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Abstract. In recent years, solar radiation forecasting has become highly important worldwide as solar energy increases its contribution to 

electricity grids. However, due to the intermittent nature of solar radiation caused by meteorological parameters, forecasting errors arise, 

and fluctuations in the power output of photovoltaic (PV) systems become a severe issue. This paper aims to introduce a forecasting hybrid 

model of daily global solar radiation time series. Meteorological data and solar radiation samples from Dumaguete, Philippines, are used 

to assess the forecasting accuracy of the proposed nonlinear autoregressive network with exogenous inputs (NARX) – gated recurrent 

unit (GRU) hybrid model. Four different models were trained using the meteorological and solar radiation data, which are the Optimizable 

Gaussian Process Regression (GPR), Nonlinear Autoregressive Network (NAR), NARX, and the proposed Hybrid NARX-GRU Network.  

Results show that the hybrid NARX-GRU model has a root mean square error (RMSE) of ~0.05 and a training time of 33 seconds. The 

proposed hybrid model has better forecasting performance compared to the three models which obtained RMSE values of 27.741, 39.82, 

and 28.92, for the GPR, NAR, and NARX, respectively. The simulation results demonstrate that the NARX-GRU model significantly 

outperforms the regression and single models in terms of statistical metrics and training efficiency. Furthermore, this study shows that 

the hybridized NARX-GRU model is able to provide an effective estimation for daily global solar radiation, which is important in the 

operation of PV plants in the country, specifically for unit commitment purposes. 
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1. Introduction 

In the Philippines, where imported oil and coal are 

relatively high, renewable sources such as solar energy are 

technical and economically promising alternatives. 

Though the increase in attention for solar-based renewable 

energy through technological advancement, critics have 

specified its intermittent nature, which deprived solar 

energy's suitability in becoming the primary energy source 

in many applications (Li et al., 2016; Puah et al., 2021). 

Because solar energy is non-dispatchable and is dependent 

on variables such as the state of the environment like 

weather conditions, prediction machines can be vital in the 

energy supply decision making (Almonacid et al., 2014). 

Many utility companies and power producers have 

acknowledged that this resource can only provide a 

dispatchable generation capacity in the market through 

advanced forecasting technology. 

The application of solar energy is the most cost-effective 

in developing countries such as the Philippines, where 

reliable solar irradiation forecasts and solar radiation 

measurement are either absent or are only available for a 

very limited number of locations. There is still no study 

conducted yet for solar radiation forecasting using 

machine learning (ML) in the Philippines despite the 
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country’s good solar potential for its geography. The 

Philippines' average solar radiation ranges from 128-203 

W/m2, or an average of 161.7 W/m2, based on sunlight 

duration (Deutsche GIZ GmbH et al., 2013). A better 

forecasting technique can help the renewable energy 

industry in tapping this solar energy potential in the 

country.  

There are four techniques used to forecast solar 

radiation: physical models (Pazikadin et al., 2020), 

statistical methods (Diagne et al., n.d.), artificial 

intelligence (AI) (Awad & Khanna, 2015a), and hybrid 

methods of AI, fuzzy methods, and evolutionary algorithms 

(Wang et al., 2020a). In recent years, the forecasting of 

solar irradiance progressed towards increasing the 

accuracy of the models. ML-based models solve the 

uncertainties of fluctuating meteorological and 

topographical data by extracting the complex relationships 

among variables to forecast solar radiation accurately or 

photovoltaic (PV) energy output (Jung et al., 2020b). 

Recurrent neural networks (RNNs), variants of artificial 

neural networks (ANNs), are robust and state-of-the-art 

machine learning algorithms applied to forecast time 

series data. RNNs consider the time correlation of the 

input variables in forecasting by establishing cyclic or 

Research Article 

https://doi.org/10.14710/ijred.2022.44755
https://doi.org/10.14710/ijred.2022.44755
mailto:btdoma@mapua.edu.ph
http://crossmark.crossref.org/dialog/?doi=10.14710/ijred.2022.44755&domain=pdf


A.D.P. Fuselero et al  Int. J. Renew. Energy Dev 2022, 11(3), 839-850 

| 840 

ISSN: 2252-4940/© 2022. The Author(s). Published by CBIORE 

chain structures that enable the network to learn from a 

sequential dataset (Akhter et al., 2021; Wang et al., 2020).  

One of the most conventional RNNs applied in time 

series forecasting is the nonlinear autoregressive with 

exogenous input (NARX) (Ahmad et al., 2015; Gonzaga 

Baca Ruiz et al., 2016; Pisoni et al., 2009; Yadav & 

Chandel, 2014) because of its good performance. While 

single models perform well independently, it is common to 

combine models to take advantage of their strengths 

(Antonanzas et al., 2016). In (Husein & Chung, 2019), an 

RNN-based long-short term memory (LSTM) network and 

predicted day-ahead solar irradiance with an acceptable 

root mean square error (RMSE) value of 60.31 W/m2. Four 

neural network (NN) models were hybridized in the work 

of Huang et al. (X. Huang et al., 2021) to predict hour-

ahead irradiance and generated an RMSE of 32.1 W/m2 

which significantly outperformed their individual models. 

Kumari and Toshniwal’s work (Kumari & Toshniwal, 

2021) also proved the several limitations of single deep 

learning models and obtained better forecasting accuracy 

using a hybrid convolutional neural network (CNN)-LSTM 

model. Most recently, a study of Arun Kumar et al. (Arun 

Kumar et al., 2021) forecasted COVID-19 confirmed and 

recovered cases through the gated recurrent unit (GRU)-

based and long-short term memory (LSTM)-based RNNs 

accounting for various factors contributing to the virus 

spread. GRU is a relatively new forecasting model 

introduced by Cho (Cho et al., 2014), which addresses the 

typical vanishing gradient problem in RNNs (Liu et al., 

2021). It features an architecture involving an update gate 

that determines how much of the past information will be 

retained and a reset gate that controls the past 

information to be forgotten (Lai et al., 2021). The gating 

mechanism of the GRU network has been realized in 

several studies in solar radiation forecasting. In Faisal et 

al.’s work, a GRU-based neural network performed best, 

with an RMSE value of 0.891, among the RNN and LSTM 

networks in forecasting solar radiation (Faisal et al., 2022). 

A study comparing five different RNN classes in Jinju City, 

South Korea found that deeper RNN architecture such as 

bidirectional-LSTM and bidirectional-GRU provide the 

lowest RMSE and R2 values. The bidirectional-GRU model 

performed better with 46.1 RMSE and 0.958 R2 at a low 

computational cost (Jaihuni et al., 2021). Lai et al. 

proposed deep time-series clustering (DTC)-feature 

attention based deep forecasting (FADF) hybrid model, 

which consists of many GRU layers, achieved the smallest 

solar forecasting error in next hour global horizontal 

irradiance (GHI) forecasting among smart persistence 

models (Lai et al., 2021). Liu et al.’s work highlighted the 

application of the variational Bayesian convolutional GRU 

model in forecasting solar radiation of a spatial region 

consisting of 200 sites (Liu et al., 2019). Narvaez et al. 

trained encoder-decoder GRU and LSTM networks to 

predict global horizontal irradiance in daily and weekly 

forecasting horizons, and their results show the LSTM 

networks outperformed the GRU in both horizons 

(Narvaez et al., 2021). The GRU network’s strengths were 

also studied in several works involving PV energy 

forecasting (Abdel-Basset et al., 2021; Khan et al., 2021;  Li 

et al., 2020; Mellit et al., 2021). 

Al-Ghezi et al. (Al-Ghezi et al., 2022) studied the 

validity of two single and two polynomial linear regression  

 

 

models in measuring daily global horizontal solar radiation 

(GHSR) using data from different stations – Iraqi 

Meteorological Authority (IMA) and National Aeronautics 

and Space Administration (NASA). Among the different 

statistical tests performed in the study, such as RMSE, 

mean bias error (MBE), and mean percentage error (MPE), 

the formulated single linear regression model depending 

on the IMA data produced GHSR values that were closer 

to the actual GHSR values (RMSE: 0.4769 MJ/m2/day, 

MBE: 0.0164 MJ/m2/day, 0.2207) followed by the single 

linear regression model based on NASA (0.8641, 0.1773, -

0.9680), the polynomial model based on NASA (0.6420, 

0.3996, -1.1487), and lastly the polynomial based on IMA 

(0.9604, 0.218, -1.0225). 

Solar radiation prediction has a specific corresponding 

application depending on time horizon – very short term, 

short term, medium term, and long term (Sharma & 

Kakkar, 2018). Very short-term forecasting horizon 

utilizes few seconds to minutes and is important in real 

time monitoring of PV plant operation. Short term 

forecasting horizon uses 48-72 hours of time steps for unit 

commitment purposes. Medium term employs one week 

ahead time steps and is mainly used for maintenance 

scheduling, while long term forecasting horizon utilizes 

months or years ahead of time steps for the purpose of PV 

plant design and network operations. Accurate solar 

radiation forecasting is essential in the design, planning, 

and operation of PV energy systems. 

In the burgeoning solar energy industry in the 

Philippines, it is crucial to use Philippine data to predict 

solar radiation at different time horizons to help the 

industry design and operate. PV power output data 

scarcity is a key challenge in PV energy forecasting. PV 

energy still depends on solar irradiation. Hence, solar 

forecasting using meteorological variables and historical 

solar radiation data is still utilized to estimate the 

generation capacity of a PV plant. The use of machine 

learning strategies will significantly contribute to the solar 

industry in the Philippines.  

The contributions of this paper include: (i) a hybrid 

NARX-GRU solar radiation forecasting model which aims 

to improve the performance of single models by taking 

advantage of the strengths of two individual models, (ii) 

examine the effectiveness of the proposed hybrid model to 

forecast daily global solar radiation using data from the 

Philippines, (iii) explore the performance of a hybrid 

NARX-GRU model using a relatively small dataset, as 

majority of past studies utilized huge datasets, (iv) 

establish the hybrid NARX-GRU model using the 

optimized hyperparameters through model training and 

validation, (v) a comprehensive hybrid NARX-GRU model 

demonstration through simulation results. 

This study examines the effectiveness of machine 

learning strategies to forecast daily solar radiation using 

data from the Philippines, specifically in Dumaguete City, 

Negros Oriental (Latitude:  09o 18' N Longitude:  123o 18' 

E). The study is only limited to 1 year and 10 months of 

daily meteorological data provided by the Philippine 

Atmospheric, Geophysical, and Astronomical Services 

Administration (PAGASA) and National Solar Radiation 

Center (NSRC). The hybrid NARX-GRU and other models 

utilized were implemented in the MATLAB R2021a 

platform. 
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2. Materials and Methods 

2.1 Dataset and pre-processing 

2.1.1 Data gathering 

Different meteorological data for Dumaguete, Philippines, 

were collected from the PAGASA and NSRC for the period 

of September 2016 to July 2018 (669 datapoints). The 

hourly average solar global radiation (W/m2) data were 

converted to daily global solar radiation data. The data 

include six parameters: 

i. Tave: Daily average temperature (oC) 

ii. Rf: Daily rainfall amount (mm) 

iii. Rh: Daily relative humidity (%) 

iv. Wd: Daily wind direction (degree relative to North 

indicating where the wind is blowing from) 

v. Ws: Daily wind speed (m/s) 

vi. N/Ns: Daily relative sunshine duration 

(dimensionless quantity). 

2.1.2 Data Smoothing and Normalization 

The irregularities from the dataset were eliminated using 

the smooth function and min-max normalization function 

of MATLAB R2021a. The smooth function was carried out 

using the moving average filter formula: 

 

  

   (1) 

 

 

where yn is the average value of the previous N input 

samples, xn is the nth sample of an input parameter. 

The smoothed data were normalized using the Min-

Max method: 

 

 

  (2) 

 

 

2.1.3 Input layer 

 

The different types of meteorological data collected, 

namely average temperature, rainfall amount, relative 

humidity, wind direction, wind speed, and sunshine 

duration, were utilized as input variables. 

  (3) 

 

 

Elements of the feature vector x are given as: x1 is the 

average temperature, x2 is rainfall amount, x3 is relative 

humidity, x4 is wind direction, x5 is wind speed, and x6 is 

sunshine duration. 

 

2.1.4 Output layer 

 

The given feature vector x was used to produce an output 

sequence of daily global solar radiation values. In 

MATLAB, a polynomial activation function was used for 

the linear hidden layer: 

 

    (4) 

 

where w is the weight and b is the bias. 

2.2 Training, evaluation, and testing 

 

2.2.1 Regression models 

 

To further explore the relation of each input parameter 

(predictors) to the target data, different regression models 

from the Regression Learner application in MATLAB was 

used, including linear regression models, regression trees, 

support vector machines, Gaussian process regression 

models, ensembles of regression trees, and neural 

networks. All models were validated using cross-validation 

at different k-values of 2, 5, 10, and 20 folds. 

Respectively, the best regression models were retrained 

at different feature selections with the k-value, which 

reported the best performance metric scores. Each training 

result varied as one feature from the feature selection was 

removed to assess which predictors significantly affect the 

regression model's performance and which predictors do 

not. 

The best regression model was tuned with 

hyperparameter values by using an optimization scheme 

to minimize the model’s root mean square error (RMSE). 

 

2.2.2 Nonlinear Autoregressive with Exogeneous Input 

Network  

 

The nonlinear autoregressive with exogenous input 

(NARX) network was modeled using MATLAB’s Neural 

Net Time Series App. The smoothed and normalized input 

meteorological variables were utilized to determine the 

performance of the NARX network and nonlinear 

autoregressive (NAR) network. 

Several iterations were performed using the NARX and 

NAR models to determine the optimum (a) dataset 

partition, (b) the number of hidden neurons, (c) the number 

of time delays, and (d) training algorithm. Various 

combinations of dataset partitions were utilized to 

determine the data division that yields the best model 

performance while holding the hidden neurons and delay 

constant at 10 and 2, respectively. The optimum number of 

hidden neurons and time delay were also determined. 

Lastly, Levenberg-Marquardt and Bayesian 

Regularization were used as training algorithms. 

The schematic diagram and architecture of the NARX 

network are shown in Figs. 1 and 2, respectively. The 

schematic diagram of a NARX network normally consists 

of three layers: the input layer, hidden layer, and output 

layer. Other elements involved in the network are the 

neurons, weights, and activation functions. The direction 

of the information fed to the input layer flows to the output 

layer. Through the network neurons, each input vector is 

multiplied by the weight vector to give the scalar product 

in each layer.  

 
Fig. 1 NARX Network Schematic Diagram. 
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Fig. 2 NARX Network Architecture. 

 

The architecture shown in Fig. 2 is a series-parallel 

(open-loop) NARX architecture, where the future value of 

the time series 𝒚(𝒕 + 𝟏) is predicted from both present and 

past values of 𝒙(𝒕) and the true past values of the time 

series 𝒚(𝒕). This architecture type shows a more precise 

forecast as input of the feedforward network uses true 

values as input.  

 

2.2.3 Gated Recurrent Unit Network 

 

The gated recurrent unit network is a relatively new 

variant of RNN which simplifies the architecture of the 

LSTM network which allows the GRU to be trained faster 

(Khan et al., 2021). The GRU neuron reduces the four gates 

of the LSTM into two gates as shown in Fig. 3. The 

improved network performance of the GRU network is due 

to the gating mechanism which allows the neurons to learn 

long-term dependencies of the input and output data. 

The hidden state of the GRU, ht, at a present time t 

was defined in Equation 5. 

 

   (5) 

 

The update gate of the GRU, zt, was represented in 

Equation 6 which decides how much of the past 

information to retain. Consequently, the reset gate of the 

GRU, rt, was defined in Equation 7 which determines how 

much of the past information to forget. The WZ and WR are 

the weights of the update gate and reset gate while the σ 

is a sigmoid function. 

 

   (6) 

 

   (7) 

 

The candidate activation state, �̃�𝐭, is represented in 

Equation 8. 

 

  (8) 

 

 
Fig. 3 GRU Cell Architecture. 

 

 
Fig. 4 Deep Network Design. 

 

 

The deep network model which employs a GRU 

network was created using MATLAB’s Deep Network 

Designer App. This neural network is shown in Fig. 4. 

The deep network design was comprised of 6 layers. 

The Input-L is the feature input layer that expects the six 

variables stored using a datastore function. Next, the 

GRU-L is the GRU layer set to the default number of 

hidden units (128) with a tanh state activation function 

and sigmoid gate activation function. Consequently, a tanh 

layer was added as an activation function followed by a 

NORM-L layer to normalize the output variables. The 

normalized output variables were sent to an FC-L or fully 

connected layer, which is a linear layer. The output of the 

fully connected layer was set to 1, which was the predicted 

global solar radiation. It was sent to the R-L or regression 

layer, which determines the performance of the entire deep 

network. 

The solver employed for the deep network training 

options was adam (adaptive moment estimation) optimizer 

with a default initial learning rate of 0.005. The validation 

frequency, maximum number of epochs, and mini-batch 

size were set to 50, 300, and 150, respectively. 

 

2.2.4 Hybrid NARX-GRU network 

 

The predicted global solar radiation, y', from the NARX 

network was utilized as an input variable in the GRU 

Network, hence the hybrid NARX-GRU model. The 

schematic diagram of the hybrid model is depicted in Fig. 

5. 

The NARX-GRU hybrid model was compared with 

other forecasting models such as the Gaussian Process 

Regression (GPR), NAR, and NARX models using different 

performance metrices. The dataset partition was set to 

90% training and 10% validation of the hybrid, GPR, NAR, 

and NARX models. After the models were trained using the 

90% training dataset (600 daily datapoints), the validation 

dataset (66 daily datapoints) was utilized to forecast day-

ahead DGSR. The DGSR vs time (actual vs predicted) plot 

of each model was also generated to determine which 

model performed best. The trained hybrid model was also 

utilized to forecast DGSR starting July 21, 2018 to 

December 31, 2019 (529 daily datapoints) to visualize and 

explore the DGSR trend over such period to justify the 

hybrid model’s forecasting accuracy. 
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Fig. 5 NARX-GRU hybrid network diagram. 

 

2.2.5 Performance metrics 

 

Four performance parameters were used to evaluate the 

models’ forecasting performance accuracy. These 

statistical parameters are defined as follows: 

• Correlation 

 

(9) 

 

 

when -1.0 ≤ r ≤ +1.0 

 

• Coefficient of determination or r2 

 

(10) 

 

• Root Mean Square Error (RMSE) 

 

(11) 

 

 

• Mean Absolute Error (MAE) 

 

(12) 

 

where xt is the predicted target variable and T is the total 

sample size. 

 

2.2.6 Software 

 

MATLAB R2021a was used to set up both regression 

models and neural network design. 

 

3. Results and Discussion 

3.1 Data pre-processing 

The raw daily meteorological data were plotted in two-

dimensional plots as seen in Fig. 6 using MATLAB. These 

data were further processed using the Smooth Data task 

in MATLAB. Smoothing the data eliminated outlying data 

from the dataset and made trends or patterns more visible. 

Fig. 7 shows the data after pre-processing. After 

eliminating noise and outliers of the raw data through data 

smoothing and normalization, the two-dimensional plots of 

the meteorological data are shown in Fig. 7. The pre-

processing of data improves the accuracy of the forecasting 

model. 

 

 

 
Fig. 6 Meteorological data from PAGASA and NSRC. 
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Fig. 7 Normalized and smoothed meteorological data. 

 

Table 1 

GPR model performance results at k=10 folds. 

Model RMSE (%) R2 MSE MAE 

Squared Exponential GPR 27.622 0.90 762.97 22.435 

Matern 5/2 GPR 26.999 0.91 728.96 21.87 

Exponential GPR 26.618 0.91 708.53 21.109 

Rational Quadratic GPR 26.947 0.91 726.16 21.757 

 

 

 

3.2 Regression models 

After training a selection of different regression models 

with the normalized and smoothed data, results show that 

the Gaussian Process Regression (GPR) models had the 

best performance as evaluated from various performance 

indicators. From the comparison between different cross-

validation folds, it can be found that ten folds can yield the 

best model performance. The extensive exploration on 

evaluating the influence and significance of each input 

variable on the prediction of daily solar irradiance reported 

higher metric scores when all available features were 

included. The performance of the trained GPR models is 

summarized in Table 1. 

As shown in Table 1, the standard deviation of the 

above statistical parameters (RMSE, R2, MSE, MAE) is 

positive. This non-zero value suggests that the selective 

different data inputs positively affect the GPR predictive 

model’s performance. Regarding the regression 

framework, GPR works under the probabilistic framework. 

The GPR model takes N pairs of vector input and a noise 

scalar output as input to construct a model that delivers a 

well-distributed output at unseen input locations (Rohani 

et al., 2018). 

 

where s2
noise

 is the variance of the noise output. In the 

Bayesian framework, unique indices follow consistent 

Gaussian distribution, limiting unnecessary function 

correlation. This then prioritizes the Gaussian process 

(GP) over functions. The consistency creates inference on 

function values that correspond to unseen inputs from the 

finite training data set. 

In literature, many studies have determined that 

meteorological data such as temperature, cloud covers, 

sunshine duration, and solar irradiance affect the solar 

output (Duffie et al., 1994). The best result from the GPR 

regression feature selection was obtained when all features 

were included. Compared to other predictor variables, 

which did not affect the solar output significantly, the 

performance of the GPR model drastically dropped when 

the duration of sunshine predictor was not included. 

Sunshine duration has the greatest correlation coefficient 

value to the target data among the six predictors. A 

deliberate selection of appropriate features balances 

complexity and bias in a prediction model (Najibi et al., 

2021). Determining the proper features through feature 

selection prior to developing the final hybrid model 

impedes overfitting and adjusts its sensitiveness. 

 
(13) 



A.D.P. Fuselero et al  Int. J. Renew. Energy Dev 2022, 11(3), 839-850 

| 845 

ISSN: 2252-4940/© 2022. The Author(s). Published by CBIORE 

Table 2 

Optimizable GPR model training hyperparameter results. 

Parameter Result 

RMSE 27.741 

R-squared 0.91 

MSE 715.07 

MAE 21.342 

 
 

Fig. 8 Optimizable GPR model Response Plot. 

 

In the Regression Learner app, after choosing the best 

model to train, the optimizable hyperparameter option 

automates the selection of hyperparameter values. Results 

from the training show that the simulation for optimizable 

GPR yields a better model performance compared to other 

GPR models. The results from the optimizable training are 

summarized in Table 2. Additionally, a response plot is 

shown in Fig. 8 in reflection of the validated optimized 

model results.  

 

 

3.3. Parameter estimation 

Results show that the NARX Network using the Bayesian 

Regularization (NARX-BR) training algorithm performed 

better compared to the NAR Network. The dataset 

partition was determined best at 85%, 10%, and 5% for the 

training, validation, and testing data, respectively. There 

were 569, 67, and 33 daily timesteps for the training, 

testing, and validation. The lowest training and testing 

mean square error was obtained using 10 hidden neurons 

and 3 delays for the NARX-BR Network. The NARX-BR 

Network with 50 hidden neurons and 3 delays performed 

well in the training dataset but has a significantly poor 

performance in the testing data, hence, the observance of 

overfitting.  The correlation coefficient is 0.94542 and 

0.91119 for the training and testing data, respectively, 

which indicates that the NARX-BR model is adequately fit 

for the data. The regression plots for the training, testing, 

and overall data for the NARX-BR Model are shown in Fig. 

9. 

As shown in Fig. 10a, the lowest validation error is 

obtained by the NARX-BR model at the 108th epoch, which 

indicates its best training performance. Further training 

the model at higher epochs reduced the error but overfit 

the training data. The error histogram in Fig. 10b shows 

that the errors range from -13.32 to 12.5. 

All tests were performed both for the NARX and NAR 

models. After all the training procedures, the NARX model 

showed the best performance using the Bayesian 

Regularization algorithm with 10 hidden neurons, 3 

delays, and a dataset partition of 85% for training, 10% for 

validation, and 5% for testing. The said model at these test 

parameters generated training, and testing mean square 

error of 836.49 and 1502.00, respectively. These 

parameters of the NARX-BR model were utilized to build 

the Hybrid NARX-GRU Network. 

 

 

3.4. Hybrid NARX-GRU model 

3.4.1. Training Progress 

According to the training progress plots of the NARX-GRU 

hybrid model in Fig. 11, the RMSE recorded after multiple 

iterations reached an improved and better performance. 

The distribution of RMSE values was highly consistent 

after the 50th epoch, and the total training time was 

shortened (33 secs.) while at ~0 loss. This indicates that 

the proposed NARX-GRU model can effectively utilize the 

meteorological variables and the solar radiation 

information from the NARX network to predict solar 

radiation in parallel. 

 

 

 

 

   
Fig. 9 Regression plots of the NARX-BR model (10 hidden neurons, 3 delays, 10% validation data, 5% testing data). 
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(a) (b) 

Fig. 10 (a) Training performance and (b) Error histogram of the NARX-BR model (10 hidden neurons, 3 delays, 10% 

validation data, 5% testing data). 

 

Fig. 11 displays an animated plot of the hybrid model’s 

mini-batch loss and accuracy, and additional information 

on the training progress. Considering the study’s small 

dataset, the best training performance for the hybrid 

model was small value options for the mini-batch size and 

validation frequency and loss. As monitored from the plot, 

the network accuracy quickly improved from an RMSE of 

~2 to ~0.05 at the hundredth iteration. Simultaneously, 

keeping the loss at zero. The built GRU model was 

specifically applicable with adam solver algorithm. Since 

multiple input parameters are used, the adam optimizer 

adapts to its different learning rate (Chakrabarty et al., 

2021). The adam algorithm solves the randomness of the 

system which leads to a local optimum result.  

The trend in the RMSE plot shows a positive result, 

which suggests that the selective data inputs positively 

affect the overall performance of the hybrid model. In 

many literatures, GRU along with other deep learning 

models like LSTM, RNN, and hybrids are frequently 

applied. The GRU in this study’s hybrid model was able to 

learn the data’s short-term deficiencies, providing a more 

effective and compact overall performance. Since GRUs 

train less parameters and uses less memory, the training 

time of the model was executed with a fast elapsed time. 

The experimental results for the training process suggests 

that assembling the NARX network with the deep 

learning model GRU enhanced the model’s predictive 

performance. 

 

3.4.2. Model performance 

This study uses evaluation metrics for a more 

comprehensive comparison between the previous 

predicting models and the recently proposed hybrid 

machine learning model. The comparison results are 

shown in Table 3, which indicates that the NARX-GRU 

hybrid model outperformed the Optimizable GPR, NAR, 

and NARX models. Likewise, it is noted that as the RMSE 

values decrease, forecasting preciseness is further 

achieved. It is evident that the NARX-GRU hybrid model 

has the best forecasting results with the most negligible 

losses and outperformed the Optimizable GPR, NAR, and 

NARX models. 

Table 3 

Comparison of models in terms of RMSE metric. 

Model RMSE (%) 

Optimizable GPR 27.741 

NAR 39.82 

NARX 28.92 

NARX-GRU Hybrid ~0.05 

 

 

The actual DGSR values from NSRC and the 

forecasted DGSR values obtained from the hybrid NARX-

GRU, NARX, and NAR are summarized in Table 3. The 

performance of the forecasting models is illustrated in Fig. 

12. The forecast for day-ahead DGSR provided by the 

hybrid NARX-GRU, NARX, and NAR were plotted to show 

their accuracy. Fig. 12 shows that the hybrid model 

performed the best compared to the NARX and NAR. 

Statistically, the hybrid NARX-GRU model outperformed 

the models because of its significantly low RMSE value. 

The performance plots show that the other forecasting 

models still performed well. 

The results presented in Fig. 12 highlight the 

fundamental role of the hybrid NARX-GRU model in 

forecasting daily global solar radiation. The hybridized 

network integrates the strengths of the individual 

forecasting models which generated better results 

compared to that of individual models being studied. 

 

3.4.3. Forecast Results 

The result for the daily global solar radiation forecast 

according to the trained and improved database obtained 

with the NARX-GRU hybrid model is shown in Fig. 13. 

The forecasted days are from July 2018 to December 2019 

(529 datapoints). In this figure, the y-axis represents the 

DGSR in W/m2, and the x-axis represents time in days. 

Actual DGSR data are represented by the red line, while 

the projected DGSR values with NARX-GRU are depicted 

by the blue lines. From Fig. 12, it was observed that the 

hybrid model fits quite well with low residuals. This 

suggests that the generated plot in Fig. 13 showed good 

results for day-ahead short-term forecasting. The 

forecasted DGSR were within the range of 32.3593 – 

535.043 W/m2. 
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The fluctuation trend on the forecasted plot can be 

explained by the variations in DGSR due to the changing 

weather conditions in Dumaguete, Philippines. It is 

evident from Fig. 13 that the highest recorded DGSR 

peaked during the warmest months in the country, which 

extends from March to June. Comparing the forecasted 

DGSR to the historical data, its fluctuation seemed larger. 

This is expected due to the increasing solar radiation 

potential and ultraviolet (UV) rays as a result of ozone 

layer depletion and climate change (Belmahdi et al., 2020). 

The solar radiation time series plot shows the importance 

of precise adaptation models in improving the training 

data and ultimately develop accurate forecasting models. 

 

 

 

 

(a) 

 

(b) 

Fig. 11 (a) RMSE and (b) loss NARX-GRU training process plot. 

 

 
 

 

 

Fig. 12 Forecasting results of the NAR, NARX, and NARX-GRU models. 
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Fig. 13 NARX-GRU solar radiation time series. 

 

4. Conclusion 

As concerns on environmental protection and the global 

energy crisis continue to aggravate, PV power generation 

is becoming crucial on the energy portfolio of countries 

around the world. The Philippines’ solar energy capacity 

has been exponentially increasing over the past decades, 

advantageous in PV power plant operations. In this paper, 

we developed a hybrid model for forecasting the global 

components of solar irradiance based on a machine 

learning algorithm – NARX-GRU.  

The NARX-GRU model was equipped with 

hyperparameters to achieve the optimal model by 

minimizing the training loss. The data includes rainfall 

amount, relative humidity, duration of sunshine, average 

temperature, wind direction, and wind speed as input and 

solar radiation as the final output. The data were collected 

from PAGASA and NSRC with 669 data points. The NARX 

network was employed with the Bayesian Regularization 

algorithm to train at the optimal configuration of 

hyperparameters. A partition of 85% training, 10% 

validation, and 5% testing with 10 hidden neurons and 3 

delays, showed the best NARX result of 0.91119 correlation 

and 1502.00 MSE (testing). The NARX output was then 

used for deep learning forecasting. We obtained optimal 

configuration with the hybrid model after arranging the 

provided hyperparameters such as solver type, learning 

rate, activation function, batch size, and batch 

normalization statistics.  

The performance of the hybrid prediction model was 

measured through evaluation metrics. The proposed 

hybrid model performed well with minor errors and is 

comparable with other NNs. Compared with other state-of-

the-art machine learning models, the results of this study 

showed that the NARX-GRU hybrid performed best. The 

hybrid model showed promising results for day-ahead 

forecasting. In addition, the training time of the NARX-

GRU hybrid model is only at 33 secs., which shows that the 

proposed model has high training efficiency. 
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