (Shamshirband et al., (2015) 

demonstrated that the most influential single feature is 

relative sunshine duration, and that sunshine duration 

and the difference between maximum and minimum 

temperatures represent the optimal combination of two 

inputs. To identify the most influential input on H 

estimation, inputs. In Mashhad, Iran, Rohani et al. 

(Rohani et al., 2018) demonstrated that sunshine fraction 

duration, mean temperature, relative humidity, and 

extraterrestrial radiation are the most effective inputs for 

daily and monthly H prediction with the Gaussian process 

(GP) model. Zeng et al. (Zeng et al., 2020) showed that 

daily sunshine duration, daily maximum land surface 

temperature, and day of the year are the most important 

attributes for H modeling across China using the RF 

model. In ref (Sun et al., 2016), the authors employed the 

same approach and demonstrated that sunshine duration 

is the most effective feature in estimating solar radiation. 

Table 1 summarizes some of the feature selection 

approaches used in the literature.  
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Table 1 

 Summary of some of the features selection methods used in the literature 

References Location Feature selection 

method 

Comments 

(Almaraashi, 2018) 8 sites, Saudi Arabia ReliefF algorithm, Monte 

Carlo uninformative 

variable elimination 

algorithm,random-frog 

algorithm, and Laplacian 

score algorithm. 

Models based on feature 

selection provided best 

performances than models 

with all features 

(Alsina et al., 2016) 45 sites, Italy ARD Best results were obtained 

using: top of atmosphere 

radiation, day length, 

number of rainy days, 

rainfall, latitude, period 

time, and altitude 

(Mgouchi et al., 2019) 27 stations in Morocco and 8 

in neighboring countries 

ANNs The optimal combination 

was: clearness index, top of 

the atmosphere, and 

function of average ambient 

(Marzouq et al., 2019) 1site, Morocco EANN The best combination of 

features was: rainfall, wind 

direction, daily temperature 

gradient, and 

extraterrestrial solar 

radiation 

(Shamshirband et al., 2015) 1 site, Iran ELM Sunshine duration is the 

most important attribute 

while sunshine duration 

and the difference between 

the maximum and 

minimum temperatures 

represent is the best 

combination of two inputs 

(Rohani et al., 2018) 1 site, Iran GP The most important 

features were: sunshine 

fraction duration, mean 

temperature, relative 

humidity, and 

extraterrestrial radiation 

(Zeng et al., 2020) 130 sites, China RF Daily sunshine duration, 

daily maximum land surface 

temperature, and day of the 

year were the most 

impactful features 

(Sun et al., 2016) 3 sites, China RF Daily sunshine duration is 

the most important input 

variable 

(Yadav et al., 2014) 26 sites, India Waikato environment for 

knowledge analysis 

The most relevant input 

variables were: average 

temperature, maximum 

temperature, minimum 

temperature, altitude, and 

sunshine hours 

 

 

 

As this brief review indicates, the BO technique has 

not been applied in global solar radiation modeling and 

the RF’s model application as a feature importance 

technique is still limited. Furthermore, the two feature 

importance techniques, MDI and MDA, have not been 

compared yet. Hence, this study aims first to select the 

most important features for estimating 𝐻 in the city of Fez, 

Morocco using MDA and MDI techniques. Second, to 

optimize 5 ML models including CART, RF, BTR, SVR, 

and MLP via the Bayesian optimization algorithm. 

Finally, to compare the best models in terms of predictive 

accuracy, stability, and computational cost. The 

methodology followed in this study is reported in Fig.1. 

The rest of this paper is structured as follows: Section 

2 describes different models and techniques used in this 

paper. It also presents the study area, data preprocessing, 

and evaluation criteria. The main results were presented 

and discussed in Section 3. Finally, Section 4 provides the 

conclusions with future work. 
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Fig. 1 Flowchart of the methodology used in this study

2 Materials and Methods 

2.1 Predictive models 

2.1.1 Classification and Regression Trees (CART) 

The CART model is a kind of decision tree introduced by 

Breiman et al. in 1984 (Breiman, 2017). This model is 

constructed by partitioning the data space recursively and 

fitting a simple prediction model to each partition. Each 

decision tree includes a root node (top of the tree), multiple 

branch nodes (internal nodes), and several leaf nodes 

(terminal nodes) (Z. Wang et al., 2018).  

Let us denote a set of observed data 𝑆𝑛={𝑋𝑖 , 𝑌𝑖} i = 1: n  

where 𝑌𝜖ℝ is the output variable, 𝑋𝜖ℝ𝑚 is the input vector 

containing 𝑚 features, and n is the number of 

observations. 

The first step to construct a CART model is to split the root 

node 𝑝 into two different children as: 

{𝑋𝑗 < 𝑑}𝑈{𝑋𝑗 > 𝑑)    (1) 

where 𝑗 ∈ {1, … , 𝑚} and 𝑑𝜖ℝ.  

The best couple (𝑗, 𝑑) is obtained by minimizing the child 

node variance function defined by: 

𝑉(𝑝) = ∑ (𝑌𝑖 − 𝑌�̅�)2
𝑖     (2)  

where 𝑌�̅� is the mean of the scalars 𝑌𝑖 present in the node 

p (Lahouar & Slama, 2015).  

The child’s nodes are then divided in the same manner. 

This splitting process will be repeated recursively until a 

predefined stopping criterion is met, for instance, the 

minimum number of samples for the node split or the 

minimum number of samples in a leaf. Finally, a CART 

model ℎ̂(𝑋, 𝑆𝑛) is built over 𝑆𝑛. Fig.2 illustrates an example 

of a CART model with its partitioning space.  

The CART model contains several hyperparameters. 

In this study, we focus on the maximum depth of the tree 

(max_depth) and the number of features to consider when 

looking for the best split (max_features). 

Although CART models are fast and interpretable, 

they are unstable; a minor change made in the input data 

can lead to a significant influence on the output value [12]. 

To overcome this drawback and to get high prediction 

accuracy, ensemble methods such as Bagged Trees, 

Boosted Trees, and Random Forests have been proposed. 

 

 

 

Fig. 2 An example of a CART model with its partitioning space 
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The BTR algorithm proposed by Breiman in 1996 

(Breiman, 1996) uses the bagging (or bootstrap 

aggregation) process to create a set of decision trees (Li et 

al., 2018). The bagging algorithm generates several 

bootstrap samples (𝑆𝑛
𝜃1 ,….𝑆𝑛

𝜃𝑞
) from the original training 

data 𝑆𝑛 by randomly selecting 𝑛 observations with 

replacement from 𝑆𝑛. These samples are then used as new 

datasets to train q independent trees ℎ̂ = (𝑋, 𝑆𝑛
𝜃1) … , ℎ̂ =

(𝑋, 𝑆𝑛

𝜃𝑞) (Li et al., 2018). Finally, the outputs of all decision 

trees are averaged (Lahouar & Slama, 2015): 

�̂� =
1

𝑞
∑ ℎ̂(𝑋,

𝑞
𝑙=1 𝑆𝑛

𝜃𝑖)    (3) 

For the BTR algorithm, the main tuning hyperparameters 

include (1) the number of trees in the model (n_estimators) 

and (2) the maximum depth of the tree (max_depth). The 

structure of a BTR model is illustrated in Fig.3. 

 

2.1.2 Random Forest (RF) 

The RF algorithm proposed by Breiman in 2001 (Breiman, 

2001) is a variant of the BTR model. Unlike BTR, RF 

selects a subset of features to create non-correlated trees 

that reach the averaging stage (Zhou, 2012). The main 

hyperparameters for this model are (1) the number of trees 

in the forest (n_estimators), (2) the maximum depth of the 

tree (max_depth), and (3) the number of features to 

consider when looking for the best split (max_features).  

Besides its good prediction accuracy, RF also offers two 

methods for feature selection: Mean Decrease in Impurity 

(MDI) and Mean decrease in Accuracy (MDA). 

 

2.1.3 Mean Decrease in Impurity (MDI) 

In the case of a CART model, the MDI score for a variable 

𝑋𝑗 is calculated by summing decreases in node impurities 

(variances) during data partitioning using the feature 𝑋𝑗. 

The decrease in impurity is defined as (Scornet, 2020): 

Δ𝑉(𝑡) = 𝑉(𝑡) − 𝑝𝐿𝑉(𝑡𝐿) − 𝑝𝑅𝑉(𝑡𝑅)   (4) 

where 𝑡𝐿 and 𝑡𝑅 represent two child nodes generated when 

partitioning the data at node 𝑡, 𝑝𝐿 = 𝑁𝑡𝐿
𝑁𝑡⁄    and 𝑝𝑅 =

𝑁𝑡𝑅
𝑁𝑡⁄  are the proportion of data reaching the children 

nodes 𝑡𝐿 and 𝑡𝑅, respectively.  

 

Fig. 3 Structure of BTR model 

 

In the case of the RF model, the MDI score is obtained by 

averaging the scores of all 𝑞 trees in the forest 

𝑀𝐷𝐼 =
1

𝑞
∑ ∑ 𝑝(𝑡)𝑡𝜖𝑞𝑞  Δ𝑉(𝑡)    (5) 

where 𝑝(𝑡) = 𝑁𝑡 𝑁⁄  represents the proportion of samples 

reaching node 𝑡. 

 

2.1.4 Mean Decrease in Accuracy (MDA) 

MDA is a feature importance technique introduced first by 

Breiman for Random Forests and generalized by Fisher et 

al. in 2018 (Fisher et al., 2018) for all kinds of machine 

learning models. It measures the decrease of accuracy 

when permuting the values of a variable 𝑋𝑗. The MDA 

score is calculated as (Molnar, 2020): 

𝑀𝐷𝐴 = 𝑒𝑟𝑟𝑝𝑒𝑟𝑚 − 𝑒𝑟𝑟𝑜𝑟𝑖𝑔    (6) 

where 𝑒𝑟𝑟𝑜𝑟𝑖𝑔 is the original model error and 𝑒𝑟𝑟𝑜𝑟𝑝𝑒𝑟𝑚  is 

the error obtained after permuting the values of 𝑋𝑗. 

The error utilized in this study is the mean absolute error 

(MAE) calculated by equation 15. 

2.1.5 Support Vector Regression (SVR) 

SVRs are powerful ML derived from statistical learning 

theory and the structural risk minimization principle 

(Chen et al., 2013). The SVRs transform the non-linear 

relationship between features and the outcome in the 

original space into a linear regression in a new higher 

dimensional feature space, implicitly using the kernel 

trick (Quej et al., 2017b). A detailed description of the SVR 

model is given in (Vapnik, 2013). The hyperparameters of 

the SVR model are (1) the regularization parameter (C), 

(2) the width of the tube around the estimated function 

(epsilon), and (3) the kernel function (kernel). 

2.1.6  Multilayer Perceptron (MLP) 

MLP models are a kind of feedforward ANNs that are 

inspired by the functioning of biological neurons. It is 

composed of an input layer, an output layer, and one or 

several hidden layers. Fig.4 illustrates the structure of an 

MLP network with one hidden layer. In the first stage, the 

model propagates forward the input data from the input 

layer through the hidden layers to the output layer. In the 

second stage, the error is propagated back to the input 

layer. A learning algorithm is used to adjust the network's 

weights and bias until the error is minimized (R. Wang et 

al., 2019). More details about this model can be found in 

ref (Hastie et al., 2009). The tuned hyperparameters for an 

MLP model with one hidden layer are: (1) the activation 

function for the hidden layer (activation), (2) the learning 

algorithm (solver), and (3) the number of neurons in the 

hidden layer (hidden_layers_sizes). 

2.1.7 Bayesian Optimization (BO) 

BO is an effective strategy for optimizing unknown black 

box objectives functions (Snoek et al., 2012). The key 

components in the BO algorithm are a Gaussian Process 

(GP) model of the unknown objective function 𝑓(𝑥), a 

Bayesian procedure for updating the GP model at each 

new evaluation of 𝑓(𝑥), and an acquisition function 𝑎(𝑥) 

that determines the next point to evaluate. 
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Fig.4 Structure of an MLP model with one hidden layer 

 

GP generalizes the multivariate normal distribution over 

functions; it is defined by its mean function 𝑚(𝑥) and 

covariance matrix 𝑘(𝑥, 𝑥′) 

𝐺𝑃~𝑁(𝑚(𝑥), 𝑘(𝑥, 𝑥′))    (7) 

where N denotes the standard normal distribution (Shi & 

Choi, 2011). 

Let D={𝑥𝑖 , 𝑦𝑖} 𝑖 = 1: 𝑡 denote a set of data 

A GP model for this data set can be specified as follows 

𝑓(𝑥𝑖) = 𝑦𝑖 + 𝜀𝑖 with 𝜀𝑖 = 𝑁(0, 𝜎2) is Gaussian noise. We 

assume a zero-mean function in the GP prior and we 

choose ARD Matern 5/2 Kernel as a covariance function  

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜎𝑓
2 (1 +

√5𝑟2

𝜎𝑙
+

5𝑟2

3𝜎𝑙
2
) exp (−

√5𝑟

𝜎𝑙
)   (8) 

where 𝑟 = √(𝑥𝑖 − 𝑥𝑗)𝑇(𝑥𝑖 − 𝑥𝑗) is the Euclidean distance 

between 𝑥𝑖 and 𝑥𝑗, 𝜎𝑙 is the characteristic length scale, and 

𝜎𝑓 is the signal standard deviation (Snoek et al., 2012). 

The function values 𝑦1:𝑡 jointly follow a multivariate 

Gaussian distribution as 𝑦1:𝑡~𝑁(0, 𝐾), where covariance 

matrix 𝐾 is given as: 

𝐾 = [
𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑡)

⋮ ⋱ ⋮
𝑘(𝑥𝑡 , 𝑥1) ⋯ 𝑘(𝑥𝑡 , 𝑥𝑡)

]   (9) 

The predictive mean and the variance for or a new data 

point 𝑥𝑡+1 are (Joy et al., 2019): 

𝑚(𝑥𝑡+1) = 𝑘𝑇[𝐾 + 𝜎2𝐼]−1𝑦1:𝑡    (10) 

𝜎2(𝑥𝑡+1) = 𝑘(𝑥𝑡+1, 𝑥𝑡+1) − 𝑘𝑇[𝐾 + 𝜎2𝐼]−𝟏𝑘    (11) 

The next step in the BO algorithm is to choose the next 𝑥∗ 

to evaluate by maximizing the acquisition function 𝑎(𝑥). 

This function balances exploration against exploitation. 

Exploration attempts to improve the model in the less 

explored regions of the search space, while exploitation 

favors parts that the model predicts as promising 

(Calandra et al., 2016). In this paper, we used the 

Expected Improvement acquisition function given by 

(Cheng et al., 2019): 

𝐸𝐼(𝑥) = {
(𝑚(𝑥) − 𝑓(𝑥∗))∅(𝑧) + 𝜎(𝑥)𝜑(𝑧), 𝑖𝑓  𝜎(𝑥) > 0

0, 𝑖𝑓 𝜎(𝑥) = 0
 (12) 

where 𝑧 =
𝑚(𝑥)−𝑓(𝑥∗)

𝜎(𝑥)
, ∅(. ), and 𝜑(. ) are the cumulative 

density function (CDF) and the probability density 

function (PDF) of standard normal distribution, 

respectively. 

 

2.2 Study area and data processing 

2.2.1 Case study and data collection 

The data used in this study were measured from the 1st of 

January 2016 to the 31st of December 2017 at a 

meteorological station in Fez (latitude 33°55’58” N, 

longitude 4°58’30” W, altitude 571.3m). Seven parameters 

were included, namely global solar radiation (H), sunshine 

duration (N), average temperature (T), atmospheric 

pressure (P), relative humidity (RH), precipitations (Pr ), 
and wind speed (v). The database was supported by the 

daily calculated extraterrestrial solar radiation (H0) and 

the daily sunshine duration fraction (SF). The detailed 

equations of these two quantities can be found in 

(Kalogirou, 2013). Fig.5 presents the boxplots of the daily 

variables used in this study. The dataset contains some 

incorrect and missing values that must be removed. For 

this aim, we excluded all daily clearness index (𝐾𝑡 = 𝐻 𝐻0⁄ ) 

and SF values that were outside of the ranges 0.015 < 𝐾𝑡 <
1 and  0 ≤ SF ≤ 1, respectively (Quej et al., 2017a), 

(Hassan et al., 2017). We found five days with missing H 

values and four days with SF incorrect values among the 

731 daily data used in this study. 

2.2.2 Data preprocessing and evaluation criteria 

The dataset was randomly divided into two groups (60% 

for training and 40% for testing) for constructing the 

predictive ML models. The models: CART, RF, and BTR, 

do not necessitate data normalization. However, 

preprocessing of data is required for SVR and ANN 

models. The normalized value 𝑋𝑛𝑜𝑟𝑚 of an instance of the 

dataset is calculated as (R. Wang et al., 2019): 

𝑋𝑛𝑜𝑟𝑚 =
𝑋𝑖−𝑋𝑖,𝑚𝑖𝑛

𝑋𝑖,𝑚𝑎𝑥−𝑋𝑖,𝑚𝑖𝑛
    (13) 

where 𝑋𝑖 , 𝑋𝑖,𝑚𝑖𝑛, 𝑋𝑖,𝑚𝑎𝑥  denote the real, the minimum, and 

maximum values, respectively. 

To tune the hyperparameters of ML algorithms with 

BO, we used the 5-fold cross-validation technique, which 

divides the training dataset into five groups. Four groups 

were used to train the ML methods and the remaining 

group was used to validate them. This process is repeated 

5 times.  

All the simulations were written with Python 3.8 

language on a computer with a 2.53 GHz processor and 16 

GB RAM. The ML models were developed with scikit-learn 

library (Pedregosa et al., 2011), and the BO algorithm with 

scikit-optimize library. 
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Fig. 5 Boxplots of the daily parameters used in this study

We used three statistical indicators to assess the 

predictive accuracy of the ML models: root mean square 

error (RMSE), mean absolute error (MAE), and coefficient 

of determination (R²) (Ahmad et al., 2018): 

𝑅𝑀𝑆𝐸 = √
∑ (𝐻𝑖,𝑐−𝐻𝑖,𝑚)2𝑛

𝑖=1

𝑛
    (14) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐻𝑖,𝑐 − 𝐻𝑖,𝑚)|𝑛

𝑖=1     (15) 

𝑅2 = 1 −
∑ (𝐻𝑖,𝑐−𝐻𝑖,𝑚)2𝑛

𝑖=1

∑ (𝐻𝑖,𝑚−𝐻𝑚,𝑎𝑣𝑔)2𝑛
𝑖=1

    (16) 

where 𝑛 is the number of observations, 𝐻𝑖,𝑐 is the 

calculated solar radiation, 𝐻𝑖,𝑚 denotes the measured 

solar radiation, and 𝐻𝑚,𝑎𝑣𝑔 is the mean of the measured 

values. 

A model is more accurate when RMSE and MAE are close 

to 0 and R² is close to 1. 

 

3 Results and Discussion 

3.1. Feature selection and performance analysis of RF 

models  

In this section, we used and compared MDA and MDI 

techniques to measure the importance of the input 

variables and to identify the most influential of them. 

Fig.6(a) and Fig.6(b) represent the MDA and MDI scores 

of the seven investigated predictors. Both methods 

produced the same order of the top five features. Among 

all variables, H0 and SF were found to be the most 

important, using the two techniques. H0 is 1.58 and 1.41 

more important than SF, using the MDI and MDA 

methods, respectively. These two variables are highly 

correlated to H and are widely used in solar modeling 

because the solar radiation reaching the ground is the 

fraction of H0 that passes through the atmosphere and SF 

is an indirect index of the cloudiness of a site (Paulescu et 

al., 2016). T and RH are the next two most relevant 

features; they showed a small impact in H predicting 

compared to H0 and SF. The MDI score of H0 is 67.4 and 

88.2 times the MDI score of T and RH, respectively. While 

the MDA score of H0 is 56 and 88.5 times that of T and RH, 

respectively. The remaining features had insignificant 

scores, basically when using the MDA technique. 

To evaluate the efficacy of feature importance techniques 

and to consider the interaction of features, we compared 

the RF model with all inputs to several RF models with 

different combinations. Table 2 summarizes the obtained 

results. According to this table, the performances of the 

RF models varied significantly under various input 

combinations. 

 

 

Fig. 6 Variable importance input predictors(a) MDI method, (b) 

MDA method 
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The RF model with the complete features did not achieve 

the best performances because some of them were 

redundant. All models that used the combination of H0 

and SF performed better than the models without it. For 

instance, the model with only H0 and SF outperformed all 

models without this association. These results confirmed 

that these two features are the most important for H 

estimating. Among the sixteen developed soft computing 

techniques, the model incorporating H0, SF, and T showed 

the best accuracy during the testing phase with 

R²=0.9462, RMSE=0.4488kWh/m²/day, and MAE=0.3448 

kWh/m²/day. It is followed by the model based on the 

combination H, SF, and RH. These results showed the 

benefits of using feature selection to obtain simple models 

without compromising prediction quality. 

 

3.1 Bayesian Optimization results 

Bayesian optimization (BO) aims at improving the 

performances of five standalone ML models: CART, RF, 

BTR, SVR, and MLP using the three optimal inputs 𝐻0, 𝑆𝐹 

and 𝑇. The hyperparameters of each model were optimized 

over the 5-fold-cross-validation technique. Table 3 depicts 

the range of hyperparameters, and their final values 

obtained by the BO algorithm. 

         

 

Table 2 

         Statistical results obtained for the RF models with different features (bold represents the best result) 

Input variables 

R2 RMSE (kWh/m²/day) MAE (kWh/m²/day) 

Training Testing Training Testing Training Testing 

All 0.9919 0.9406 0.1769 0.4715 0.1299 0.3586 

H0, SF, T, RH 0.9921 0.9446 0.1750 0.4554 0.1281 0.3471 

H0, T, RH, P 0.9745 0.7573 0.3138 0.9529 0.2239 0.6998 

SF, T, RH, P 0.9599 0.6839 0.3932 1.0874 0.3092 0.8398 

T, RH, P  0.9412 0.5794 0.4765 1.2544 0.3658 1.0094 

H0, SF, RH 0.9920 0.9459 0.1757 0.4501 0.1303 0.3465 

H0, SF, T 0.9928 0.9462 0.1667 0.4488 0.1271 0.3448 

H0, T, RH 0.9674 0.7149 0.3547 1.0327 0.2613 0.7777 

SF, T, RH 0.9614 0.6664 0.3862 1.1172 0.3015 0.8543 

T, RH, P 0.9271 0.5329 0.5303 1.3220 0.3980 1.0277 

SF, T 0.9543 0.6160 0.4200 1.1986 0.3287 0.9398 

SF, RH 0.9357 0.5547 0.4982 1.2907 0.3911 1.0074 

H0, T 0.9421 0.5467 0.4728 1.3023 0.3406 0.9427 

H0, RH 0.9617 0.6887 0.3843 1.0792 0.2869 0.8296 

H0, SF 0.9909 0.9381 0.1877 0.4810 0.1393 0.3668 

T, RH 0.9229 0.4176 0.5454 1.4761 0.4122 1.1508 
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      Table 3 

       Range of hyperparameters and their final values obtained by the BO algorithm 

Models Range of hyperparameters Final values 

CART-BO 
max_depth=2-14 

max_features =1-3 

6 

3 

RF-BO 

n_estimators=10-500 

max_depth=2-14 

max_features =1-3 

480 

10 

2 

BTR-BO 
n_estimators=10-500 

max_depth=2-14 

376 

8 

SVR-BO 

C=1-100 

epsilon=10-3-0.3 

kernel=linear- poly-rbf 

11.30 

0.1166 

rbf 

MLP-BO 

activation=tanh-sigmoid-relu 

solver=bgfs-Adam 

hidden_layers_sizes=2-100 

relu 

bgfs 

16 

 

To demonstrate the robustness of the BO approach, we 

compared the five models with default hyperparameters to 

their corresponding tuned models. Table 3 illustrates the 

obtained results. The BO approach improved the 

predictive accuracy of MLP, CART, SVR, and BTR models. 

Besides, the BO algorithm prevented the CART model 

from overfitting. On the contrary, the RF model was less 

responsive to the hyperparameters changes. This was 

generally consistent with the findings of Wang et. al (Y. 

Wang et al., 2021). The best improvements were obtained 

using the MLP model, where RMSE and MAE were 

reduced by 17.6% and 17.2%, respectively. The BO 

algorithm decreased the RMSE-MAE of the CART, BTR, 

and SVR models by 3-1.42%, 2.80-4.38%, and 5.4-5.9%, 

respectively. 

         Table 4 

         Statistical indicators for models with defaults and tuned hyperparameters (bold represents the best result) 

Models 
R2 RMSE (kWh/m²/day) MAE (kWh/m²/day) 

Training Testing Training Testing Training Testing 

CART 1.0000 0.8942 0.0000 0.6293 0.0000 0.4566 

CART-BO 0.9326 0.9006  0.4199 0.6099 0.3190 0.4501 

RF 0.9928 0.9462 0.1667 0.4488 0.1271 0.3448 

RF-BO 0.9923 0.9463 0.1725 0.4484 0.1294 0.3446 

BTR  0.9896 0.9423 0.2008 0.4647  0.1380 0.3651 

BTR-BO 0.9925 0.9455 0.1704 0.4517 0.1280 0.3491 

SVR 0.9526 0.9406 0.4276 0.4715 0.3135 0.3581 

 SVR-BO 0.9512 0.9465 0.4340 0.4473 0.3045 0.3381 

MLP 0.9257 0.9191 0.5356 0.5503 0.4116 0.4244 

MLP-BO 0.9638 0.9451  0.3738 0.4534 0.2785 0.3511 
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3.2 Comparison of the optimized models 

3.2.1 Comparison of prediction accuracy and stability 

We can see from table 4 that all optimized models provided 

low values of RMSE and MAE and high values of R2. We 

can also see that the RMSE and MAE values increased 

relatively in the testing phase while R² decreased. Fig.7 

depicts the scatter plots between the measured and 

estimated global solar radiation values of the five tuned 

models for both training and testing phases. As shown in 

Fig. 7 (a), the two ensemble methods BTR-BO (R²=0.9925) 

and RF-BO (0.9923) demonstrated the best correlations 

during the training process, while the CART-BO model 

showed the worst correlation (R²=0.9326). In the testing 

phase (Fig.7 (b)), the CART-BO model produced again 

more scattered estimates than the other models with a 

value of R²=0.9006. The four techniques, RF-BO, BTR-BO, 

SVR-BO, and MLP-BO showed close correlations with a 

slight superiority of the SVR-BO algorithm (R²=0.9465). 

Fig.8 shows the RMSE and MAE metrics in the 

testing phase for the five studied models. We can observe 

from this figure that the CART-BO model provided the 

worst performances with RMSE=0.6099kWh/m²/day and 

MAE= 0.4501kWh/m²/day. On the other hand, the SVR-

BO algorithm offered the best results with 

RMSE=0.4473kWh/m²/day and MAE=0.3381 kWh/m²/day. 

This can be seen graphically in Fig.9, where the SVR-BO 

followed the daily irregular variation of the measured 

solar radiation in both training and testing stages

 

 

Fig. 7 Scatter plot for the 5 models between predicted and observed solar irradiation for (a) training dataset, (b) testing dataset 
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Fig. 9 Day by day comparison between the observed data and the 

predicted by the SVR-BO model irradiation for (a) training 

dataset, (b) testing dataset 

 

The three techniques, MLP-BO, RF-BO, and BTR-BO gave 

close prediction performances compared to the SVR-BO 

model. Both the RF-BO and BTR-BO models outperformed 

their base learner CART; this demonstrates the benefit of 

using the ensemble strategy. Moreover, because of 

incorporating randomized feature selection, the RF-BO 

model was slightly better than the BTR-BO model. 

.  

 

Fig.8 Metric errors (RMSE and MAE) obtained by the five tuned 

models. 

 

Fig.10 Increase in RMSE for the five studied models 

 

Table 5 compares the statistical results of the current 

study to some previously conducted in the literature for 

daily global solar radiation estimation based on the same 

metrics. As can be seen from this table, the SVR-BO 

achieved good prediction accuracy compared to those 

developed in the literature.  

When comparing machine learning models, the 

stability of these models is also an important issue to 

consider (Hassan et al., 2017). Stability is measured by the 

increased RMSE between the training and the testing 

stages. According to Fig.10, the SVR-BO model was the 

most stable, where the RMSE increased only by 0.0133 

kWh/m²/day. This is in agreement with the findings of 

Hassan et al. (Hassan et al., 2017) and Fan et al. (Fan et 

al., 2018). MLP-BO and CART-BO were the next two 

stable models. In contrast, the least stable models were 

the RF-BO and BTR-BO; these two methods exhibited the 

largest increase in RMSE with values of 0.2813 

kWh/m²/day and 0.2821 kWh/m²/day, respectively.  

 

3.2.2 Comparison of computational time 

Prediction accuracy and stability are the critical factors to 

consider when using machine learning models. 

Nonetheless, the computational time is also a factor to 

take into account, particularly when a large amount of 

data is available (Fan et al., 2019b). Fig.11 presents the 

average computational time of the five models in the 

training and testing phases. The results showed that the 

testing time was always less than the training time. The 

results also revealed that the average training and testing 

time consumed by the RF-BO and BTR-BO was much 

longer than those of the other algorithms because of the 

large number of trees employed in these models. The RF-

BO algorithm was the slowest during the training phase, 

followed by the BTR-BO algorithm. In contrast, the CART-

BO algorithm was the fastest. The RF-BO cost was 

approximately 1.64, 4.22, 44.36, and 173 much higher 

than the computational cost of the BTR-BO, MLP-BO, 

SVR-BO, and CART-BO models, respectively.  

In the testing phase, the RF-BO model again 

exhibited the highest computational time. The cost of RF-

BO is 1.4 times that of the BTR-BO. On the other hand, 

the CART-BO, SVR-BO, and MLP-BO models had 

insignificant computational time.  
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Table5 

Metric comparison of present paper with the literature studies in the prediction of daily global solar radiation 

Reference Location Predictive models Best 

model 

Evaluation metrics 

R2 RMSE 

(kWh/m²/day) 

MAE  

(kWh/m²/day) 

(Moreno et al., 2011) 40 sites in 

Spain 

ANN, Empirical, 

Kernel Ridge 

Regression 

ANN 0.8600 0.8800 0.6500 

(L. Wang et al., 2017) 21 sites in 

China 

ANFIS, M5 tree, 

Empirical 

ANFIS 0.9100 0.5700  

(Antonopoulos et al., 
2019) 

2 sites in 

Greece 

ANN, Empirical, 

Multi-Linear 

Regression 

ANN 0.8840 0.8810  

(Hassan et al., 2017) 5 sites in 

MENA 

countries 

CART, BTR, RF, 

ANN, Boosted 

Trees 

SVR 0.9860 0.2200  

(Ağbulut et al., 2021) 4 sites in 

Turkey 

SVR, ANN, 

Kernel and 

Nearest-Neighbor, 

Deep Learning 

ANN 0.9320 0.6000  

(Fan et al., 2018) 3 sites in 

China 

XGBoost, SVR, 

Empirical 

SVR  0.7760 1.002   0.7291 

(Piri et al., 2015) 2 sites in Iran SVR, Empirical SVR 0.9330 0.4515  

Present paper 1 site in 

Morocco 

SVR, SVR-BO, 

CART, CART-BO, 

MLP, MLP-BO, 

BTR, BTR-BO, 

RF, RF-BO 

SVR-BO 0.9465 0.4473 0.3381 

 

 

Fig.11 The computational time of the five models for both training and testing phases. 

 

The results of this study established the advantages 

of combining RF feature selection methods and the BO 

algorithm to obtain accurate, stable, and fast models. 

Particularly, the SVR-BO that offered the best 

combination of the three criteria: accuracy, stability, and 

computational cost. Nevertheless, our study suffers from 

the fact that data are restricted to one geographical site. 

As a result, additional research should be undertaken 

using data collected from a variety of locations. 

 



International Journal of Renewable Energy Development 11 (1) 2022: 309-323 

| 321 

 

IJRED-ISSN: 2252-4940.Copyright © 2022. The Authors. Published by CBIORE 

4 Conclusion 

In this paper, we proposed an ML methodology based on 

two RF feature selection methods and Bayesian 

optimization for 𝐻 estimating in Fez city, Morocco. The 

results indicated that the proposed approach is highly 

recommended to obtain simple and accurate models for 

solar radiation prediction. 𝐻0 and 𝑆𝐹 had the highest 

impact in solar radiation modeling and the combination 

𝐻0, 𝑆𝐹 and 𝑇 yielded the best prediction accuracy. The 

results confirmed that the optimized ML models 

outperformed their corresponding standalone models. 

Among the proposed optimized models, the SVR-BO model 

provided the best trade-off between prediction accuracy, 

stability, and computational cost. The two ensemble 

models, RF-BO and BTR-BO outperformed the CART-BO 

and MLP-BO models. However, these models were 

unstable and necessitated high computational costs in 

both the training and testing stages. Additional 

assessment is required to determine the efficiency of this 

methodology in different regions and periods (hours-

months) using other machine learning models. 
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