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Abstract. The energy demand is increasing due to population growth and economic development. To satisfy this energy demand, the use 

of renewable energy is essential to face global warming and the depletion of fossil fuels. Photovoltaic energy is one of the renewable energy 

sources, widely used by several countries over the world. The integration of PV energy into the grid brings significant benefits to the 

economy and environment, however, high penetration of this energy also brings some challenges to the stability of the electrical grid, due 

to the intermittency of solar energy. To overcome this issue, the use of a forecasting system is one of the solutions to guarantee an effective 

integration of PV plants in the electrical grid. In this paper, a PV power ultra short term forecasting has been done by using univariate 

and multivariate LSTM models. Different combinations of input variables of the models and different timesteps forecasting were tested 

and compared. The main aim of this work is to study the influence of the different combinations of variables on the accuracy of the LSTM 

models for one-step forecasting and multistep forecasting and comparing the univariate and multivariate LSTM models with MLP and 

CNN models  . The results show that for one step forecasting, the use of a univariate model based on historical data of PV output power 

is sufficient to get accurate forecasting with 28.98W in MAE compared to multivariate models that can reach 35.39W. Meanwhile, for 

multistep forecasting, it is mandatory to use a multivariate model that has historical data of meteorological variables and PV output 

power in the input of LSTM model. Moreover, The LSTM model shows great accuracy compared to MLP and CNN especially in multistep 

PV power forecasting. 
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1. Introduction 

The development of economic and population growth 

leads to an increase in energy demand and its 

consumption. Furthermore, the depletion of fossil fuel 

resources and the motivation to decrease the carbon 

emission to face Global Warming, encourage countries to 

develop new renewable energy power generation (Tsai et 

al., 2018). Photovoltaic power energy is a clean, renewable 

energy source that can satisfy the increasing clean energy 

demand (Kabir et al., 2018). Photovoltaic power generation 

is the conversion of solar irradiation into electric energy 

through the Photovoltaic Effect(Wang, Zhen, et al., 2018). 

In comparison with other energy sources, Photovoltaic 

power generation has been widely used thanks to its 

excellent performances such as cleanliness and high 

efficiency (Yongsheng et al., 2020). The installed capacity 

of solar photovoltaic in all regions increased from 808 MW 

in 2000 to 707 494 MW in 2020(Statistics Time Series, no 
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date). The creation and installation of the large capacity of 

PV systems will be a solution to alleviate the peaking 

pressure of Power grids (Yongsheng et al., 2020). The 

renewable energy sources that PV systems one of them, 

can be large-scale stations connected to transmission 

power systems, small-scale distributed generation (DG) 

connected to medium voltage distribution systems, or very 

small-scale placed on rooftops and connected to low voltage 

distribution. The cost of PV systems is decreasing thanks 

to their high demand and their technology development 

speed (Fantidis et al., 2013; Ghafoor and Munir, 2015). The 

integration of PV systems indeed brings significant 

benefits economically and environmentally, but high 

penetration brings also a lot of challenges for existing grid 

systems due to the uncertainty and intermittency of solar 

energy (Stein and Letcher, 2018). Intermittency of PV 

power generation with high penetration in the grid can 

cause many technical problems in power systems, like 
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power flow and voltage regulation problems (Lim and 

Tang, 2014; Ding et al., 2016). That’s why researchers are 

interested in finding some solutions to integrate PV 

systems safely and guarantee no financial or economic 

risk. One of the solutions proposed is to elaborate accurate 

forecasting of PV power. Moreover, Forecasting of PV 

power is used to estimate the output power of PV stations 

from one side and load demand from the other side to 

guarantee effective energy management (Massaoudi et al., 

2021). Forecasting of PV power is one of the most 

economical and feasible solutions and supports other 

solutions or technologies (Wang, Zhou, et al., 2018) like 

power flow optimization (Biswas, Suganthan and 

Amaratunga, 2017) and energy storage (Wang, Zhou, et al., 

2018). However, Accurate forecasting of PV power could be 

a complex task due to PV power time series that display 

non-linear and unstable characteristics, and unpredictable 

meteorological conditions that PV power generation relies 

on (Li et al., 2018). Presently, research efforts focus on PV 

power forecasting that proposes several methods for 

different forecast horizons: long-term, medium-term, and 

short-term PV power forecasting (Voyant et al., 2017; Li et 

al., 2018). Long-term forecasting is between one month to 

one year, medium-term forecasting looks ahead one week 

to one month and short-term forecasting is forecast one 

week or less (Li et al., 2020a). Long-term Forecasting 

grants long-term planning and decision-making for PV 

power generation, transmission, and distribution, and 

guarantee reliable operation of the power system. For 

medium-term forecasting, it contributes to medium-term 

decision support for dispatching of the power system. 

Short-term forecasting provides support for power system 

operation and increases the reliability of the power system 

(Pierro et al., 2017). There is also a fourth forecasting 

horizon which is very short-term or ultra-short term (1 min 

to several min ahead) (Raza, Nadarajah and Ekanayake, 

2016). This forecasting horizon is used for power 

smoothing, real-time electricity dispatch, and storage 

control (Das et al., 2018). Also, in the background of the 

electricity trading market, the ultra-short-term plays an 

essential role in the supervision and regulation of the 

power market. Ultra-short-term is the forecasting horizon 

that our models will try to forecast. 

In this paper, a PV power ultra short term 

forecasting has been done by using univariate and 

multivariate LSTM (Long short-term memory) models. 

Different combinations of variables in the input of the 

model (meteorological variables and PV power), and 

different timesteps forecasting (One-step and multistep 

forecasting) were tested and compared. The PV power is 

forecasted 1 (5min), 3 (15min), 6 (30min), 9 (45min) and 12 

(1h) steps ahead using the univariate and the multivariate 

LSTM models. The main goal of this work is to study the 

influence of variables on the quality of forecasting to select 

the best combination of variables for a choosing timestep 

forecast. The influence of input variables for LSTM model 

for one step and multistep forecasting is not well addressed 

in literature that will be demonstrated later in the related 

works section. The LSTM model been compared to MLP 

(Multi-layer perceptron) and CNN (Convolutional neural 

network to showcase its accuracy in PV power forecasting 

for one step and multistep forecast.  The benefits from 

selecting specific input variables for one step and multistep 

PV power forecasting are as follows:  

• Optimizing the accuracy of the PV output power 

forecasting by eliminating the variables that 

negatively influence the accuracy of the 

forecasting model. 

• Decreasing the time consumption to training the 

LSTM model and to preprocessing the dataset. 

• Facilitating the data collecting phase by ignoring 

the factors or variables that are unnecessary for 

PV output power forecasting. 

The rest of the paper is structured as follows: Section 2:  

present a literature review of PV power forecasting. 

Section 3: provide the methodology, methods, and data 

used. Section 4: present and discuss the results obtained. 

In the last section, the main conclusions and future works 

are presented. 

2. Related works 

Forecasting techniques can be classified as 

physical techniques and statistical techniques(Ramsami 

and Oree, 2015). Physical techniques model the PV  cell as 

a function that contains different independent variables 

like PV cell characteristics, solar radiance, and cell 

temperature. Many physical models come from 

conventional solar cell equivalent circuits(Ramsami and 

Oree, 2015).The most popular physical model is the 

numeric weather predictor (NWP). This method is based 

on mathematical equations that show and describe the 

atmosphere’s physical state and dynamic motion(Raza, 

Nadarajah and Ekanayake, 2016).The forecast accuracy of 

the physical model is higher when the weather is stable 

and is highly affected when there is a sharp change in 

meteorological conditions (Soman et al., 2010) . Ayompe et 

al. (Ayompe et al., 2010)presented a comparative study to 

forecast PV output power by studying different PV cell 

temperature and efficiency models. Dolara et al. (Dolara, 

Leva and Manzolini, 2015) evaluated different physical 

models by comparing three models describing the PV cell.  

Each model has respectively three, four, and five 

parameters equivalent electric circuit, and two thermal 

models for the cell temperature estimation. Statistical 

approaches for forecasting can be divided into two classes 

which are statistical methods and Machine learning 

methods(Nath, no date). Statistical methods are used in 

literature to forecast the output power of PV and solar 

irradiance. Y. Li et al. (Li, Su and Shu, 2014) proposed a 

time series model for forecasting PV power output named 

ARMAX (Autoregressive–moving-average model with 

exogenous inputs), which is similar to ARIMA (auto-

regressive integrated moving average)  by its simplicity 

and doesn’t require solar irradiance. Unlike ARIMA, 

ARMAX can use exogenous input to forecast PV power 

output. The results show that ARMAX outperforms greatly 

ARIMA and other methods like Double moving average 

single, exponential smoothing, double exponential 

smoothing, Holt-Winter’s additive, Holt-Winter’s 

multiplicative, single moving average in the accuracy of 

forecasting. Kushwaha & Pindoriya(Kushwaha and 

Pindoriya, 2017)  presented a model named SARIMA 

(Seasonal Autoregressive Integrated Moving Average) for 

a very short-term forecast of solar PV generation data 

(multistep forecasting). The persistence model is used to 

compare the performance. The error of the SARIMA model 

is found to be less than that of the persistence model. 

Although the model’s performance is seen satisfactory on 

sunny days, it may degrade on cloudy days when solar PV 
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generation is more intermittent. Thus, the model may not 

be suitable for very short-term forecasting in the months 

having cloudy or rainy days. Almadhor et al. (Almadhor, 

Matin and Gao, 2019) developed triple exponential-

smoothing (TES)  based forecasting for short-term 

forecasting of solar irradiance and compare the proposed 

method with persistence forecasting and average 

forecasting. Results show that the TES has a better 

forecasting performance, and it can capture the changing 

of solar irradiance. 

The machine learning techniques are widely used 

to forecast PV output power and solar irradiance in 

literature. Shi et al. (Shi et al., 2012) proposed a weather 

classification algorithm to increase the accuracy of SVM 

(Support-vector machine) results for PV output power 

forecasting. The weather is divided into four types which 

are clear sky, cloudy day, foggy day, and rainy day. The 

SVM is applied in every type of weather. Results show that 

the proposed model has promising results for one day 

ahead of PV output power forecasting. Ahmad et 

al.(Ahmad, Mourshed and Rezgui, 2018) evaluated the use 

of tree-based ensemble methods (which are random forest 

and Extra trees) for PV output power forecasting by 

investigating their accuracy, stability, and computational 

cost and comparing them with the support vector 

regression model. the results show that RF and ET perform 

better than SVR. Also, ET outperforms other models in 

computational costs. Authors conclude that ET is the ideal 

candidate for PV output power forecasting thanks to its 

stability and its algorithmic efficiency. Huertas Tato & 

Centeno Brito (Huertas Tato and Centeno Brito, 2018) 

presented a PV output power forecasting model by using 

smart persistence, random forest, historical PV 

production, and irradiance. results show that using smart 

persistence as input for the random forest model greatly 

improves the accuracy of short-term forecasting. 

Sivaneasan et al. (Sivaneasan, Yu and Goh, 2017) propose 

a model based on Artificial Neural Network (ANN) with a 

preprocessing model named fuzzy logic and error 

correction factor for very short-term solar forecasting. the 

architecture of the training model consists of three layers 

(input layer, hidden layer, output layer) feed-forward with 

a back-propagation model. ANN uses all similar day’s data 

to learn the trend of similarity.  However, it’s complex 

especially if the weather changes on the same day. For that 

reason, the authors add a Fuzzy preprocessing toolbox to 

find data correlation meteorological data with solar 

irradiance. results show that the proposed model 

outperforms pure ANN and ANN-Fuzzy without error 

correction factor. Sharma et al.(Sharma et al., 

2016)present a mix of ANN and Wavelet transform (WT) 

for short-term solar irradiance forecasting. Results show 

that WNN has better forecasting skills in comparison with 

others forecasting techniques like ARIMA, Persistence, 

ANN. Chu et al. (Chu et al., 2015) present ANN with GA 

(Genetic Algorithm) optimization to forecast real-time 

output prediction. The results show that the presented 

model forecasting accuracy is superior to the physical 

model based on cloud tracking technique, ARIMA, and 

kNN (k-nearest neighbors algorithm) models. Lu & Chang 

(Lu and Chang, 2018) proposed a model for day-ahead PV 

power generation forecast which is radial basis function 

neural network with a decoupling method. Results show 

that the proposed method leads to a more accurate and 

computational efficient forecast comparing to other 

techniques like Autoregressive integrated moving average 

(ARIMA), backpropagation neural network (BPNN), and 

radial basis function neural network (RBFNN) without 

decoupling method. LSTM model is a deep learning model, 

used by a lot of researchers thanks to its promising results 

in forecasting PV power and solar irradiation in different 

forecast horizons (Short-term, middle-term, long-term). 

Pan et al. (Pan et al., 2019) propose a novel method to 

forecast solar generation (one step = 5 min ahead) for very 

short-term forecasting by using the LSTM model and two 

algorithms named Temporal attention and partial 

autocorrelation for more accuracy in forecasting results. Y. 

Yu et al.(Yu, Cao and Zhu, 2019) present a short term solar 

irradiation forecasting model by using LSTM with 

clearness index (an index that shows the clearness in the 

sky for cloudy days) for more accuracy in forecasting GHI 

(Global Horizontal Irradiance). a comparison was made 

with different deep learning models and statistical models 

(LSTM is the more accurate forecasting models with 

clearness index). Aslam et al.(Aslam et al., 2019) The 

comparison between different deep learning and machine 

learning models which are  LSTM, GRU(Gated Recurrent 

Units), RNN (Recurrent neural network), 

FFNN(Feedforward neural network), SVR, and 

RFR(random forest regression)  to forecast a long term 

solar radiation. results show that LSTM and GRU perform 

better. Ospina et al. (Ospina, Newaz and Faruque, 2019) 

propose a novel method for medium and long-term PV 

power forecasting by combining stationary wavelet 

transform (WT) to extract useful features or information 

from Data with LSTM and DNN(Deep neural network) 

models. Results show that the method outperforms LSTM, 

Naive method, some deep learning methods (DNN, 

WT+BPNN, WT+RBFNN), and SVR. Hossain & Mahmood 

(Hossain and Mahmood, 2020) propose two algorithms, the 

first for one-step forecasting and the second for multistep 

forecasting by using the LSTM model, time of day, and the 

month of the season as predictors for more accuracy in 

forecasting results. Acharya et al. (Acharya, Wi and Lee, 

2020) propose a different way to train the LSTM model for 

PV power forecasting by selecting the days where the 

weather condition is the same to not disturb the training 

phase of the model. P. Li et al. (Li et al., 2020b) present a 

PV power forecasting for short term forecast by using the 

LSTM model and Wavelet packet decomposition (WPD 

decompose PV power series into sub-series with different 

frequencies). Results show that the proposed model 

outperforms the individual LSTM, GRU, RNN, and 

MLP(multilayer perceptron). Chen et al. (Chen et al., 2020) 

use an LSTM with grey relational analysis (GRA) to 

extract the similarity of the hour for different data 

parameters, to forecast an hour ahead of  PV power. The 

results show that this combination outperforms GRA 

BPNN, GRA RBFNN, GRA-Elman, and LSTM 

individually.  

Despite the robustness of LSTM models for PV 

power forecasting, very few research studies have 

investigated the influence of input data on the accuracy of 

LSTM models for PV power forecasting. To the best of our 

knowledge, the only work that exists in literature is 

presented by Son & Jung (Son and Jung, 2020). These 

authors propose a modified LSTM model for medium-term 

and long-term PV power forecasting by comparing the 

proposed LSTM with traditional LSTM and studying the 

impact of input factors on forecasting accuracy, however 

their work has some gaps including the impact of input 

factors on multistep forecasting and the ultra short-term 
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forecasting horizon. Moreover, as we said earlier, exploring 

the impact of input variables on the accuracy of the LSTM 

model has various advantages, and for that reason, our 

study will be focused on this point and enrich the literature 

regarding the influence of input factors on forecasting 

accuracy. 

3. Materials and methods 

3.1 PV plant description 

The data used in this work was published by (Id Omar et 

al., 2021), it corresponds to a PV plant located at rooftop of 

National School of Applied Sciences of Safi, Morocco 

(Latitude and longitude (32.3265°N; -9.2634°W)) (Fig. 1). 

This PV plant consists of three types of PV technologies, 

Mono-crystalline, polycrystalline, and amorphous. In our 

study, we focus on Mono-crystalline (m-si) technology. The 

plant that has m-si technology has 8 panels and each one 

has 255 Wp. The PV modules are mounted in metallic 

structures tilted by 32° and south oriented. The energy 

produced by this PV plant is injected into the electrical grid 

through three identical inverters. For further technical 

information on the PV plant see Table 1. The variables 

measured by the weather station installed nearby the PV 

array, are the ones that influence highly on PV plant 

generation which are solar irradiance, ambient 

temperature, and PV module temperature. Solar 

irradiance measured by calibrated crystalline silicon 

reference cell with calibration uncertainty less than 2.3 % 

(Erraissi et al., 2018). Ambient temperature was measured 

with Pt100 sensor with accuracy better than 0.1 °C 

(Erraissi et al., 2018). Furthermore, PV module 

temperatures were obtained on the backside of each 

technology using Pt100 sensors, with accuracy better than 

0.1 °C (Erraissi et al., 2018). For DC powers, it was 

obtained directly from the inverters equipped with 

maximum power point tracking function (MPPT) (Erraissi 

et al., 2018). All data were measured in each 5 min. 

 

 
Fig 1. PV plant and measuring instruments 

Source : (Omar Nour-eddine et al., 2021) 

Table 1 

Characteristics of PV plant  

Characteristics  PV array  

Maximum power of PV array under 

STC (KWp) 

2.04 

Nominal power of PV array (KWp)  1.473 

Total number of modules  8 

Modules set up  8 x 1  

PV array’s surface (m²)  12.74 

Tilted angle (°) 32 

Nominal power of each inverter (KVA)  2 

Source : (Omar Nour-eddine et al., 2021) 

3.2 Methodology  

The methodology proposed in this paper is presented in 

Fig. 2. First, the data is preprocessed by filling missing 

values, removing zero values from the dataset, and scaling 

data. Furthermore, the data is split into training data 

(70%) used to train the model and find patterns and test 

data (30%) to evaluate the model. Then, the LSTM 

structure and hyperparameters are defined (the number of 

neurons, the number of the hidden layer, optimizer, etc.). 

Next, the time horizon is defined as ultra-short term 

forecasting. After, two types of Forecasting will be tested: 

one-step forecasting (1 step) and multistep forecasting (2 

steps, 3 steps, etc.). Different combinations of variables 

will be used to forecast the PV power for one-step and 

multistep forecasting. After, the tested models will be 

assessed by using test data to choose the best model in. 

 

3.3 LSTM model  

The model used in our work is LSTM, which is a type of 

RNN, that can learn order dependence in sequence 

prediction problems by preserving previous information 

and establishing temporal correlations between sequential 

data with internal self-looped repeating networks (Luo, 

Zhang and Zhu, 2021). LSTM outperforms the simple RNN 

by its capability to learn long-term dependencies (Luo, 

Zhang and Zhu, 2021). LSTM contains four connected 

layers, three gate layers and a Tanh layer (Luo, Zhang and 

Zhu, 2021). LSTM architecture is presented in Fig. 3. Cell 

state is a core variable that can run straight down the 

architecture, carrying information of previous steps (Luo, 

Zhang and Zhu, 2021). The LSTM capable to remove or add 

information to the cell state, regulated by gates. The first 

layer is Forget layer; it decides which information of 

previous steps to forget. The mathematical equation for 

this gate is (1), the output of  

𝑓𝑡 = 𝜎(𝑊𝑓  ∙  [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓         (1) 

The second layer is the input gate, which decides what new 

information will be stored in the cell state by using (2) 

(Luo, Zhang and Zhu, 2021): 

𝑖𝑡 = 𝜎(𝑊𝑖  ∙ [ℎ𝑡−1 , 𝑋𝑡] +  𝑏𝑖)        (2) 

The third layer is the Tanh layer. It generates a vector with 

new candidate values, defined in (3) (Luo, Zhang and Zhu, 

2021): 

𝐶�̌� =  𝜑(𝑊𝑐  ∙ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑐)        (3) 

After the three first layers, the old cell state 𝐶𝑡−1 is updated 

by 𝐶𝑡. The update comes from the combination of the 

output of forget gate and input gate, the first one 

determines what to forget and the second one determines 

what to add to the new cell state, as shown in  (4)(Luo et 

al., 2021):  

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̌�             (4) 



T. Limouni  et al  Int. J. Renew. Energy Dev 2022, 11(3), 815-828 
| 819 

 

ISSN: 2252-4940/© 2022. The Author(s). Published by CBIORE 

 

Fig 2. Methodology flow chart 
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Fig 3. LSTM architecture 

Source : (Predicting weather using LSTM) 

 

The final layer is the output gate. it’s generating the final 

output according to the updated cell.    (5) shows the 

process of output gate (Luo et al., 2021):  

𝑜𝑡 = 𝜎(𝑊𝑜  ∙ [ℎ𝑡−1 , 𝑋𝑡] + 𝑏𝑜) ∗ 𝜑(𝐶𝑡)   (5) 

Where 𝜎 is a sigmoid function, 𝜑 is tanh function, 𝑊𝑜 , 

𝑊𝑓, 𝑊𝑖, 𝑊𝑐 and 𝑏𝑜, 𝑏𝑓, 𝑏𝑖, 𝑏𝑐 are the weight and bias of 

each layer. The weights and bias are tuned by using 

optimizers like Adam and stochastic gradient descent 

(SGD) to minimize the loss function. 

 

 

3.4 Data description and pre-processing 

The data records were collected on a 5 min time basis. The 

dataset consists of four parameters: DC PV power, module 

temperature, temperature ambient, and global irradiance. 

Data covers the period from 18 June 2016 to 29 October 

2017. To Optimize model training, computational cost, 

and improving the accuracy of the model, pre-processing 

of input data is a must (Das et al., 2018). There are 

different techniques for pre-processing input data to 

handle missing data, sparsity, and other issues. 

 

Missing data 

Dataset presents some missing values due to:   

• Electrical breakdowns: The PV plant is connected 

to the grid, so it’s synchronized with the same 

frequency (Grid frequency), and when the power 

in the grid is off, the data acquisition system is 

also off. (Id Omar et al., 2021) 

• Inverters failure: If the inverter malfunctions, 

electrical records are set to zero. (Id Omar et al., 

2021) 

• Burned or disarmed fuse: In this situation, the 

values that were recorded are null or have errors. 

(Id Omar et al., 2021) 

The existence of missing values in a dataset disturbs the 

forecasting model to make a precise prediction for a time 

series problem where continuously measured data is a 

requirement. To fill gaps in the dataset, we calculate an 

estimated value for each missing value in a particular 

time step by using the interpolation technique especially 

the ‘’Time’’ method that is more appropriate for that type 

of problem. The Fig. 4 shows an example of interpolation 

technique that fills some missing values for each 

parameter. 

Data sparsity 

Data sparsity is the term used to describe the phenomenon 

of not observing enough data in a dataset (Nasiri, Minaei 

and Sharifi, 2017). Since The values of PV power and 

global irradiance are null in the night-time, data sparsity 

will occur and will lead to a bad training model which 

negatively influences the model performance. To avoid 

this issue, night-time values are eliminated from the 

dataset and keeping values that exist between 07:00-18:00 

in each day. 

Scaling Data 

Data variables used have a different scale. To avoid the 

domination of the feature that has a high-value range, 

scaling data is a must to take into consideration all 

features or variables equally without prioritizing any 

feature. Furthermore, feature scaling improves the 

calculation speed of the algorithm in the training phase 

and helps to converge rapidly. There are different scaling 

techniques, in our study, we used “Min Max scaler“to 

rescaled data into a particular range which is between 0 

and 1. This technique uses the equation below to rescale 

data: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                     (6) 

 

where 𝑋 is the measured value and 𝑋𝑠𝑐𝑎𝑙𝑒𝑑 is the scaled 

value. 

 

3.5 Proposed models 

Univariate and multivariate models 

In our study, we used different models: The univariate 

model and the multivariate model. In the univariate 

model, we use only the historical PV power as input of the 

LSTM to forecast PV power. In the multivariate model, we 

have 7 models created by combining input variables: PV 

power, module temperature, ambient temperature, global 

irradiance. The combinations used in the multivariate are 

shown in Table 2. 

Table 2  

Input variables of the univariate model and the multivariate 

models 

Model Input variables 

Univariate model PV output power 

 

 

 

 

 

 

Multivariate model 

PV output power, Global plane of array 

irradiance 

PV output power, Module temperature 

PV output power, Ambient 

temperature 

PV output power, Global plane of array 

irradiance, Module temperature 

PV output power, Global plane of array 

irradiance, Ambient temperature 

PV output power, Module temperature, 

Ambient temperature 

PV output power, Global plane of array 

irradiance, Ambient temperature, 

Module temperature 
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Fig 4. Variables interpolation for : a) ambient temperature, b)module temperature, c)global plane of array irradiance,  d) PV power 

 

 

(a) 

(b) 

(c) 

(d) 
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Table 3 

LSTM hyperparameters: 

LSTM hyperparameters Value 

Number of hidden layers  1 

Number of neurons 100 

Look back 60 steps 

 (5 hours) 

Activation function  Tanh  

Number of epochs  100 

Batch size  200 

Learning rate 0.001 

Loss function  Mean squared 

error 

Optimizer Adam 

 

 

One-step forecasting and multistep forecasting 

One step forecasting is the task to forecast a single value 

in the future (𝑥𝑡+1). For multistep forecasting is when we 

forecast a sequence of values (𝑥𝑡+1, 𝑥𝑡+2, 𝑥𝑡+3. . ). one step is 

5 min since the observations recorded each 5 min. In our 

study, we forecasted PV power output from 5 min ahead (1 

step) to 1 hour ahead (12 steps) using the univariate model 

and the multivariate models. 

 

LSTM parameters and setting for training 

The hyperparameters of the LSTM model is presented in 

the Table 3. The structure of the LSTM model consists of 

one hidden layer, 100 neurons units, 60 values to look 

back, and the hyperbolic tangent as an activation function. 

For training setting, the maximum number of epoch or 

iterations is 100, the batch size is 200, the Learning rate is 

0.001, the loss function is Mean Squared Error and the 

optimizer to reduce the loss is ‘’Adam’’. It’s worth 

mentioning that different look back has been tested to 

forecast the PV power, and the best value with low MAE 

has been chosen which is  60 steps. 

 

3.6 Evaluation metrics 

To compare different models, we evaluate the performance 

and accuracy of each one. The metrics used in our work are 

Root Mean Squared Error (RMSE) that penalizes large 

errors in square order, Mean Absolute Error (MAE) that 

shows the average distance between the measured values 

and the model predictions, and Coefficient of 

Determination (R²) or Pearson’s coefficient that indicates 

how correlated the forecasted and real values are 

(Alzahrani et al., 2017). 

RMSE equation is: (Alzahrani et al., 2017) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑝𝑟𝑒𝑑 − 𝑃𝑚𝑒𝑎𝑠)²𝑛

𝑖=1      (7) 

MAE equation is: (Alzahrani et al., 2017) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑛

𝑖=1 𝑃𝑝𝑟𝑒𝑑 − 𝑃𝑚𝑒𝑎𝑠|           (8) 

R2 equation is: (Alzahrani et al., 2017) 

 

𝑅2 = 1 −
𝑣𝑎𝑟(𝑃𝑝𝑟𝑒𝑑−𝑃𝑚𝑒𝑎𝑠)

𝑣𝑎𝑟(𝑃𝑝𝑟𝑒𝑑)
               (9) 

Where 𝑃𝑝𝑟𝑒𝑑 and 𝑃𝑚𝑒𝑎𝑠 represent the predicted and 

measured values at time 𝑖 respectively, and 𝑣𝑎𝑟 is 

variance. 

4. Results and discussions 

4.1 One step and multistep PV power forecasting by using 

LSTM model  

The models are trained by using the training set to give 

accurate results in PV power forecasting. Each LSTM 

model has an input combination and a forecasted time 

step. To evaluate the models, we used the test set data 

which are unseen data for the model that was not used for 

training. Furthermore, we calculated RMSE, MAE, and R² 

to measure the accuracy of the models and their 

performance. To analyze the results, we used figures and 

tables that showcase the accuracy and errors of the models. 

One step forecasting (5 min ahead) 

As we said earlier, one-step forecasting is when we 

forecast a single step in the future, in our case 5 min ahead. 

The Fig. 5 presents the true and predicted PV power. As 

shown in the Fig. 5, the models can predict very well the 

PV power output especially if the weather is stable with no 

clouds like we see on the day ‘’2017-07-19’’. Furthermore, 

on the day “2017-07-18”, there are some fluctuations in PV 

power, the models find some difficult to predict these 

fluctuations. However, the models still try to follow the 

trend and capture the global behavior of PV output power. 

Moreover, there is no significant difference in the predicted 

curve for different LSTM models. In order to compare the 

performance of the models, we use the table that presents 

RMSE, MAE, and R² for each model. As demonstrated in 

the Table 4, each model has a different error metrics value, 

and the best model, that has low errors and a strong 

correlation with actual PV power output, according to the 

table and figure is the univariate model that has only 

historical data of PV output power in the input of the model 

with an RMSE of 67.17W, an MAE of 35.52W and an R² of 

98.53%. The highest error in all models is 74.58W in RMSE 

and 46.21W in MAE and get it from the model that uses all 

variables as input in LSTM. All the models have a strong 

correlation with the true values of PV output power.  

To conclude, in one step forecasting the use of historical 

PV output power in LSTM input is sufficient to get 

accurate forecasting of PV power output. By using the 

univariate model, the measure and the collect of 

meteorological factors data is not necessary, which make 

the forecasting operation more available and easier to 

execute. The decrease of the input variable can reduce the 

time-consuming to preprocess the data and to train the 

LSTM model. 
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Table 4 

Forecasting performance for one step forecasting 

 

 

 

 

 

 

 
Fig 5. Actual values and predicted values curves by using different combinations of variables in LSTM model: a) DC power, b) DC power 

and global irradiance, c) DC power, global irradiance and module temperature, d) DC power, global irradiance and ambient temperature, 

f) DC and ambient temperature, g) DC power and module temperature, h) DC power, ambient temperature and module temperature 

 

 

 

 

 

Time 

step 

Combination RMSE 

(W) 

R² MAE 

(W) 

 

 

 

 

 

1 

DC Power (W) 60.58 99% 29.03 

DC Power (W) and Global plane of array irradiance (W/m²) 60.7 99% 29.04 

DC Power (W) and Ambient temperature (°C) 60.23 99% 29.16 

DC Power (W) and Module temperature (°C) 61.54 99% 31.81 

DC Power (W), Global plane of array irradiance (W/m²), Ambient temperature 

(°C) and Module temperature (°C) 

61.51 99% 29.3 

DC Power (W), Ambient temperature (°C) and Module temperature (°C) 60.97 99% 29.18 

DC Power (W), Global plane of array irradiance (W/m²) and Ambient 

temperature (°C) 

64.67 99% 35.39 

DC Power (W), Global plane of array irradiance (W/m²) and Module 

temperature (°C) 

63.35 99% 33.65 

(a) (b) 

(c) 
(d) 

(e) (f) 

(g) (h) 



T. Limouni  et al  Int. J. Renew. Energy Dev 2022, 11(3), 815-828 
| 824 

 

ISSN: 2252-4940/© 2022. The Author(s). Published by CBIORE 

Table 5 

Forecasting performance for multistep forecasting 

Time step  Combination  RMSE (W) R² (%) MAE 

(W) 

 

 

 

 

 

 

3  

(15min) 

-DC Power (W)  104.24 97% 66.082 

-DC Power (W) and Global plane of array irradiance (W/m²) 107.5 96% 71.87 

-DC Power (W) and Ambient temperature (°C) 101.91 97% 61.37 

-DC Power (W) and Module temperature (°C)  102.86 97% 64.117 

-DC Power (W), Global plane of array irradiance (W/m²),  Ambient 

temperature (°C) and Module temperature (°C) 

104.977 97% 50.97 

-DC Power (W), Ambient temperature (°C) and Module 

temperature (°C) 

107.04 96% 69.64 

-DC Power (W), Global plane of array irradiance (W/m²) and  

Ambient temperature (°C) 

99.85 97% 57.23 

-DC Power (W), Global plane of array irradiance (W/m²) and 

Module temperature (°C) 

99.39 97% 56.7 

 

 

 

 

 

 

6 

(30 min) 

-DC Power (W)  132.95 94% 85.79 

-DC Power (W) and Global plane of array irradiance (W/m²) 148.13 93% 109.36 

-DC Power (W) and Ambient temperature (°C) 134.18 94% 92.13 

-DC Power (W) and Module temperature (°C)  141.68 94% 101.53 

-DC Power (W), Global plane of array irradiance ( W/m²),  Ambient 

temperature (°C) and Module temperature (°C) 

138.06 94% 85.76 

-DC Power (W), Ambient temperature (°C) and Module 

temperature (°C) 

164.49 91% 128.02 

-DC Power (W), Global plane of array irradiance ( W/m²) and  

Ambient temperature (°C) 

127.48 95% 80.16 

-DC Power (W), Global plane of array irradiance ( W/m²) and 

Module temperature (°C) 

137.09 94% 96.05 

 

 

 

 

 

 

9 

 (45min) 

DC Power (W)  148.98 93% 97.3 

-DC Power (W) and Global plane of array irradiance (W/m²) 167.26 91% 127.45 

-DC Power (W) and Ambient temperature (°C) 114.69 93% 89.85 

-DC Power (W) and Module temperature (°C)  162.8 92% 120.15 

-DC Power (W), Global plane of array irradiance ( W/m²),  Ambient 

temperature (°C) and Module temperature (°C) 

145.49 93% 104.94 

-DC Power (W), Ambient temperature (°C) and Module 

temperature (°C) 

171.2 91% 129.62 

-DC Power (W), Global plane of array irradiance ( W/m²) and  

Ambient temperature (°C) 

160.37 92% 115.79 

-DC Power (W), Global plane of array irradiance ( W/m²) and 

Module temperature (°C) 

163.31 92% 120.98 

 

 

 

 

 

 

12  

(1h) 

-DC Power (W)  195.12 88% 151.55 

-DC Power (W) and Global plane of array irradiance (W/m²) 197.99 88% 154.25 

-DC Power (W) and Ambient temperature (°C) 186.36 89% 135.33 

-DC Power (W) and Module temperature (°C)  160.76 91% 95.41 

-DC Power (W), Global plane of array irradiance ( W/m²),  Ambient 

temperature (°C) and Module temperature (°C) 

185.63 89% 128.91 

-DC Power (W), Ambient temperature (°C) and Module 

temperature (°C) 

191.66 88% 147.45 

-DC Power (W), Global plane of array irradiance ( W/m²) and  

Ambient temperature (°C) 

169.83 91% 119.55 

-DC Power (W), Global plane of array irradiance ( W/m²) and 

Module temperature (°C) 

172.94 91% 123.27 

 

Multi step forecasting 

In multistep forecasting, the models predict multi-

timestep of PV output power in the future. In our work, the 

timesteps when the PV output power is forecasted are 15 

min ahead, 30 min ahead, 45 min ahead, and 1h ahead. In 

multistep forecasting, we have multiple cases. For each 

timestep, we have 8 models that have different input 

variables. To avoid plotting plenty of curves for each model 

to compare their accuracy, we plotted only the best 

multivariate model predicted curve, the univariate model 

predicted curve and the actual curve of PV output power. 

The Table 5 presents the RMSE, MAE, and R² of 

forecasting models. As expected, the error increased with 

the timestep in all models that has different input 

variables. To compare between models, we focused on MAE 

as an indicator of model performance for each forecasted 

time step. For 15 min (3 steps) forecasting, the best model 

is a multivariate model that uses all variables as input 
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which are DC Power (PV output power), Global plane of 

array irradiance, Ambient temperature, and Module 

temperature, with an MAE equal to 50.97W, compared to 

the univariate model that has a value of 66.082W in MAE. 

As Fig. 6 shown, the multivariate model follows perfectly 

compared to the univariate model, the true values of PV 

output power when the weather is stable however if there 

is some fluctuation the model finds some difficult to follow 

the trend of actual PV output power. For 30 min (6 steps) 

forecasting, the best model is the one that uses historical 

DC power (PV output power), Global plane of array 

irradiance, and ambient temperature as input with an 

error equal to 80.16 W, whereas the univariate model has 

a value of 85.79W. The Fig. 6 shows that the multivariate 

and univariate models can predict PV output power when 

weather is stable but incapable of following the trend when 

there are clouds or fluctuations in the weather. For 45 min 

(9 steps) forecasting, the best model is the one that uses 

historical DC power (PV output power) and ambient 

temperature as input with an error equal to 89.85W, 

compared to other models especially the univariate model 

that have a value of 97.3W. As the Fig. 6 demonstrated, the 

multivariate model follows the actual curve of PV output 

power better than the univariate model when the weather 

is stable. For 1h (12 steps) forecasting, the accurate model 

is the one that uses historical DC Power, and module 

temperature as input variables to forecast PV output 

power and has a value of 95.41 in MAE, while the 

univariate model has a value of 151.55W. And we can see 

that by using Fig. 6, it shows that the curve of the 

multivariate model is close to the curve of actual values of 

PV output power compared to the univariate model curve 

when the weather is stable.   

To sum up, in multistep forecasting of PV output power, 

the multivariate models that use more than historical PV 

output power as input in LSTM, are essential to get 

accurate forecasting of PV output power especially when 

the weather is stable, meanwhile, the univariate model is 

unable to predict PV output power accurately in multistep 

forecasting. 

4.2 Comparison of the proposed model with other 

forecasting models 

Our proposed model is compared to different forecasting 

models to demonstrate its performance and accuracy in 

predicting the PV power. The models used for this 

comparison are reported in (Mellit et al., 2021) and (Golder 

et al., 2019), they have been implemented to use our data 

and forecast the PV power for one step and multistep. 

The models are CNN (Convolutional neural 

network), and MLP (Multilayer perceptron). CNN is a 

regularized version of the popular feed-forward NNs. It 

was originally developed for 2D applications. It can also be 

employed to handle 1-dimensional problems including 

time series prediction and classification. The structure of 

CNN is shown in Fig. 6 (Mellit et al., 2021). It has four 

layers which are convolutional layer, Max Pooling layer, 

Flatten layer and Dense layer. For MLP, it is a feed 

forward neural network where the back propagation 

technique is used for neural network learning (Desai & 

Shah, 2021). As Fig. 7 shows, The MLP model has an input 

layer, a hidden layer and an output layer in its structure 

 

Fig 6. Comparison between the univariate model and the best 

multivariate model for each predicted timestep: a) 3 steps, b) 6 

steps, c) 9 steps, d) 12 steps 

 

The model’s parameters used for this work are:  

- For CNN: Number of filters is 64, Kernel size is 3, 

activation function is Relu and Pool size is 2  

- For MLP: Number of hidden layers is 1 and 

number of units is 100 

The input used for this work for one step forecasting is 

historical of PV power only and for multistep is all the 

parameters (historical of meteorological parameters and 

PV power) to evaluate the accuracy of univariate and 

multivariate models for each deep learning model 

structure. The maximum number of timestep to predict is 

12 steps (1h). 

As shown in Table 6, MAE, RMSE and R2 have been 

calculated for one step and multistep PV power forecasting 

by using different deep learning models. By focusing on 

MAE, for one step of PV power forecasting (1 step), the 

LSTM model has an error of 28.9W, while the MAE of MLP 

and CNN models are respectively 39.94W and 57.76W. 

Therefore, the univariate LSTM outperformed the other 

models, also the MLP is more accurate than CNN. For 

multistep PV power forecasting, the MAE of the LSTM 

model for 3, 6, 9 and 12 steps forecasted are respectively 

50.97W, 85.76W, 104.94W, and 128.91W. For MLP and 

CNN, they have respectively an MAE equal to 72.26W and 

(a) 

(b) 

(c) 

(d) 
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83.27W for 3 steps, 105.74W and 115.36W for 6 steps, 

146.44W and 160.26W for 9 steps, 173.01W and 188.33W 

for 12 steps.  

As expected, the error increases by increasing the 

forecasting horizon. The LSTM still outperformed all other 

models in multistep especially when the timestep 

predicted is high as the Table 7 shows for 6 steps, 9 steps 

and 12 steps. Therefore, The LSTM model can handle very 

well the long and short dependencies of the features more 

than other models which explain its capability to predict 

with great accuracy the PV power for one step and 

multistep forecasting. The CNN model is incapable of 

predicting the PV power accurately for all predicted time 

windows which makes this model unsuitable to be applied 

to PV power time series. However, by combining the CNN 

model with another model, especially the LSTM model, its 

accuracy can be enhanced and increased. The MLP model, 

shows a good accuracy compared to the CNN model. The 

MLP model only learns a mapping between inputs and 

outputs, and it doesn’t have a memory, while the LSTM 

model has memory cells that can learn long dependencies 

over long sequences which explains its high accuracy. 

 

 

Fig. 7. MLP structure 

 

Fig.8. CNN structure 

Table 6  

Models evaluation 

Time 

step 

Model MAE (W) RMSE (W) R2 (%) 

 

 

1 

LSTM 28.9 60.58 99% 

MLP 43.58 69.66 98.47 

CNN 75.41 103.05 96.6 

 

 

3 

LSTM 50.97 104.977 97% 

MLP 72.76 116.82 95.70 

CNN 101.86 130.18 94.67 

 

 

6 

LSTM 85.76 138.06 94% 

MLP 105.74 149.79 92.94 

CNN 117.45 153.85 92.55 

 

 

9 

LSTM 104.94 145.49 93% 

MLP 146.44 186.95 89.01 

CNN 146.94 185.60 89.16 

 

 

12 

LSTM 128.91 185.63 89% 

MLP 173.01 225.11 84.06 

CNN 186.66 230.019 83.36 

4. Conclusions and future works 

Integration of PV power into the electrical grid poses a 

great challenge for the stability and security of the 

electrical grid due to intermittent solar energy. 

Forecasting of PV output power is one of the solutions to 

limit the uncertainty of solar energy and integrate it 

effectively in the electrical grid. In this paper, a PV power 

ultra-short-term forecasting has been done by using 

univariate and multivariate LSTM models, different 

combinations of variables (history of meteorological 

variables and PV output power), and different time 

horizons (One step and multistep forecasting). For One 

step forecasting: the univariate model that has only the 

history of PV output power in the input of the LSTM model, 

predicts very well the PV power especially when the 

weather is stable. The MAE, RMSE, and R² of the 

univariate model are respectively 29.03W, 60.58W, and 

99% which represent the best performance compared to the 

other models (Multivariate models). In this case, the 

measure of meteorological factors is not mandatory to 

forecast the PV output power for one step ahead and 

adding more variables in the input of the LSTM model is 

not necessarily improve the accuracy of the model. For 

Multistep forecasting, different timestep has been 

predicted from 15 min to 1h. the multivariate models that 

use more than historical PV output power as input in 

LSTM, are essential to get accurate forecasting of PV 

output power, and the univariate model isn’t sufficient and 

is unable to forecast PV output power accurately. 

Moreover, a comparison study between LSTM model and 

other forecasting models has been done to assess the 

accuracy of the LSTM model. The results show that LSTM 

outperform the MLP and CNN models especially in 

multistep PV power forecasting. 

For future works, the use of different meteorological 

factors will be considered like wind speed, humidity, etc., 

to study their influence on the accuracy of models for one-

step and multistep forecasting of PV output power. 
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Moreover, the choice of hyperparameters of the LSTM 

model and parameters of model training will be optimized 

to get the best accuracy in forecasting results. 

 

Abbreviation  

PV Photovoltaic 

LSTM Long short-term memory 

MLP Multilayer perceptron 

CNN Convolutional neural network 

MAE Mean Absolute Error 

DG Distributed generation 

NWP numeric weather predictor 

ARMAX Autoregressive–moving-average model 

with exogenous inputs 

ARIMA auto-regressive integrated moving 

average 

SARIMA Seasonal Autoregressive Integrated 

Moving Average 

TES triple exponential-smoothing 

SVM Support-vector machine 

RF random forest 

ET Extra trees 

SVR support vector regression 

ANN Artificial Neural Network 

WT Wavelet transform 

GA Genetic Algorithm 

kNN k-nearest neighbors 

BPNN backpropagation neural network 

RBFNN radial basis function neural network 

GHI Global Horizontal Irradiance 

GRU Gated Recurrent Units 

RNN Recurrent neural network 

FFNN Feedforward neural network 

RFR random forest regression 

DNN Deep neural network 

WPD Wavelet packet decomposition 

GRA grey relational analysis 

DC Direct current 

MPPT Maximum power point tracking 

Adam adaptive moment estimation 

SGD stochastic gradient descent 

RMSE Root Mean Squared Error 
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