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Abstract. This work aims to optimize the economic dispatch problem of a microgrid system in order to cover the load of a commercial 

building in Algeria. The analyzed microgrid system is connected to the power grid and composed of photovoltaic panels (PV), wind turbine, 

battery energy storage system (BESS) and diesel generator. To ensure energy balance and the flow of energy, we have implemented an 

energy management strategy based on Marine Predator Algorithm (MPA) and Multilayer Perceptron Neural Network (MLPNN), which 

guarantee an optimal economic operation of the system. First, using historical meteorological data, the power generation is forecasted a 

day-ahead using MLPNN, which allows the optimization of the microgrid operation. Second, the proposed strategy has been studied under 

three different microgrid configurations. Eventually, the performances of MPA are compared against well-known algorithms. The results 

indicate that the integration of the PV-BESS microgrid system significantly reduces the daily operating cost up to 34.5%. Due to the 

availability of wind resources in the studied area, the addition of a wind turbine to the microgrid minimizes the operating cost by 43.96% 

compared to the operating cost of the power grid. In the case of selling excess energy to the main power grid, the operating cost could be 

decreased as much as 49.33%. 
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1. Introduction 

Renewable energy sources are perceived as the best 

way to reduce successfully greenhouse gas (GHG) 

emissions from the electricity sector (Kilickaplan, 2017). 

Subsequently, the world is witnessing a transition to a 

sustainable energy future, which leads to economic 

prosperity and limited GHG (Hajer & Pelzer, 2018). 

During 2020, according to the IRENA report (Adrian 

Whiteman), more than 260 GW of renewable energy 

capacity has been installed worldwide, 91% of which is 

wind and solar energy. On one hand, this statistic indicates 

the importance of these viable sources of energy. On the 

other hand, Algeria is one of the countries endowed with 

high solar potential and climatic diversity (Guezgouz et al, 

2021). Therefore, the government has taken a number of 

actions to facilitate the investment in these sustainable 

resources (Stambouli et al, 2012). Recently, several 

projects have seen the light in the South of Algeria 

according to the national program of development of 

renewable energies (2015-2030) (Abhishek et al 2012; 

Sonelgaz.  Available online:  http://www.sonelgaz.dz/ 

[accessed on 2020). 

Besides the environmental benefits and abundance 

availability of renewable energies, their intermittency is a 

major drawback that prevents the optimal use of these 
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energies (Clarke et al 2013). The employment of a 

microgrid system is one of the best solutions to this 

problem since the integration of a number of resources 

could partially mitigate renewables variability. Moreover, 

the power flow should be optimized in order to ensure the 

optimal operation of the system (Suberu et al, 2014). 

Therefore, it is necessary to conceive a smart energy 

management strategy (EMS) to maintain the balance 

between production and consumption at each moment. In 

addition, EMS should guarantee the continuity of power 

supply while minimizing operating costs and the 

purchasing power from the power grid (Naeem & Hassan, 

2020). In the next sub-section, we provide a general 

overview on microgrid studies and energy management 

strategies.     

Microgrid systems have gained increased interest 

among researchers aiming for reducing renewable energy 

costs to facilitate their integration and deployment 

(Moran, 2016). Recently, Al-Zoubi et al (2021) conducted a 

feasibility study for covering a hotel load using a grid-

connected PV system. The authors have used PVsyst and 

PVgis software in order to design and analyse the economic 

performances of the system. It has been validated that a 

grid-connected photovoltaic system is a technically and 

economically viable for the electrification of residential 

hotel applications (Al-Zoubi et al 2021). Karthik et al 
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(2021) proposed a multi-objective approach based on the 

Levy flight algorithm in order to optimize the power flow 

of a wind-solar system coupled with a conventional 

thermal power source. Their results indicated the 

superiority of the proposed method in terms of exploration 

of the search space and convergence towards an optimal 

solution (Karthik et al, 2021). Brenna et al, simulated PV 

system and energy storage technologies considering 

electrical vehicles in order to explore their impact on the 

centralized power system, they deduced that the future 

adoption of rooftop photovoltaic panels and the impact on 

centralized generation is incredibly higher than the 

adoption of energy storage systems (Brenna et al, 2020). 

Neto et al, proposed a reliable energy management 

strategy based on the virtual inertia concept with the aim 

of simplifying the communication link between the grid 

and the energy storage system of a DC microgrid (Neto et 

al., 2020).  Dong et al (2020), optimized the EMS of a 

microgrid system consisting of PV, wind, microturbine and 

battery systems, based on a multi-agent system and 

hierarchic game theory algorithm. Their findings showed 

the cost-benefits of the proposed method (Dong et al, 2020). 

For the same on-grid microgrid components, Nimma et al. 

(2018) optimized the sizing and EMS of the system using 

Grey Wolf Optimizer. Their outcomes confirmed the 

outperformance of GWO against the most well-known 

algorithms (Nimma et al., 2018). Peng et al, performed an 

optimal control of DC microgrid using rigorous Lyapunov 

synthesis for minimizing the production cost together with 

the regulation of bus voltage (Peng et al 2021). Luu Ngoc 

and Tran (2015) optimized a microgrid EMS including PV-

wind-BESS using a Brunch and Bound method to 

minimize the operating costs, CO2 emissions and 

electricity purchased from the main electricity network. 

Brunch and Bound method achieved the optimal value the 

state of charge which allows minimum cash flow (Luu Ngoc 

& Tran, 2015). In the same vein, Iqbal et al, explored the 

performances of several meta-heuristic algorithms in 

solving the economic dispatch of a microgrid system 

covering the load of a smart house, the results of this 

comparative study confirm the ability of these methods in 

minimizing the cost of electricity (Iqbal et al., 2018). Tayab 

et al. investigated the day-ahead scheduling problem using 

particle swarm optimization (PSO) for PV-battery system. 

The proposed swarm intelligence-based method along with 

forecasting module was examined throughout MATLAB 

Simulink simulation (Tayab et al 2018). Using the same 

Algorithm, Wang et al, optimized the EMG for microgrid 

system in IEEE-9 buses system (Wang et al  2017). Arcos-

Aviles et al (2018) scrutinized experimentally the 

performances of Fuzzy logic-based EMS for a residential 

microgrid system. The proposed controller minimized the 

grid fluctuations while keeping the state of charge (SOC) 

of the battery storage within a secure range (Arcos-Aviles 

et al, 2018). Vergara et al. introduced a real-time EMS 

based on a no-dominated sorting Genetic algorithm, where 

the crossover and mutation parameters were adapted in 

order to achieve higher performances (Vergara et al 2015). 

Ahmad Eid et al. (2021) improved marine predator 

algorithm (MPA) to control the active and reactive power 

injected into two standard distribution test systems and to 

minimize system losses. The simulation results showed 

that MPA is characterized by better convergence towards 

optimal solutions. Moreover, MPA outperforms its 

counterparts in terms of ensuring the reliability for the 

tested system (Eid et al 2021). Sobhy et al. (2021) optimized 

a design of a modern proportional-integral-derivative 

(PID) controllers using MPA. Again, optimization 

comparison of MPA against other competing methods was 

conducted. In addition, the results highlighted the role of 

energy storage units in enhancing the time-domain 

transient responses. (Sobhy et al 2021). Shaheen et al 

(2020) used an improved marine predator algorithm and 

particle swarm algorithm (IMPAPSO) to solve the Optimal 

Power Distribution Problem (ORPD) for standard 

networks, IEEE 30 buses and IEEE 57 buses. It was 

reported that the improved algorithm is characterized by 

its rapid convergence when compared with its 

counterparts. Furthermore, there was a great 

improvement in the power grid operation after minimizing 

active power losses and voltage deviation (Shaheen et al, 

2020). 

In summary, prior studies have common features such 

as system components and artificial intelligence-based 

optimization. Commonly, the studied microgrid is 

composed of PV panels, wind turbines and a storage energy 

system (BESS). Most often, a diesel generator supports 

these components of the microgrid system or it is connected 

to the power grid. Generally, the authors applied 

algorithms based on swarm intelligence in order to 

optimize EMS for microgrid systems. The objective 

functions are usually formulated to obtain the best 

management of the energy flow, while minimizing the 

daily operating costs of the microgrid, maximizing the use 

of renewable energies and reducing dependence on the 

main grid.  

In order to facilitate the integration of renewable 

energy sources, this work proposed a smart energy 

management strategy to optimize the performance of a 

grid-connected microgrid system. The latter is composed of 

two renewable energy resources (photovoltaic panels and 

wind turbines); a diesel generator and BESS are also 

considered as backup systems. In order to estimate 

renewable generation, we have used MLPNN algorithm to 

forecast temperature, solar irradiance and wind speed. 

Then, the forecasted weather data are used as inputs in 

the mathematical models of PV array and wind turbine to 

estimate their power generation. After that, the energy 

dispatch is optimized by the MPA which is a new meta-

heuristic inspired from the strategy of foraging for food in 

oceanic predators. MPA is chosen to solve the economic 

dispatch problem of the microgrid, while minimizing its 

daily operating cost. Moreover, the performance of MPA is 

compared against well-known meta-heuristic algorithms, 

namely, Particle swarm optimization (PSO), Genetic 

Algorithm (GA) and Gravitational Search Algorithm 

(GSA).  

2. Study Framework 

Algeria is a large country and is characterized by 

different geographical topology and climate conditions. It 

has an abundant renewable energy potential spatially in 

terms of solar radiation and wind potential (Dahmoun et 

al., 2021; Guezgouz et al 2019). Therefore, the 

establishment of microgrid systems to meet the electricity 

demand at the lowest cost is an attractive option for 

reducing reliance of the electricity sector on conventional-

powered stations (Tang et al 2014; Ton & Smith, 2012).   

This work is a hypothetical study carried out on a 

commercial building with a typical load in Algeria supplied 

by the main power grid and a backup diesel generator as 

shown in Figure 1. This study proposed the integration 

microgrid system to cover partially of the electrical 

demand of the commercial building. 
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The architecture of the proposed microgrid system is 

depicted in Figure 2. An intelligent energy management 

system is implemented so the energy balance will be 

ensured and the daily operating cost will be minimized. 

3. Methodology 

The main contribution of this study is proposing an 

intelligent energy management strategy based on both 

Deep Learning (MLPNN) and artificial intelligence (MPA) 

algorithms. The proposed method allows a cost-effective 

energy dispatch of the microgrid, while it maintains the 

continuity of power supply. In this context, we explore 

three different scenarios where we have included 

renewable energies as distributed sources to cover the 

electrical demand of a commercial building in Algeria. The 

first scenario is characterized by the integration of the PV 

system and BESS to the existing main grid and the backup 

diesel generator in order to cover the load demand. In the 

second scenario, we have integrated another key role 

renewable energy source, the wind system in addition to 

the previous generators. Similarly, the third scenario could 

sell excess energy from renewables energies to the power 

grid after achieving demand coverage, which minimizes 

further the daily microgrid operating costs. The following 

sub-section describes the modeling of the considered 

systems: PV, wind turbine and the battery storage system. 

 

 

 

Fig 1.The commercial load studied powered from the national power grid. 

 

 

 

 

Fig 1. Architecture of the proposed Microgrid system. 
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3.1. Modeling of the photovoltaic system 

The mathematical model proposed by National Renewable 

Energy Laboratory (NREL) presented in equations (1) is 

used to calculate the output power of the photovoltaic 

system (Jurasz & Ciapała, 2017) .  

 

𝑃𝑃𝑉_𝑜𝑢𝑡(𝑡, 𝑟) = 𝑃𝑃𝑣 ×
𝑟

𝑟𝑟𝑒𝑓
× [1 + 𝑘𝑡(𝑡𝑐 − 𝑡𝑟𝑒𝑓)] × 𝑓𝑃𝑣 (1) 

Where: 𝑃𝑃𝑣: the nominal power (kW) of the PV array,𝑟:solar 

radiation (kW/m2) received by an inclined plane.𝑟𝑟𝑒𝑓: solar 

radiation under reference conditions (STD), (1000 W/m2), 

𝑘𝑡: temperature coefficient and its value equal to –3.7×10-

3 (1/°C), 𝑓𝑃𝑣: factor of losses due to dust, shade and losses 

by the Joule effect, 𝑡𝑟𝑒𝑓: temperature under STD conditions 

(25°C), 𝑡𝑐:cell temperature (°C), expressed by the following 

equation (Kaabeche et al, 2017): 

 

𝑡𝑐 = 𝑡𝑒𝑚 + (
𝑁𝑂𝐶𝑇−20

800
) × 𝑟 (2) 

𝑡𝑒𝑚: ambient temperature (°C), 𝑁𝑂𝐶𝑇: nominal operating 

temperature of the PV module (°C). 

3.2. Modeling of the wind power system 

Each wind turbine (WT) is characterized by its power curve 

which facilitates the evaluation of the power that can be 

produced by the WT. Enercon E-18/80 wind turbine is 

considered and modeled based on the preceding concept. 

The output power of WT is calculated using the following 

equation (3) (Canales et al, 2021): 

 

𝑃𝑊𝑇 = {

0              𝑉 < 𝑉𝑑; 𝑉 > 𝑉𝑎
𝑃𝑟             𝑉𝑑 < 𝑉 < 𝑉𝑟
𝑃𝑛            𝑉𝑟 < 𝑉 < 𝑉𝑎

 (3) 

Where: 𝑃𝑊𝑇: the output power of the wind turbine,𝑃𝑟: power 

curve fitting (Figure 3), 𝑃𝑛: the nominal power of the wind 

turbine,𝑉𝑑, 𝑉𝑎, 𝑉𝑟: are the cut-off wind speed, the cut-out 

wind speed and the nominal wind speed respectively, 

where 𝑉𝑑= 2.50m/s , 𝑉𝑎= 25.0m/s, 𝑉𝑟=12.0m/s. 

Power curve of Enercon E-18/80 is shown in the Figure 3. 

 

 

Fig 2. Power curve of Enercon E-18/80 kW wind turbine. 

 

3.3. Modeling of the battery energy storage system 

The battery energy storage system is modeled based on the 

charging and discharging of its stored energy which is 

expressed by the difference between the energy produced 

from the renewable generators (PV and wind turbine) and 

the electricity demand. Upon charging of the BESS in the 

case of surplus energy phase, the state of charge (SOC) of 

BESS is calculated by the following equation (Canales et 

al., 2021; Guezgouz  et al., 2019): 

 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) +
[(𝐸𝑝𝑟𝑜𝑑(𝑡)−𝐸𝑙𝑜𝑎𝑑(𝑡)/𝜂𝑖𝑛𝑣)×𝜂𝑏𝑎𝑡_𝑐ℎ]×100

𝐸𝐵𝐸𝑆𝑆,𝑚𝑎𝑥
 (4) 

During the discharge phase, the SOC of BESS can be 

described as follows (Canales et al., 2021; Guezgouz, 

Jurasz, Bekkouche, et al., 2019): 

 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) −
[(𝐸𝑙𝑜𝑎𝑑(𝑡)/𝜂𝑖𝑛𝑣−𝐸𝑝𝑟𝑜𝑑(𝑡))/𝜂𝑏𝑎𝑡_𝑑𝑖𝑠]×100

𝐸𝐵𝐸𝑆𝑆,𝑚𝑎𝑥
 (5) 

Where: 𝑆𝑂𝐶(𝑡) and 𝑆𝑂𝐶(𝑡 − 1) are the state of BESS at 

time step t and t-1 respectively. 𝐸𝑙𝑜𝑎𝑑(𝑡) is the energy of the 

charge at time t, 𝐸𝑝𝑟𝑜𝑑(𝑡) is the total energy produced by 

the generators such as the photovoltaic system, the wind 

turbine, the diesel generator and/or the energy purchased 

from the main grid. 𝜂𝑖𝑛𝑣, 𝜂𝑏𝑎𝑡_𝑐ℎ, 𝜂𝑏𝑎𝑡_𝑑𝑖𝑠 are the efficiency 

of the inverter, the charge efficiency of the BESS and the 

discharge efficiency, respectively. Table 1 shows the 

characteristics of the renewable energy technologies and 

the BESS specifications. 

4. Proposed microgrid energy management 

strategy 

Since the microgrid system is connected to the main grid, 

it is possible to sell and purchase power from it. However, 

the electricity price is varying according to Figure 6. 

Besides, photovoltaic and wind energy are intermittent 

and depend on weather conditions. To predict the power 

output of these systems, MLPNN is trained based on 

historical weather data. The output of this algorithm is fed 

to simulation model of the system, where the output power 

is estimated. However, it is difficult to make the optimal 

decision, when to purchase or sale electricity to the main 

grid, discharge or charge the batteries in the right time 

step. Therefore, MPA is proposed to optimize the operation 

of the microgrid system by dispatching the available power 

and hence reducing the daily operating costs. The 

flowchart presented in Figure 4 summarizes the main 

steps of the proposed microgrid energy management 

strategy using MLPNN and MPA. 

 

4.1. Forecasting module   

In order to improve the operational safety and efficient 

planning of the microgrid, it is necessary to forecast the 

output power of the PV and WT systems (Bochenek et al., 

2021; Theocharides et al, 2018). In this work, Machine 

Learning based method is applied to forecast the 

meteorological data in a day-ahead, hence, the power 

output of renewable energy sources will be estimated in 

order to be fed later to the optimization module (Liu et al, 

2020; Nezhad et al, 2020).  
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Table 1 

Characteristics of renewable energy sources and BESS. 

Description Input data 

PV system 

Installed capacity  150 Kw 

Rated capacity  400 W 

Base material Polycrystalline 

Efficiency 95% 

Lifetime 25 years 

Wind turbine 

Installed capacity 80 Kw 

number of WT 1 

Efficiency 95% 

Lifetime 15nyears 

Battery Energy Storage System 

Installed capacity 90 Kw 

Lifetime 10 years 

Round Trip Efficiency 85% 

 

 

 

 

Fig 3. Flow chart of Microgrid Energy Management Strategy using MPA 

 

 

 

The estimation of the PV and wind energy is done by the 

prediction of the temperature, the irradiance and the wind 

speed which will be used as inputs in the models of PV and 

WT systems explained in the previous section. In order to 

forecast the meteorological data in this work, we have 

applied MLPNN method. 

4.1.1. Multilayer perceptron neural network 

Multilayer perceptron neural network is introduced by 

Rosenblatt (Beccali et al, 2004), it allows the 

interconnection of a set of layered neurons. MLPNN is 

composed of three main layers, namely an input layer, one 

or more hidden layers and an output layer (Figure 5). 
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Fig 4. Architecture of a multilayer perceptron with a single 

hidden layer. 

Where: Xpi the input of the ith neuron of the input layer 

(learning input),w
c
ji: the weight connecting the ith neuron 

of the input layer with the jth neuron of the hidden layer, 

yc
pj: the output of the jth neuron from the hidden layer, w

s
kj: 

the weight connecting the jth neuron of the hidden layer 

with the kth of the output layer, y
s
pk: the output of the kth 

neuron of the output layer. 

The back-propagation method is employed in this work 

to train the artificial neurone network. The learning 

process can be organized as follows (Crow, Mar. 2015): 

• Present an example from the learning set. 

• Determine the exit from the network. 

• Calculate the error gradients. 

• Modify synaptic weights. 

• Reach a stop criterion. 

4.1.2. Back-propagation algorithm 

The main steps of the back-propagation algorithm are 

summarized as follows: 

i. Set an input vector. 

ii. Calculate the values that connect the input 

neurons with that of the hidden layer according 

to the following equation: 

 

 𝑦𝑝𝑗
𝑐 = 𝑓(∑ 𝑤𝑗𝑖

𝑁
𝑖=1 × 𝑥𝑝𝑖)                                 (6) 

Move to the output layer and calculate the output of each 

neuron: 

 

𝑦𝑝𝑘
𝑠 = 𝑓(∑ 𝑤𝑘𝑗

𝐿
𝑗=1 × 𝑦𝑐

𝑝𝑗
                                               (7)  

iii. Calculate the gradient of error starting with the 

gradient of error of the output layer and then the 

gradient of the hidden layer as shown in 

equations 8 and 9: 

 𝜕𝑝𝑘 = (𝑦𝑝𝑘
𝑑 − 𝑦𝑝𝑘) × 𝑓′(∑ 𝑤𝑘𝑗

𝐿
𝑗=1 × 𝑦𝑐

𝑝𝑖
)      (8) 

 

𝜕𝑝𝑗 = 𝑓′(∑ 𝑤𝑗𝑖
𝑁
𝑖=1 × 𝑥𝑝𝑖) × ∑ 𝑤𝑘𝑗

𝑀
𝑘=1 × 𝜕𝑝𝑘 (9) 

iv. Adjust the synaptic weights following equations 

10 and 11:  

𝑤𝑘𝑗(𝑝 + 1) = 𝑤𝑘𝑗(𝑝) + 𝛥𝑤𝑘𝑗(𝑝)      (10) 

 

𝑤𝑗𝑖(𝑝 + 1) = 𝑤𝑗𝑖(𝑝) + 𝛥𝑤𝑗𝑖(𝑝) (11) 

v. Repeat the process for each example of the 

learning base until you reach a stop criterion 

(Tran, Bateni, Ki, & Vosoughifar, 2021). 

4.1.3. Historical data and MLPNN architecture 

The historical data of the temperature and wind speed 

data are obtained from MERRA-2 ("Global Modeling and 

Assimilation Office (GMAO) ", 2015). For the solar 

irradiation time series, the data is collected from the 

Copernicus Atmosphere Monitoring Service (CAMS) with 

a time step of 15 min ("Copernicus Atmosphere Monitoring 

Service CAMS, radiation service,"). After processing the 

meteorological data (organisation and screening out of 

scale values), 3 years data from March 02, 2013, to March 

03, 2016 (3 years) are fed to the MLPNN which is 

characterized by 4 hidden layers, each one containing 10 

neurons. The designed MLPNN requires 35,040 inputs in 

order to forecast the following 96 outputs. For example, to 

have a forecast of the meteorological data of April 04, 2020, 

data from April 03, 2017, to April 03, 2020, are considered 

as inputs. Table 2 shows the historical weather data used 

in this study, including input and output data size, data 

training and testing. 

 

4.1.4. Forecasting strategy 

The objective is to ensure a forecast of the meteorological 

data one day in advance using the collected historical data, 

named multi-inputs which train the MLPNN to have 

multi-outputs with several steps ahead (Abhishek et al., 

2012; Arcos-Aviles et al., 2018; Tran et al., 2021). Let 𝑥𝑡be 

meteorological data at time t, using actual and previously 

observed data. The multi-step ahead forecast estimates the 

future values of meteorological data from time (t + 1) up to 

(t + H) and can be expressed as the following (Mellit, 

Pavan, & Lughi, 2021): 

 
{�̂�𝑡+1, �̂�𝑡+2, . . . , �̂�𝑡+𝐻} = 𝑓(𝑥𝑡, 𝑥𝑡−1, . . . , 𝑥𝑡−𝑘+1) (12) 

Where: 𝑓 is the forecast model used, H represents the 

forecast horizon, which is considered in our case as 96 

time step in this article, k is the number of inputs which 

are the collected samples, {�̂�𝑡+1, �̂�𝑡+2, . . . , �̂�𝑡+𝐻}is the output 

results of forecast model. 
 

 

Table 2 

Time series weather data forecast model. 

Input features Forecasting 

model 

Input data size Data training Data testing Output 

data size 

Irradiance MLPNN 3 years From March 02,2013 

To March 03,2016 

 

From April 03, 

2017 to April 03, 

2020 

24 hours 

ahead 
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Taking a case of 4 inputs (k=4), and horizon time step of 3 

(H=3) the arrangement of the training matrix should be 

stated as follows:  

 

5 6 7
1 2 3 4

6 7 8 2 3 4 5

3 4 5 67 8 9

5 6 74
8 9 10

5 6 7 8

9 10 11
. . . .

. . .
. . . .

. . .
. . . .

. . .

x x x x x x x

x x x x x x x

x x x xx x x

x x xxx x x f
x x x x

x x x

=  (13) 

 

4.2. Optimization module  

The best power planning in a set of possible solutions in 

the objective function given in equation (14), in which the 

fittest solution should be found using an optimization 

method. Consequently, an economic dispatch of energy 

flow is ensured and the energy imported from the main 

grid is reduced while maximizing the use of renewable 

energies (He et al., 2019; Iqbal et al, 2018). Various 

optimization methods were proposed by scholars to solve 

the economic dispatch problem of microgrid system (Iqbal 

et al., 2018; Nimma et al., 2018; Zhai et al. , 2017). As long 

as the economical distribution of energy flows is a 

nonlinear problem and is a challenging task to solve, it is 

better to use artificial intelligence as an optimization tool 

(Faramarzi et al 2020). Many researchers extensively 

explore the performance of meta-heuristic algorithms and 

they have made comparative studies between these 

algorithms. In the next subsections the objective function, 

constraints and optimization method are presented and 

explained.  

4.2.1. Objective function formulation 

Covering the load demand efficiently using microgrid 

systems requires the optimization of its operating cost. For 

this aim, a number of issues should be simultaneously 

considered in the optimization. First, the fluctuation of PV 

and WT causes a mismatch between demand and supply. 

In addition, the purchase price of electricity from the power 

grid is higher during the peak load. As a result, the total 

operating cost of the system could be increased 

significantly. Therefore, it is necessary to apply a proper 

EMS based on a powerful algorithm that performs the 

energy dispatch, ensures the energy balance and reduces 

the operating costs (Iqbal et al., 2018; Tayab et al., 2018; 

Wang et al., 2017). 

The main objective of our study is to minimize the 

operating cost of microgrid. The objective function can be 

described by equation (14) as follows (Wang et al., 2017): 

𝐹 = 𝑚𝑖𝑛 ∑ [(𝐶𝑂𝑆𝑇(𝑃𝑉,𝑡) + 𝐶𝑂𝑆𝑇(𝑊𝑇,𝑡) + 𝐶𝑂𝑆𝑇(𝑔𝑟𝑖𝑑,𝑡) +𝑇
(𝑡=1)

𝐶𝑂𝑆𝑇(𝐵𝐸𝑆𝑆,𝑡)) × 𝑇𝑝𝑒𝑟 + 𝐶𝑂𝑆𝑇(𝑔𝑒𝑛,𝑡)] (14) 

 𝐶𝑂𝑆𝑇𝑃𝑉,𝑡 = 𝐶𝑃𝑉𝑃𝑃𝑉,𝑡                                                  (15)  

 

Table 3 

Operation and maintenance coefficient (Neto et al., 2020). 

Distributed sources Operation and 

maintenance 

coefficient ($/kWh) 

Photovoltaic generator (CPV) 0.00137 

Wind turbine generator (CWT) 0.00646 

Battery energy storage system 

(CBESS) 

0.01 

 

 

 

Fig 5. Main Grid electricity sale and purchase prices. 

 
 

𝐶𝑂𝑆𝑇𝑊𝑇,𝑡 = 𝐶𝑊𝑇𝑃𝑊𝑇,𝑡 (15) 

 

𝐶𝑂𝑆𝑇𝑔𝑟𝑖𝑑,𝑡 = 𝐶𝑔𝑟𝑖𝑑,𝑡𝑃𝑔𝑟𝑖𝑑,𝑡 (16) 

 

𝐶𝑂𝑆𝑇𝐵𝐸𝑆𝑆,𝑡 = 𝐶𝐵𝐸𝑆𝑆𝑃𝐵𝐸𝑆𝑆,𝑡 (17) 

 

𝐶𝑂𝑆𝑇𝑔𝑒𝑛,𝑡 = 𝑎 + 𝑏 × 𝑃𝑔𝑒𝑛,𝑡 + 𝑐 × 𝑃𝑔𝑒𝑛,𝑡
2  (18) 

 

T is the number of periods for a single day in which the 24 

hours of the day are divided into 96 periods; each period 

will be 15 minutes long. COSTPV,t, COSTWT,t, COSTBESS,t 

are the operating and maintenance cost of PV generator, 

WT generator, battery energy storage system respectively 

which are listed in Table 3. Eq.(19) is used to calculate the 

cost of power delivered from the diesel generator. Where 

a,b,c are the coefficients of the generator cost function: 

a=500 $/MWh, b=5.3 $/MWh, c=0 .004 $/MWh. 

COSTgrid,t is the cost of electrical energy purchased or 

sold to the grid to cover the energy needs of the microgrid. 

Cgrid,t is the price of purchased power from the grid at a 

specific time, which varies according to Figure 6. The 

highest price is during the peak load period and it 

decreases during the low load period. The medium load 

period is characterized by an average price. The variation 

of sale and purchase prices from the power grid are 

illustrated in Figure 6. 

 

4.2.2. Equality constraints  

To ensure the reliability and proper operation of the 

system, it is necessary to assert the constraints of the 

energy balance such as the power balance, generators and 

battery limitations. It has been assumed that the power 

lines in the microgrid are relatively short compared to the 

distribution networks and the end-users. Hence, the wire 

losses are not taken into account in the calculation and 

modeling of microgrid. The balance constraint between 

load demand and production in the microgrid can be 
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expressed as follow by equation (20) (He et al., 2019; Wang 

et al., 2017): 

𝑃𝑙𝑜𝑎𝑑,𝑡 = 𝑃𝑃𝑉,𝑡 × 𝜂𝑃𝑉 + 𝑃𝑊𝑇,𝑡 × 𝜂𝑊𝑇 + 𝑃𝑔𝑒𝑛,𝑡 + 𝑃𝑔𝑟𝑖𝑑,𝑡 + 𝑃𝐵𝐸𝑆𝑆,𝑡

 (19) 

 

Where: Pload,t, PPV,t, PWT,t, are the demand power, 

photovoltaic generator power, wind generator power 

forecasted a day-ahead at a time (t), respectively, Pgen,t, 

PBESS,t , are the powers supplied by the generator and the 

battery energy storage system, Pgrid,t is the power 

generated by the grid. 

4.2.3. Inequality constraints  

The optimization of the objective function is implemented 

with respect to the constraints of the maximum and 

minimum power that can be supplied to the load from each 

source, which are defined in the following equations (T. 

Iqbal et al., 2018; Wang et al., 2017): 

 

𝑃𝑔𝑟𝑖𝑑,𝑚𝑖𝑛 ≤ 𝑃𝑔𝑟𝑖𝑑, 𝑡 ≤ 𝑃𝑔𝑟𝑖𝑑,𝑚𝑎𝑥 (20) 

 

𝑃𝑔𝑒𝑛,𝑚𝑖𝑛 ≤ 𝑃𝑔𝑒𝑛, 𝑡 ≤ 𝑃𝑔𝑒𝑛,𝑚𝑎𝑥 (21) 

 

𝑃𝑃𝑉,𝑚𝑖𝑛 ≤ 𝑃𝑃𝑉,𝑡 ≤ 𝑃𝑃𝑉,𝑚𝑎𝑥 (22) 

 

𝑃𝑊𝑇,𝑚𝑖𝑛 ≤ 𝑃𝑊𝑇,𝑡 ≤ 𝑃𝑊𝑇,𝑚𝑎𝑥 (23) 

BESS constraints can be presented in the following 

equations (He et al., 2019; Wang et al., 2017;  Zhai et al, 

2017): 

 

𝑃𝐵𝐸𝑆𝑆,𝑚𝑖𝑛 ≤ 𝑃𝐵𝐸𝑆𝑆,𝑡 ≤ 𝑃𝐵𝐸𝑆𝑆,𝑚𝑎𝑥 (24) 

 

𝐸𝐵𝐸𝑆𝑆,𝑚𝑖𝑛 ≤ 𝐸𝐵𝐸𝑆𝑆,𝑡 ≤ 𝐸𝐵𝐸𝑆𝑆,𝑚𝑎𝑥 (25) 

The limits of the powers generated are listed in Table 4.  

The capacity of charge and discharge of the batteries for 

each period of time (15min) are limited as indicated in the 

equations (27) (28) (He et al., 2019; Zhai et al., 2017): 

 

𝑃𝑑𝑖𝑠,𝑚𝑖𝑛 ≤ 𝑃𝑑𝑖𝑠,𝑡 ≤ 𝑃𝑑𝑖𝑠,𝑚𝑎𝑥 (26) 

 

𝑃𝑐ℎ,𝑚𝑖𝑛 ≤ 𝑃𝑐ℎ,𝑡 ≤ 𝑃𝑐ℎ,𝑚𝑎𝑥 (27) 

The BESS charge and discharge capacity limits of the 

microgrid studied are shown in Table 5: 

Table 4 

Limits of distributed generators and BESS 

Type Min Power 

(kW) 

Max Power 

(kW) 

PV 0 150 

WT 0 80 

Diesel gen 0 200 

Grid -50 150 

BESS 18 90 

 
Table 5 

Charge and discharge BESS rate. 

Operating 

modes 

Min Power 

(kW) 

Max Power 

(kW) 

Discharge 0 10 

Charge 0 -10 

4.2.4. Marine predator algorithm 

Marine predator algorithm is newly proposed algorithm for 

the optimization of single objective constrained 

engineering problem. This study proposes this method to 

solve the economic dispatch problem of the considered 

microgrid system.  

4.2.5. Marine predator formulation 

MPA algorithm is meta-heuristic method based on swarm 

intelligence. Over the search space, the first solution is 

uniformly distributed according to the following 

equation(Faramarzi et al., 2020):  

 

𝑋0 = 𝑋𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)  (28) 

 

Where Xmin and Xmax denote the lower and upper bounds 

for decision variables, and rand is a vector and their 

uniform, random values are in the range of 0 to 1.  

An Elite matrix is constructed by the top predator 

which is considered as the fittest solution based on the 

survival of the fittest theory (the most talented in foraging 

predators). The arrays of this matrix play the role of 

searching and finding the optimal solution (prey) according 

to the prey’s locations (Faramarzi et al., 2020). 

 

1.1 1.2 1.

2.1 2.2 2.

3.1

.1 .2 .

l l l

d

l l l

d

l

l l l

n n n d n d

X X X

X X X

X

Elite

X X X


 
 
 
 
 

=  
 
 
 
 
 

 (29) 

Where:  𝑋𝑙 is the vector of the top predator, which is 

imitated n times to build up the Elite matrix. n denotes the 

number of predator’s population (search agents), while d 

presents the dimension of decision variables(Eid et al., 

2021; Faramarzi et al., 2020). 

Since the prey is looking for their food, while the 

predators are searching for a prey, both predator and prey 

are assumed as search agents in this process. If another 

fittest predator at the end of each iteration replaces the top 

predator, the Elite matrix will be reconstructed. Based on 

another matrix called Prey with the same dimension as 

Elite, the predators change their locations based on it(Eid 

et al., 2021). In other words, according to the fittest 

predator that constructs the Elite, the initialization 

process creates an initial Prey matrix which is presented 

by Eq 31(Faramarzi et al., 2020): 

 

1.1 1.2 1.

2.1 2.2 2.2

3.1

.1 .2

Pr

d

n n n d n d

X X X

X X X

X

ey

X X X  

 
 
 
 
 

=  
 
 
 
 
 

 (30) 
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Where, X i,j is the j th dimension of i th prey. It is worthy 

to mention that the optimization process is basically 

related to these two matrices. 

4.2.6. MPA optimization scenarios   

In order to simulate the different velocity ratio and entire 

life of a predator and prey, the optimization process of MPA 

can be separated into three main stages: (1) high velocity 

ratio, or the predator is moving slower than prey; (2) unit 

velocity ratio, or both predator and prey have almost the 

same pace; (3) low velocity ratio, or predator is moving 

rapidly than prey (Faramarzi et al., 2020). These three 

groups include: 

Stage 1: While mimicking the displacement of predators 

and prey, a precise iteration period is selected and 

allocated for each of the aforementioned phases, based on 

the nature laws that control prey and predator. The first 

phase occurs in early stages of the optimization, in which 

the exploration of search space has a great importance. 

Naturally, predator stops moving in high velocity ratio (v 

≥10). This behavior is mathematically modeled as 

follows(Faramarzi et al., 2020):   

 

( )

1
_

3

Pr 1,..........

Pr Pr

i B i B i

i i B i

While Iter Max iter

stepsize R Elite R ey i n

ey ey P R stepsize



=  −  =

= +  

 (31) 

In Eq (4), 𝑅𝐵
⃗⃗⃗⃗  ⃗ presents a vector and their elements are 

random numbers based on Normal distribution 

representing the Brownian motion. The notation ⊗ 

indicates entry-wise multiplication. In the first third of 

iteration, prey is multiplied by 𝑅𝐵 to simulate the prey 

movement for high exploration ability. Iter and Max_iter 

are current iteration and maximum one, respectively(Eid 

et al., 2021; Faramarzi et al., 2020).  P is a constant number 

equals to 0.5, and R denotes a vector containing uniform 

random numbers in range [0,1].  

Stage 2: In the second stage, both predator and prey are 

searching for their prey. In this intermediary phase, both 

the exploration and exploitation are of great importance in 

order to find an optimal solution. Therefore, half of 

population is devoted to exploration, where prey is 

responsible and second half of predator population is 

selected for exploration process. Naturally, if the prey 

displaces in Lévy, the best approach for predator is 

Brownian. While iteration number is between the first 

third and second third. For the first half of the population 

(Faramarzi et al., 2020). 

 

( )Pr 1,..........
2

Pr Pr

i L i L i

i i i

nstepsize R Elite R ey i

ey ey P CF stepsize

=  −  =

= +  

(32) 

where 𝑅𝐿
⃗⃗ ⃗⃗  presents Lévy movement by a vector of random 

numbers based on Lévy distribution. Similarly, to the 

previous phase, the multiplication of 𝑅𝐿 and prey mimics 

the behavior of prey in Lèvy. Since the Levy distribution 

has small steps size, this phase is improving the 

exploitation process (Faramarzi et al., 2020).  

 

( )Pr ,..........
2

Pr Pr

i B i B i

i i i

nstepsize R Elite R ey i n

ey ey P CF stepsize

=  −  =

= +  

 (33) 

CF is considered as adaptive factor in order to control the 

step size for predator movement while it equals  

2
_

1
_

Iter

Max IterIter
CF

Max Iter

 
 
  

= − 
 

. 

 

In the same line as the simulation of prey movement in 

second phase, the displacement of predator in Brownian 

behavior is simulated by the multiplication of 𝑅𝐵
⃗⃗⃗⃗  ⃗ and Elite, 

while prey changes its location based on the displacement 

of predators in Brownian motion (Eid et al., 2021; 

Faramarzi et al., 2020; Sobhy et al., 2021).  

Stage 3: In the last stage, the high exploitation capability 

associates the optimization course. Consequently, the 

predator is Lévy in low velocity ration. This stage can be 

presented as follows(Faramarzi et al., 2020; Sobhy et al., 

2021):  

 

( )

2
_

3

Pr 1,..........

Pr

i L L i i

i i i

While Iter Max iter

stepsize R R Elite ey i n

ey Elite P CF stepsize



=   − =

= +  

 (34) 

 

4.2.7. Eddy formation and FADs’ effect 

Inspired by the long jumps of sharks to find other 

environment with another possible prey, in case of as the 

eddy formation or Fish Aggregating Devices (FADs) 

effects, this behavior is mathematically modeled in order 

to avoid stagnation in local optima. The mathematical 

presentation of the FADs effect is as follows(Faramarzi et 

al., 2020) 

 

( )

( ) ( )

min max min

1 2

Pr
Pr

Pr 1 Pr Pr

i

i

i r r

ey CF X R X X U if r FADs
ey

ey FADs r r ey ey if r FADs

  + +  −  
 

= 
+ − + −    

 (35) 

 

Where FADs = 0.2 indicate the eventuality of FADs effect 

on the optimization process. �⃗⃗�  is the randomly binary 

vector with arrays including zero and one (Faramarzi et al., 

2020), its array is changed if it is less than 0.2 and one if it 

is greater than 0.2. r1 and r2 indicate random indexes of 

prey matrix, r is the uniform random number in [0,1]. 

4.2.8. Marine predator memory 

According to the points highlighted, marine predators are 

distinguished by their good memory of reminding the 

location where they have been successful in foraging. A 

prey and FADs effect update is made to assess the ability 

of this matrix for fitness to update the Elite(Eid et al., 

2021). With each new iteration, the current fitness is 

compared to its equivalent in the previous iteration. If the 

current solution is more suitable, it replaces the previous 

solution. Following this iterative process, the quality of the 
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solution will be improved with the course of the iteration 

(Faramarzi et al., 2020). 

5. Results and discussions 

Before proceeding with the optimization of operating cost, 

the forecast of temperature, irradiance and wind speed is 

carried out based on MLPNN. The results of root mean 

square error (RMSE), regression coefficient and mean 

absolute percentage error are listed in Table 6. It can be 

observed that the MLPNN has an acceptable RMSE, which 

ensures the prediction of temperature, irradiance and 

wind speed. Subsequently, it will be possible to have an 

approximate estimation of the microgrid system output 

power. Figure 7 depicts a comparison between the actual 

meteorological data and the forecasted values. 

 

 

 

 
Fig 6. Actual and forecasted values: (a)temperature. (b)solar 

irradiance. (c) wind speed. 

Table 6 

Statistical errors for meteorological data. 

Meteorological 

data 

RMSE Roh MAPE 

Temperature 1.45 0.979 0.105 

Irradiance 25.00 0.914 0.323 

Wind speed 0.73 0.953 0.049 

 

 

Previously, the main grid covered the load of the 

commercial building, where its daily operating cost was 

around 229.051 $. In this work, we propose the integration 

of microgrid system to cover the load of this load as shown 

in Figure 1. Three scenarios are carried out in which 

different energy sources will be integrated in order to show 

the integration effect of the latter on the studied microgrid 

daily operating cost. Moreover, an optimization module 

based on MPA is applied to ensure an economic dispatch of 

microgrid energy flow.  

Scenario 1: PV-Battery Energy Storage System, diesel 

Generator, and Distribution Grid (Only purchase) 

The results of optimal economic dispatch for the first 

scenario are presented in Figure 8. It is found that the PV 

energy is completely used while it is available. The surplus 

PV power is stored in the BESS after satisfying the 

electricity demand. In order to minimize the consumption 

of electricity from the main grid, the diesel generator 

covers the electricity demand during peak hours when the 

price of electricity is high.  

 

Fig 7. MPA based economic dispatch of powers of Microgrid (kW) 

by Scenario 1. 

 

Fig. 8: State of charge of BESS for Scenario 1. 
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During peak hours, BESS could not cover the load since it 

has already reached its lower limit as shown in Figure 9. 

However, the BESS covers the load during the peak times 

of the day, and it is charged and billed by the main grid 

during low load periods which are characterized by the 

lowest purchase price of electricity.  

The operation cost of this scenario is 150 $. A clear 

reduction of 34.51% is noted compared to that calculated 

before PV integration (Figure 16). This result confirms the 

expected contribution of PV energy and the BESS to the 

reduction of operating cost. 

 

Scenario 2: PV, Wind, Battery Energy Storage System, 

diesel Generator and Distribution Grid (Energy purchase) 

In the second scenario, a wind turbine has been added 

to the previous microgrid system. The daily operating cost 

is further decreased to 128.02 $. This implies a total 

reduction of 44.11% compared to the cost of main power 

grid as it is shown in Figure 17.  

  In this scenario, it is certain that the integration of 

an additional wind energy production contributes in the 

minimization of operating cost compared to scenario 1. 

Renewable energies cover the majority of load demand as 

Figure 15 illustrates. 

Figure 10 represents the results of economic dispatch 

of energy flow of the microgrid studied by MPA for the 

second scenario. From Figure 10, during period 1 to 3, the 

BESS was charged from the main power grid. This can be 

explained by the low price of electricity and the SOC of the 

battery was not yet at its maximum allowable level. The 

surplus wind energy produced is used to charge the 

batteries while it does not reach its maximum charge level. 

In turn, BESS cover load during peak hours of the day in 

order to minimize purchasing power from the main grid.  

The availability of wind power throughout the day led 

to a significant reduction of using power from the main 

power grid. Further, the diesel generator contributes in 

covering the electricity demand during the night when the 

purchase price from the main network is high. In addition, 

the BESS discharges during this peak hour until it reaches 

its minimum power (Figure 11). 

 

 

Fig 9. MPA based economic dispatch of powers produced by the 

Microgrid (Scenario 2). 

 

Fig 10.  State of charge of BESS for Scenario 2. 

Scenario 3: PV, Wind, Battery Energy Storage System, 

diesel Generator and Distribution Grid (purchase and sale 

of energy) 

In the last scenario, it is possible to sell the surplus energy 

production from the two combined sources (photovoltaic 

and wind power plant) to the main grid. For this scenario, 

the results of the economic energy flow dispatch among all 

the generators in the microgrid are given in Figure 12. The 

majority of load has been covered by PV and wind energy 

as it is shown in Figure 15. 

The total daily operating cost of the microgrid was 

116.05 $, which implies a reduction of 49.33% (Figure 16) 

in comparison with that of the commercial building before 

transforming it to a microgrid, which is characterized by 

the integration of renewable energies and the possibility of 

buying and selling additional energy from the electricity 

grid. 

Figure 13 illustrates the purchased/sold electricity 

from/to the main grid. The surplus wind power is sold to 

the main grid, which coincides with the high selling price 

of electricity. Consequently, the cost of the daily operation 

of the microgrid is remarkably decreased.  

 

 

Fig 11. MPA based economic dispatch of powers of Microgrid (kW) 

by Scenario 3. 
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Fig 12. Sale and purchase of electricity from grid for Scenario 3. 

 

Fig 13. State of charge of BESS for Scenario 3. 

From the period 85 to 93 (Figure12), the system 

bought the energy from the main grid even during the peak 

hours of the night because the renewable generators are 

not available. The battery energy storage system has 

reached its maximum energy level of 105 kWh during the 

first period of simulation. It is clear that MPA algorithm 

allowed charging and discharging of BESS economically 

while respecting the constraints of the battery. Moreover, 

the charging and discharging of the BESS do not exceed 

the limits shown in Table 4. The battery is charged by the 

additional wind energy produced and it is charged from the 

power grid during the night. The state of charge of BESS 

does not exceed the value of its maximum energy and the 

discharge is limited by its minimum energy (Figure 14). 

Figure 15 depicts the share of each system in covering 

the electricity demand of the commercial building. In the 

first scenario, the power grid ensures more than 50% of the 

load. After integration of the wind system, the power grid 

share is reduced to 15%, and hence lower operating cost. In 

the second scenario, the wind power share is 51% of 

electricity demand due to the availability of wind speed in 

this area. In the last scenario, the renewable generators 

(PV-wind) cover more than 80% of the electricity demand, 

while less contribution of BESS is observed since the 

excess power has been sold to the grid.    

In summary, Figure 16 depicts the operating cost of 

the studied microgrid configurations. In the first scenario, 

we optimize the economic dispatch of wind-PV system. 

Secondly, a wind turbine has been integrated to the 

microgrid system. The last scenario is distinguished by the 

possibility of selling excess energy from PV and wind to the 

main grid. Consequently, the daily operating cost is 

minimized by up to 49.33%. The contribution of both PV 

and wind energy plays a significant role in decreasing the 

operating costs and the integration of renewable energies 

as given in Figure 16.  

6. Performance of MPA  

This section analyses and compares both the MPA 

performance against the most used meta-heuristics 

gravimetric search algorithm (GSA), genetic algorithm 

(GA), optimization of the particle swarm (PSO). The 

analytical study shows that the marine predator algorithm 

converges rapidly to the minimum daily microgrid 

operating cost compared to other methods.  

As Figure 17 and Table 7 show, there is a slight 

difference in daily operating cost obtained by the four 

meta-heuristic algorithms. Besides its ability to obtain a 

relatively lower operating cost, MPA has a rapid 

convergence towards the fittest solution in the earliest 

iteration (Figure 17). 

 

 

 

Fig 14. Daily sources share covering the load demand. 

 

 

Fig 15. Daily operating cost of the microgrid and the percentage 

of its reduction for each scenario 

Table 7 

Daily microgrid operating cost of obtained by different meta-

heuristic algorithms. 

 

 

 

Daily 

operating 

cost ($) 

MPA PSO GA GSA 

Scenario ”1” 

150 150.44 150.79 129.25 

Scenario ”2” 

128.02 128.56 128.84 129.31 

Scenario ”3” 

116.05 116.6 116.87 117.23 
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Fig 16. The convergence curves of MPA, PSO, GA, and GSA. 

 

7. Conclusion 

In this work, we have solved the economic dispatch 

problem for a microgrid system that covers the electricity 

demand of a commercial building in Algeria. For this aim, 

we proposed an energy management strategy based on 

MLPNN (forecast module) and MPA (optimization 

module). The weather data has been forecasted one day 

ahead and was validated using the regression and the root 

mean square error. After estimation of the output power of 

the microgrid, MPA ensures the optimal power flow while 

maintaining the least operation cost. In addition, different 

microgrid configurations under three scenarios are studied 

for the proposed EMS.  

The first system configuration PV-BESS offered a 

34.5% reduction in operating cost compared to the total 

price of electricity from the power grid. The costs were 

further minimized by 43.96% in the second scenario by 

adding a wind turbine to the previous system while it can 

only purchase power from the main grid. In the case of 

selling excess power to the main grid, the proposed EMS 

minimize daily operating cost by 49.33%. Thanks to the 

MPA and MLPNN that optimize the energy imported from 

the main network and increase the utilization of renewable 

energies. On one hand, purchasing energy from the main 

grid at peak times is avoided by making full use of 

integrated renewable energies. On the other hand, Time-

of-Use pricing plays a key role in the final operating cost of 

the microgrid system. This was clear in the case of selling 

the excess production to the grid, where the operating cost 

was significantly reduced. The integration of renewable 

energy allows significant saving in operating costs, which 

contribute in recovering the high investment costs of 

installation in long-term benefits. Finally, it also preserves 

the environment and mitigates global warming. 
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