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Abstract. An accurate short-term solar irradiation forecasting is requiredregarding smart grid stability and to conduct bilateral contract 

negotiations between suppliers and customers. Traditional machine learning models are unable to acquire and to rectify nonlinear 

properties from solar datasets, which  not only complicate  model formation but also lower prediction accuracy. The present research 

paper develops a deep learningbased architecture with a predictive analytic technique to address these difficulties. Using a sophisticated 

signal decomposition technique, the original solar irradiation sequences are decomposed  into multiple intrinsic mode functions to build 

a prospective feature set. Then, using an iteration strategy, a potential range of frequency associated to the deep learning model is 

generated. This method is  developed utilizing a linked algorithm and a deep learning network. In comparison with conventional models, 

the suggested model utilizes sequences generated through preprocessing methods, significantly improving prediction accuracywhen  

confronted with a high resolution dataset created from a big dataset.On the other hand, the chosen dataset not only performs a massive 

data reduction, but also improves forecasting accuracy by up to 20.74 percent across a range of evaluation measures. The proposed model 

achieves lowest annual average RMSE (1.45W/m2), MAPE (2.23%) and MAE (1.34W/m2) among the other developed models for 1-hr ahead 

solar GHI, respectively, whereas forecast-skill obtained by the proposed model is 59% with respect to benchmark model. As a result, the 

proposed method might be used to predict short-term solar irradiation with greater accuracy using a solar dataset. 
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1. Introduction 

It is because of the greenhouse effect, pollution and the 

depletion of natural resources that now, more than ever, it 

is imperative to use renewable energy sources (RES) that 

do not pollute the environment and are free to be used to 

create electricity. Among RES, solar energy is one of the 

most popular energy sources for generating electricity 

with zero carbon emission and its market is growing 

significantly due to its long-term viability and support 

(Vasylieva et al.2019). Almost every year, the earth’s 

surface receives around 1.5×1018 KWh/area of solar energy 

which is nearly ten times the current global usage. Among 

all Asian countries, China receives the highest annual 

average daily global solar radiation 20.2 MJ/ (m2.d), while 

India receives just 18MJ/(m2.d) solar radiation. The 

renewable energy sector in India, as an example of 

emerging countries, has grown at an exponential rate 

during the last two decades. India has even established a 

special ministry for RES; Ministry of New and Renewable 
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Energy (MNRE), with a goal of generating 175 GW of 

energy from RES by the end of 2022, with 100 GW from 

solar sources alone (Gupta et al. 2020). According to the 

International Energy Agency (IEA), the overall capacity of 

photovoltaic installations will reach 1700GW by 2030. 

However, according to the world energy state report, this 

power capacity has increased from 8.0 GW in 2007 to 402 

GW in 2017 (Gupta et al. 2021) Furthermore, according to 

several studies, the power grid will be entirely functioning 

on the renewable energy source (RES) by the end of 2050 

(Hajj et al. 2018). But, due to the variability in weather 

condition, the intensity of solar GHI is unstable which 

directly affects the output of photovoltaic power plant 

(Gupta et al.2022), resulting in poor reliability on 

photovoltaic power plant. So, a number of forecasting 

models have been developed to increase solar GHI 

forecasting accuracy (Singla et al. 2021). Solar irradiance 

forecasting technologies are classified into four categories: 

1) Physical method 2) Machine learning method 3) 

Statistical method and 4) Hybrid method (Fang et al. 2019; 
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Gupta et al. 2022; Olatomiwaet al. 2015; Sharma et al. 

2018; Yagli et al. 2019). The physical model uses 

meteorological and geographical parameters as an input to 

forecast solar irradiance and sets up a mathematical 

relation between meteorological data and forecasted GHI. 

Due to its complexity, less precision and high 

computational cost, this model is not popular among 

researchers (Hajj et al. 2021). European Centre for 

Medium Range Weather Forecast (ECMWF) and Weather 

Research Forecasting (WRF) are the two main methods in 

physical approach to forecast atmospheric and operational 

research (Richardson et al. 2020; Perez et al. 2012). 

Statistical methods such as Gaussian Progress Regression 

(GPR) (Shang et al. 2018; Piri et al. 2015), Autoregressive 

Integrated Moving Average (ARIMA) (Shadab et al. 2020) 

enhance forecasting accuracy and set up a mathematical 

relation between meteorological variables and GHI, but 

the poor correlation among input data and solar GHI leads 

to weak performance of these models. Machine learning 

models such as Artificial Neural Network (ANN) (Jahani 

et al. 2019), Elman Neural Network (ELMAN) (Dumitru et 

al. 2016) and Support Vector Machine (SVM) (Zeng et al. 

2013) have a capability of self-correction and reduce the 

gap between forecast and measured data. Nevertheless, 

due to uncertain behaviour of GHI, single machine 

learning models get stuck in local minima and hence do 

not perform efficiently (Gupta et al. 2022). Therefore, 

hybrid models are discussed in literature to overcome 

these issues. Data decomposition based technique and 

machine learning model is one of the most used hybrid 

models. Several decomposition techniques such as wavelet 

Transform (WT), Empirical Mode Decomposition (EMD), 

Variational Mode Decomposition (VMD), etc. have been 

discussed in previous studies. The author (Monjoly et al. 

2017) uses the EMD decomposition technique to 

decompose the input data and Auto Regression (AR) 

method and ANN model are used to make an estimate of 

GHI. The experimental result shows that the hybrid model 

achieves better result as compared to standalone AR and 

ANN models. Likewise, the EEMD and Self Organizing 

Map-Back Propagation (SOM-BP) network are combined 

to forecast solar irradiance (Zhang et al. 2018). EEMD 

decomposes input data and feeds to SOM-BP network to 

forecast solar GHI. The output of each SOM-BP network 

is aggregated to obtain output. In continuation, various 

studies have used WT as a decomposition technique with 

SVM and ANN model (Zendehboudi et al. 2018; Chen et al. 

2021). 

In addition, deep learning emerged as a powerful 

technique to forecast the solar GHI and obtained better 

performance than conventional models, in all aspects. 

Various researchers in their studies have suggested deep 

learning techniques with pre-processing strategy to 

enhance accuracy of the forecasting model. Many studies 

have employed Long Short Term Memory (LSTM) network 

to forecast HI, where weather data is used as an input to 

the LSTM network(Qing et al. 2018). The study proves the 

efficiency of LSTM network over BPNN linear regression 

in terms of RMSE. Hybrid model of LSTM and gradient 

boosting algorithm are implemented to prevent the 

situation of over fitting as compared to naïve predictor and 

SVM model (Kumari et al. 2021). The performance of 

ensemble approach shows that the proposed model 

significantly improves result in terms of RMSE. Similarly, 

scholars have developed a hybrid approach to forecast the 

solar irradiance using a combination of Convolution 

Neural Network (CNN) and LSTM(Zang et al. 2020b). 

Historical properties of input data are acquired by using 

an LSTM network and geographical data is obtained using 

CNN. Further, short-term photovoltaic power forecasting 

is performed using a hybrid approach of residual network 

and CNNby author (Zang et al. 2020a). An ensemble 

approach of WT with LSTM model for irradiance 

forecasting for 1-h to 1-day ahead was successfully 

employed (Wang et al. 2018). The result shows that WT 

significantly improves forecasting accuracy. Gated 

Recurrent Unit (GRU) for the day ahead regarding solar 

GHI forecasting is proposed (Gao et al. 2019). The model 

utilizes meteorological and historical data as input into the 

proposed model and measured its performance through 

RMSE and forecast skill. The performance of GRU and Bi-

LSTM, according to extant literature is equivalent. Bi-

LSTM-based models appear to be more dependable 

because they have undergone more validations based on 

solar datasets from various places throughout the world 

(Fischer et al. 2018; Gao et al. 2020).All these studies 

exhibit satisfactory prediction results. In addition to deep 

learning network, various data decomposition techniques 

are used as pre-processing strategy to decompose 

irradiance data, clean up and define input data according 

to specifications. SOM, WT, EMD, EEMD, and Kalman 

filter are often used in solar irradiance forecasting. It is 

confirmed in a number of prior studies that WT-based 

models provide satisfactory results due to their 

outstanding localization properties in both temporal and 

sensitive attributes. However, it is not clear how to pick 

the right wavelet function for a set of data (Huimin et al. 

2016). Same results are received when using VMD pre-

processing approach, where the number of modes is an a 

priori value that must be specified at the start, but has a 

major impact on the decomposition results (see Liu et al. 

2018). Given that by adding intrinsic mode functions, 

CEEMDAN technique displays its astonishing superiority 

in automatically responding to any irregular time-series 

(Wu et al. 2009). When confronted with such a challenge, 

it may be the best alternative. Prasad et al (2019) 

developed a CEEMDAN-RF model for multi-step ahead 

solar GHI forecasting. The author adds results of all sub-

predictions from LSTM model, then rectifying summation 

using ant colony optimization technique. Qin et al. 2019) 

uses fuzzy classification technique with CEEMDAN-

LSTM model. In this study, CEEMDAN divides the 

incoming data into many IMFs, fuzzy classification 

technique categorizes the IMFs into a number of groups 

and uses BiLSTM  predictor for each group and summing 

all predictions to obtain final result. These studies have 

established a good base for applications that combine 

CEEMDAN and Bi-LSTM learning models. 

However, the problem is that it is useless unless the 

number of sub-series is determined in advance using 

CEEMDAN-based models, since solar dataset's temporal 

resolution improves and recording period lengthens, 

dataset scale widens resulting in increased non-linearity 

and non-stability in the solar time series. The number of 

IMFs will increase dramatically as a result of using 

CEEMDAN approach on such a massive dataset. As a 

result, at least two barrier processes keep following the 

routines described in the preceding studies (Prasad et al. 

2019; Wu et al. 2009). Firstly, more IMF components 

would result in more untrained data raising overall 

training cost. Secondly, if machine learning model is 

employed to predict components and forecasting error of 
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each component adds up to the final error which affects the 

prediction accuracy of the model.  

Therefore, with an aim to address this problem and 

increase its prediction accuracy; this paper proposes a new 

framework that combines CEEMDAN: a signal 

decomposition technique, Genetic Programming: a feature 

selection technique and Bi-LSTM: deep learning model. 

Unlike some prior work in this field (Prasad et al. 2019) all 

decomposed components from CEEMDAN method are no 

longer used for solar irradiation construction, but to 

provide a prospective feature set for BiLSTM model to 

learn from. Secondly, Genetic Algorithm decreases the size 

of the projected feature set collection and changes it into a 

subset with more useful data. As a result, the approach 

can significantly deal with the growing population of 

IMFs, allowing it to strongly employ the strong 

CEEMDAN approach for solar irradiation prediction. 

Taking into account all of the preceding processes, the 

following are the primary contributions of this work: 

• To deal with the increasing scale of datasets, a 

unique architecture of ensemble learning system 

incorporating CEEMDAN, GA, and Bi-LSTM for 

solar irradiation forecasting is presented. Rather 

than following the "decomposition—prediction—

reconstruction" design used in previous 

investigations (Wu et al. 2009; Prasad et al. 2019) 

the suggested framework attempts to deliver a 

more compact and useful set of features out of a 

total prospective IMFs obtained by CEEMDAN 

technique.  

• The approach proposed here is completely 

automatic and aposteriori. Unlike previous studies, 

this approach does not require the target system to 

have any pre-existing knowledge. wavelet functions 

for wavelet transform (Wang et al.2018) and fuzzy 

logical strategy for fuzzy based models (Qin et al. 

2019). The entire model is based solely on the solar 

dataset that has been recorded.  

• In this framework three-year data of Delhi location 

collected from NSRDB (National Solar Radiation 

Database), two-year data used for training and one-

year data used for testing on seasonal basis have 

been used. The testing data is divided into seasons: 

winter, spring, summer, monsoon and autumn, as 

given in Delhi Tourism website. 

• A detailed comparative evaluation of the results is 

undertaken in this work from a progressive multi-

level. Unlike previous studies (Wu et al. 2009; 

Prasad et al. 2019) where comparisons with other 

models are made all at once, this study has focused 

on progressive features. First, a comparison 

between the present framework and non-

CEEMDAN machine learning models is made, then 

it moves on to a comparison of models that use the 

CEEMDAN approach. In the proposed models we 

check the effectiveness of CEEMDAN 

decomposition, genetic algorithm feature selection 

technique and long short-term memory neural 

network model. 

The performance of the proposed model is measured in 

terms of MAPE (%), RMSE (W/m2) and MAE (W/m2) 

evaluation metrics. The response of proposed model is 

better in all prospects with lesser annual average RMSE 

(1.45W/m2), MAPE (2.23%) and MAE (1.34W/m2), 

respectively for 1-hr ahead solar GHI forecasting. 

2. Theoretical background of CEEMDAN and data 

driven model  

2.1 CEEMDAN (Complete Ensemble EMD with adaptive 

noise) 

The EMD was proposed by Huang in 1998. The basic idea 

is EMD to decompose the non-linear and non-stationary 

data into IMFs and its residue.  However, research has 

revealed that EMD has mode mixing constraints (Huang 

et al. 2019). Mode mixing means similar elements exist in 

IMFs. The upgraded process EEMD is introduced to 

overcome the mode mixing problem in EMD. Even if mode 

mixing problem is addressed by the EEMD, the Gaussian 

white noise added with the EEMD may not be cancelled 

after reconstruction, resulting in an error (Bedi et al. 

2019). Singla et al. 2022) suggest CEEMDAN technique 

which is more advanced form of EEMD to solve the 

aforementioned difficulty. CEEMDAN divide the original 

data sequence into fifteen IMFs and one residue which is 

shown in Fig.4. The steps followed in CEEMDAN are given 

as 

1) The original data sequence 𝑘𝑛(𝑡) is added with 

Gaussian noise 𝑤𝑛(𝑡)and noise standard error (𝜀) 
which can be expressed as  

     𝑘𝑛(𝑡) = 𝑘(𝑡) + 𝜀𝑜𝑤
𝑛(𝑡)   (1)                                              

     Where n=1, 2, 3, …..m. 

2) The EMD decompose the data and the first IMF is 

calculated by averaging all the components of 

decomposition 

     𝐼𝑀𝐹1(𝑡) =
1

𝑥
∑ 𝐼𝑀𝐹1

𝑖(𝑡)𝑥
𝑖=1    (2) 

The residual is calculated as  

      𝑟1(𝑡) = 𝑘(𝑡) − 𝐼𝑀𝐹1(𝑡)   (3) 

3) Further, the signal 𝑟1(𝑡) + 𝜀1𝐸𝑀𝐷1𝑤
𝑛(𝑡) are 

decomposed using EMD to obtain second IMF and 

residue can be stated as follows: 

     𝐼𝑀𝐹2(𝑡) =
1

𝑥
∑ 𝐸𝑀𝐷1 (𝑟1(𝑡) + 𝜀1𝐸𝑀𝐷1(𝑤

𝑛(𝑡)))𝑥
𝑛=1 (4)                                                                                      

𝑟2(𝑡) = 𝑟1(𝑡) − 𝐼𝑀𝐹2(𝑡)   (5) 

4) A per following stages, the xth residual and (x+1)th 

decomposed components can be calculated as 

𝑟𝑥(𝑡) = 𝑟𝑥−1(𝑡) − 𝐼𝑀𝐹𝑥(𝑡)   (6) 

      𝐼𝑀𝐹𝑥+1(𝑡) =
1

𝑥
∑ 𝐸𝑀𝐷1(𝑟𝑥(𝑡) + 𝜀𝑥𝐸𝑀𝐷𝑥(𝑤

𝑛(𝑡))𝑥
𝑛=1  (7) 

IMFx+1(t) represent the (x+1)th IMF obtained by 

CEEMDAN.                          

Repeat equation (6) & (7) till the residual meets the 

requirement for stopping 

∑
|𝑟𝑥−1(𝑡)−𝑟𝑥(𝑡)|

2

𝑟𝑥−1
2 (𝑡)

𝑄
𝑞=0 ≤ 𝑆𝐷𝑥   (8)

 
Where Q represent the length of sequence K(t) &rx(t) 

denote the sequence after xth decomposition and the 

value of SD is set to 0.2 

5) Finally, the original signal K(t) can be computed as: 

𝑦(𝑡) = ∑ 𝐼𝑀𝐹𝑖(𝑡) + 𝑅(𝑡)𝑇
𝑖=1    (9) 

Where R represent the final residual value (c.f 

Huang et al. 1998) 
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2.2. Long Short Term Memory Neural Network (LSTM) 

J.J.Hopfield developed a recurrent neural network (RNN) 

in 1982, where the RNN is related to the input via feedback 

acting like a dynamic memory. For short term forecasting 

this network works best, but for long term forecasting it 

becomes unstable. This inconsistency caused by gradient 

boosting i.e. substantial changes in training weights in a 

short period of time. This problem is solved by LSTM to 

permit using of memory cells in a hidden layer. These 

memory cells are utilized to store information in an 

appropriate manner. The basic configuration of LSTM 

network is shown in Fig.1. Each memory cell having a 

forget gate (ft), input gate (it) and output gate (ot) to 

accept/reject information. For a forward movement 

function, the previous cell state ct-1 is discarded by the 

LSTM network. At present, the LSTM network has three 

inputs SI(t), previous memory cell output ht-1 and bias ef. 

As a result, the activation value can be written as 

(Hochreiter et al. 1997) 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑓 . [ℎ𝑡−1, 𝑆𝐼𝑖(𝑡)] + 𝑒𝑓)   (10) 

   

The LSTM network uses the equation mentioned below to 

determine whether data information should be discarded 

or used 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑖 . [ℎ𝑡−1, 𝑆𝐼𝑖(𝑡)]) + 𝑒𝑖)   (11) 

𝑐
~

𝑡 = 𝑡𝑎𝑛ℎ(𝑧𝑐 . [ℎ𝑡−1, 𝑆𝐼𝑖(𝑡)] + 𝑒𝑐)   (12)
 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐
~

𝑡    (13)

      

Now the memory cell output represented as  

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑜. [ℎ𝑡−1, 𝑆𝐼𝑖(𝑡)] + 𝑒𝑜)   (14) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡)     (15) 

Where SI (t) is solar irradiation input value, ef, ei, ec and eo 

represents the bias voltage of LSTM and Zf, Zt, ZC, Zo are 

the weight factor of LSTM network. The value of activation 

function sigmoid and tanh lie from 0 to 1 and -1 to 1(Qin et 

al.2019)
 

 

2.3   Bi-directional Long ShortTermMemory Neural 

Network (Bi-LSTM) 

Bi-LSTM neural network consists of two LSTM models, 

having capability to transfer information from past to 

future (forward direction) and future to past (backward 

direction). Due to processing of input in both directions, 

twice training of data is possible and prediction accuracy 

is better than single LSTM model (Singla et al. 2022). The 

basic architecture of Bi-LSTM is shown in Fig.2. 

The Bi-LSTM network is updated with the help of 

parameter, i.e. forward hidden layer (Hf), backward hidden 

layer (Hb) and output sequence SIo(t). The parameter of  Bi-

LSTM is represented mathematically as follows: 

( ) )( 121 fHfif aHwtSIwsigmoidH ++= −                             (16)

( )( )
bHbib aHwtSIwsigmoidH ++= −153      (17)

 
OSIfo aLwHwSI ++= 64         (18)                                                                                                                                                                                                                                           

 

Hf, Hb & SIo(t) represent the forward parameter, backward 

parameter and output sequence while w denotes the weight 

factor.
 

 

 

 

 

 
Fig.1 Basic configuration of LSTM network 
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Fig. 2 Bi-LSTM Structure 

 

 

 

3. Structure of Proposed CEEMDAN-GA-BiLSTM 

framework 

Purpose of present study is to find ways and means of 

increasing the accuracy of Solar GHI forecasting by 

employing a CEEMDAN based BiLSTM network with 

binary coded genetic algorithm. Figure 3 shows the 

schematic diagram of the developed model and its steps are 

duly discussed below: 

3.1 Data description 

The dataset of Indian location is used in the study to 

forecast solar GHI because of the substantial improvement 

in the infrastructure of renewable sector in India. In the 

study, the dataset of New Delhi is used to evaluate the 

proposed model due to its mixed climate characteristics 

vis-à-vis the targeted location. According to Koopen 

climate classification system, New Delhi has climate 

characteristics of ‘cwa’ and ‘bsh’. Its mixed characteristics 

of climate provide the model to perform in different 

weather conditions. For this, three-year hourly data is 

used for training, validation and testing purposes. Many 

academics have used NSRDB data in their research 

because of various advantages 1) free and easy access 2) 

extensive temporal and spatial coverage 3) no missing 

value in the data (Gupta et al. 2022). NSRDB provides 

satellite-based data which was acquired by using a 

satellite for purposes of measuring of irradiance with the 

help of the model created by State University of NewYork. 

The data collected from NSRDB contains hourly GHI 

values along with several other meteorological variables. 

The study uses two-year data for training and one-year 

data for testing the developed model.  

Table 1 provides geographical coordinates, climatic 

conditions and clear sky hourly details of the selected 

location. 

 

3.2 Data quality assurance  

The input data has great impact on the model 

performance. Primarily, the collected data is available in 

its raw form which is random and non-linear in nature and 

has a great influence on the effectiveness of the model. Due 

to weak pyranometer reaction, there is a chance of finding 

incomplete and negative data recording (Zang et al. 2020b). 

Therefore, unsuitable recorded data must be deleted before 

feeding suitable data to the forecasting model. 

Furthermore, because of lack of solar radiation throughout 

the night, night hours data is omitted from the dataset. In 

addition to this, cosine error of sensor, the data pertaining 

to time just before and after sunset is also a perpetrator 

element in the model performance, hence it is also 

discarded. Moreover, to enhance the effectiveness of the 

forecasted model, the data is converted into stationary 

form before submitting it for analysis. Present paper, in 

order to enhance the quality of input data calculates 

normalized value of data for purposes of converting it into 

stationary form. Normalization is calculated as follows  

minmax

min

XX

XX
X R

norm
−

−
=                                  (19)

     

Xnorm represents standardized value, XR is the value to be 

normalized, Xmax is the maximum value in all the values 

for related variables and Xmin is the minimum value (Perez 

et al. 2012). After sifting of time series data and rendering 

it in stationary form using normalization calculation, 

CEEMDAN is applied to the prepared time series data, 

where in the data is decomposed into eight IMFs and one 

residue. Fig.4 represents the CEEMDAN decomposition 

results in the form of IMFs and residue. 

 

 

Table1  

Geographical details of Delhi Location 

 

 
 

Cwa= Humid Subtropical; Bsh= Hot semi-arid
 

Location Rainfall(mm) Clear-sky hours climate Altitude (m) longitude latitude Region 

Delhi 714 2809 Cwa, Bsh 225 77.1025oE 28.7041oN North 

Lb Lb Lb 

Lf Lf Lf 

GHIOt- GHIOt GHIOt

GHIt GHIt-1 GHIt+1 

Backward  

layer 

Forward  

layer 

W1 W1 

W 

W 

W3 

W 

W3 

W4 

W5 W5 
W5 W5 

W4 W4 

W2 W2 
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Fig.3 Schematic diagram of the proposed model 

 

 

 
 

  

  

  

  

  

 
 

  

 
 

  

 
Fig. 4 CEEMDAN Decomposed IMF (Intrinsic Mode Function) components 
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Fig. 5 Genetic Feature selection in binary coding 

 

 

3.3 Binary coded genetic algorithm 

In feature extraction architecture and computational 

intelligence research the role of the wrapper is crucial. This 

study adopts binary code based GA to discover the best 

IMF as the feature set for training of LSTM in order to 

enhance the current solar irradiation predictor 

performance. 

3.3.1 Binary coding 

All fifteen IMFs are arranged from IMF1 to IMF15 to 

transfer in a small set of 1 and 0 (binary list) as shown in 

Fig.5. Combining these two lists via elemental 

multiplication yields the final selected list of IMFs. This 

allows us to decide whether IMF should be discarded or 

retained. The element under the binary list relevant index 

is set to 1 if an IMF is required; otherwise, it is set to 0.        

3.3.2 Initial trails 

For searching algorithms like GA, a proper initial 

condition is necessary because it can not only supply viable 

trails from the start but also disperse the searching spots 

globally. On the basis of these two considerations, the 

original population in this study is made up of binary sets 

as follows: 

i. All of the elements have been set to be one. 

ii. The value of all items has been set to zero. 

iii. The first half of the elements has a value of one, 

while the second half has a value of zero. 

iv. The first halves of the components are assumed to 

be 0, while the latter half is assumed to be 1. 

v. The items with the highest Correlation coefficient 

with the raw sequences are given a value of one 

while the others are given a value of zero. 

vi. The elements having the highest Pearson 

correlation with the raw sequence have their 

associated IMF’s set to zero while the others are set 

to one 

 

The Pearson correlation for a set of objective variables (P, 

Q) is given as  

 

𝜌𝑃,𝑄 =
𝐸((𝑃−𝐸(𝑃))(𝑄−𝐸(𝑄)))

𝜎𝑃𝜎𝑄
                     (20)

    

where P denotes the unprocessed value and Q denotes the 

intrinsic mode functions; E (.) and  (.) indicate the 

estimation and random deviation, respectively(Parsad et 

al. 2019). 

 

3.3.3. Fitness 

The best solution of this task is given as  

𝐹(𝜙) =
1

𝑚𝑖𝑛(𝑀𝐴𝐸(𝜙)1,𝑀𝐴𝐸(𝜙)2......𝑀𝐴𝐸(𝜙)𝑖)
   (21)

     

Where 𝑀𝐴𝐸(𝜙)𝑖 represents the mean absolute error 

between the forecasted and measured sequences on given 

data utilizing φ as the binary list for extracting 

features(Parsad et al. 2019).The purpose of finding the 

shortest path from numerous parallel tracks is to reduce 

the impact of arbitrary weight initialization and changing 

LSTM model parameter during training process which can 

lead to unanticipated localized end points even when the 

model structure is the same. 

 

3.3.4 Evolutionary Procedure 

Selection, crossover, and mutation all are parts of GA 

evolutionary process. These parts provide an overview of 

the main process. 

3.3.4.1 Selection 

There are two prerequisites to the selecting method. First, 

greatest individual generation sequence will sustain itself 

and bypass this filter. Furthermore, individuals with 

higher level of fitness will have greater chance of joining 

next generation; Probability is calculated by the equation 

given below 

𝑝(𝜙𝑔,𝑘) =
𝐹(𝜙𝑔,𝑘)

2

∑ 𝐹(𝜙𝑔,𝑚)
2𝑀

𝑚=1

    (22)  

Where 𝜙𝑔,𝑘 denotes the kth individual in the gth generation, 

and m represents the population size (Qin et al. 2019).

 

The probability formula described above in equation no. 

19 does not provide a pure elimination process. It does not 

only give promising individuals a better chance, but also 

allows those with low fitness to pass on to the next 

generation with a lower chance of survival. This is 

beneficial in terms of maintaining diversity of population 

and increasing algorithm reliability. 
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3.3.4.2 Crossover 

Each DNA candidate will have the opportunity to 

recombine with another person from the same generation, 

which is known as crossover rate. DNA information from 

both parent sets will be inherited by the young individual. 

Participants and cross-points are picked at random for 

every cycle of crossover, as inspired by "the law of 

independent assortment" (Wu et al. 2009). It means every 

participant has equal opportunity to participate in the 

crossover process. As a result, there is no restriction on 

population diversity in this section. 

3.3.4.3 Mutation 

A mutation mechanism is implemented after crossover to 

minimize the pre-mature issue and to further broaden the 

seeking area. Should one of the DNA elements be changed, 

it will go from 0 to 1 or 1 to 0 but this operation does not 

have to be repeated in the case of all members of DNA 

collection, every moment as this may produce divergence 

issues and raise computation costs.  

3.4 Forecasting Process 

In this stage, normalized value is decomposed by 

CEEMDAN result in fifteen IMFs, and one residue  is 

obtained. These IMFs and residue are used as input 

features in the forecast model. Large scale experiments 

were conducted in this research to determine the best GHI 

value. Data pertaining to two years was used for training 

and one year data was used for testing of the proposed 

model. The testing data has been divided on seasonal basis: 

winter, spring, summer, monsoon and autumn as given in 

Delhi Tourism website. The forecasting models are 

developed to predict one-hour ahead solar GHI for each 

season. Using the equation given below, normalized 

predicted sequence is converted into real solar GHI 

( ) normdenorm XXXXX −+= minmaxmin             
(23) 

Xdenorm represents the denormalized value, Xnorm is 

normalized value, Xmax is the maximum value in all the 

values for related variables and Xmin is the minimum value. 

 

3.5 Performance Criteria 

The training as well as testing set is separated from the 

raw dataset. Shuffling approach is not utilized so as to 

avoid information leakage, because this is a time series 

prediction issue. In this study, two years data set is 

utilized as the learning unit, whereas one year data is used 

as the testing dataset. It is in order to obtain the 

performance of developed model that testing data set is 

divided into five seasons: winter, spring, summer, monsoon 

and autumn. Assume 𝑦 = (𝑦1, 𝑦2, . . . . 𝑦𝑘 , . . . . 𝑦𝑛) is the solar 

irradiance time history and 𝑦
^
= (𝑦

^

1, 𝑦
^

2. . . . 𝑦
^

𝑘 . . . . 𝑦
^

𝑛) is the 

predicted solar irradiance time series, used to calculate the 

performance of the proposed model (Gupta et al. 2021) 

Mean Absolute Error (MAE):- It provides uniform 

forecasting error. This metric provides a difference 

between two set of data using Eq. (16) (Gupta et al. 2021) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖

∧
|𝑛

𝑖=1                            (24) 

Mean Absolute Percentage Error (MAPE): It provides 

uniform forecasting error in percentage using Eq. (17) 

(Gupta et al. 2021) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖−𝑦
∧
𝑖

𝑦𝑖
|𝑛

𝑖=1                (25)

      

Root Mean Square Error (RMSE): It is a statistic for 

assessing the largest expected error in the forecasted data   

Using Eq. (18) (Gupta et al. 2020) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖

∧
)𝑛

𝑖=1                                       (26))

       

Where n represent total number of points.  

 

Forecast Skills: - The improvement in the proposed model 

with respect to reference model which is irrespective of 

prediction horizon, method and location (Singla et al. 2022) 

𝐹𝑆 = 1 −
𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑𝑚𝑜𝑑𝑒𝑙

𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛𝑚𝑜𝑑𝑒𝑙
                            (27))

      

The following expression are used to measure the 

percentage improvement between developed models 

 

𝑃𝑀𝐴𝐸 =
|𝑀𝐴𝐸1−𝑀𝐴𝐸2|

𝑀𝐴𝐸1
                 (28) 

𝑃𝑀𝐴𝑃𝐸 =
|𝑀𝐴𝑃𝐸1−𝑀𝐴𝑃𝐸2|

𝑀𝐴𝑃𝐸1
    (29) 

𝑃𝑅𝑀𝑆𝐸 =
|𝑅𝑀𝑆𝐸1−𝑅𝑀𝑆𝐸2|

𝑅𝑀𝑆𝐸1
    (30)

      

Where MAE1/MAPE1/RMSE1 is the error of reference 

model and MAE2/MAPE2/RMSE2 is the error of considered 

model. 

 
 

4 Result Analyses 

 

This study uses a combination of CEEMDAN-GA-BiLSTM 

to improve forecasting accuracy. The developed model 

performance is compared with standalone models: Naïve 

Predictor, Gate Recurrent Unit (GRU), Recurrent Neural 

Network (RNN), Extreme Learning Machine (ELM), Back 

Propagation Neural Network (BPNN) and other 

CEEMDAN based models. All experiments are performed 

using MATLAB 2019a and numerous models’ scenarios are 

analysed. Firstly, the results of the selected features from 

the GA are discussed. Secondly the proposed model 

performance is compared with naïve predictor, standalone 

GRU, BPNN, ELM and RNN model. Next, CEEMDAN 

method is applied to above mentioned standalone models 

and finally, evaluation of the selected features is studied. 

 

4.1 Result of feature selection 

In this study, the range of GA is set to 30 to balance the 

exploring ability and model cost. The synchronization lines 

of the mean and the optimum fitness among community 

are displayed in Fig.6, where average fitness increases 

steadily over the first 15 iterations and then gradually 

stabilizes after that despite minor oscillations. The best 

fitness grew slightly over the first five generations, but it 
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remains practically unchanged after that indicating that 

the possible selected features have been discovered early.   

Since average activities have not yet been converted to 

fitness values, an earlier halt is possible because the 

modification in fitness value is expected to be flat at this 

time. The DNA set given as: 

[1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 ] 

Above DNA set indicates that only six IMFs have been 

selected as the feature set out of the total fifteen IMFs. It 

means dropped 2/ 3 of the series have been fed into the 

BiLSTM, resulting in a substantially more compact model. 

4.2 Analysis and assessment by comparison 

Discussion herein is split into two sections: for the 

purposes of comparative study in the first half, various 

mainstream models will be considered. In the second half, 

it is on the basis of selected features evaluation that the 

result obtained by the proposed model is compared to the 

standalone BiLSTM model and the CEEMDAN-BiLSTM 

model which consist of all prospective features. 

Case 1: Comparative research with standalone models 

The goal hereinis to create an experimental study on 

benchmark model and non-CEEMDAN models: GRU, 

RNN, ELM, BPNN models. This experiment utilized ten 

time lag as an input feature of the non-CEEMDAN models, 

whereas solar GHI is forecast as the output value. Short 

term solar irradiation forecasting is performed on seasonal 

basis where selection of deep learning hyper parameters is 

one of the significant tasks to obtain improved forecasting 

accuracy.  The developed model’s performance is judged 

using MAPE (%), MAE (W/m2) and RMSE (W/m2) 

evaluation metrics. Data of two years has been used for 

training and one year data has been used for testing the 

developed models. 

According to the statistical result of different 

developed models, as shown in Table 2 proposed model 

outperforms standalone models with a significant 

improvement regarding parameters in all seasons. 

However, forecasting performance for cloudy and rainy 

days produces high MAPE, RMSE and MAE in monsoon 

and winter seasons. The proposed model achieves lowest 

annual average result in respect of every statistical metric. 

 
Fig.6 Generational changes in average and optimum fitness 

 

 The proposed model achieves lowest annual average 

MAPE (2.23 W/m2) in comparison to naïve predictor 

(5.36W/m2), BPNN (4.55W/m2), ELM (4.16W/m2), RNN 

(3.86W/m2), GRU (3.19W/m2), LSTM (3.07W/m2) for the 

year 2014. The credible percentage decrease in result of 

RMSE can be better observed in the proposed model in 

2014 against naïve predictor (58.39%), BPNN (50.98%), 

ELM (46.39%), RNN (42.22%), GRU (30.09%) and LSTM 

(27.36%). Likewise for the year 2014, the minimum annual 

average RMSE is provided by the proposed model 

(1.45W/m2) in comparison to naïve predictor (4.85%), 

BPNN (4.11%), ELM (3.6%), RNN (3.18%), GRU (2.96%), 

and LSTM (2.73%). Proposed model exhibits decrease in 

value of the MAPE in percentile form against naïve 

predictor (70.10%), BPNN (64.72%), ELM (59.72%), RNN 

(54.40%), GRU (51.01%) and LSTM (46.88%). The proposed 

model out performs all other standalone models. Therefore, 

from the overall analysis, following observations are 

obtained: 

(a) The performance of naïve predictor is the worst 

among all developed models because it does not 

use any knowledge or learning in order to make 

any prediction, while ELM and BPNN’s 

performance is better as compared to Naïve, due 

to short training time because of random selection 

of hidden neuron, but unfortunately it faces 

fitness problem during training time, when its 

performance dips. 

(b) Among standalone deep learning models RNN, 

GRU and LSTM, it is LSTM whose performance is 

better than that of RNN and GRU, since these 

models do not need fine adjustment of learning 

parameters, but it takes longer to train and 

process information, occurring only in one 

direction. These are the drawbacks of LSTM 

model. So, proposed model uses BiLSTM model to 

overcome the drawbacks of LSTM model. The 

result shows that the suggested model performs 

better than all other standalone models. 

 

Case 2: Comparative research with CEEMDAN based 

models 

 

The proposed method uses CEEMDAN preprocessing 

technique to decompose global horizontal irradiance data 

wherein are generated fifteen IMFs and one residue. This 

experiment utilizes all IMFs and one residue as input for 

CEEMDAN based model and forecast the global horizontal 

irradiance. From Table 3, it is observed that CEEMDAN 

significantly improved the performance of standalone 

models. CEEMDAN holds the input time series data and 

removes mode mixing constraints to improve the quality of 

input data.  Among all CEEMDAN based models except 

the proposed model, CEEMDAN-LSTM outperforms other 

developed models.  The CEEMDAN-LSTM obtained lowest 

annual average MAPE (2.54W/m2), RMSE (1.84%) and 

MAE (1.45W/m2) respectively. Proposed model also uses 

Genetic algorithm along with CEEMDAN to predict solar 

GHI. The proposed model achieves lowest annual average 

MAPE (2.23W/m2), RMSE (1.45%) and MAE (1.34W/m2), 

respectively for the year 2014. The credible percentage 

decrease in result of RMSE can be seen by the proposed 

model in 2014 against naïve predictor (58.39%), BPNN 

(50.98%), ELM (46.39%), RNN (42.22%), GRU (30.09%) 

and LSTM (27.36%), respectively. Similar is the 
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percentage decrease in terms of MAPE by proposed model 

against naïve predictor (4.85%), BPNN (4.11%), ELM 

(3.6%), RNN (3.18%), GRU (2.96%), and LSTM (2.73%) for 

the year 2014. Moreover, proposed model decreases MAPE, 

RMSE and MAE in percentile form against CEEMDAN-

BPNN, CEEMDAN-ELM, CEEMDAN-RNN, CEEMDAN-

GRU and CEEMDAN-LSTM, respectively. Therefore, from 

the overall analysis, following remarks are obtained: 

(a) CEEMDAN used as a preprocessing strategy with 

standalone models exhibits significant 

improvement vis-a-vis the performance of 

standalone models in terms of MAPE, RMSE and 

MAE, respectively. 

(b) The performance of CEEMDAN based models is 

better in summer and autumn season because 

correlation between real and predicted GHI is 

better as compared to winter and monsoon season. 

(c) Proposed model outperforms all CEEDMDAN 

based models with respect to performance 

criterion. The proposed model uses Genetic 

algorithm approach to select appropriate IMFs 

from the total number of data sub sets. 

\ 

 
Table 2  

Performance comparison between proposed model and non-CEEMDAN models 

                        MAPE (%) 

 Models Winter Spring Summer Monsoon Autumn Annual 

 

 

 

 

 

 

 

1-hr ahead 

solar GHI 

forecasting 

Naïve Predictor 5.10 6.39 3.71 6.81 4.81 5.36 

BPNN 4.21 5.20 3.10 6.16 4.11 4.55 

ELM 3.98 4.86 2.81 5.97 3.21 4.16 

RNN 3.73 4.14 2.65 5.61 3.19 3.86 

GRU 

LSTM                                                                                         

3.51 

3.41                       

3.41 

3.31               

1.91 

1.81 

4.31 

4.20 

2.84 

2.64 

3.19 

3.07 

Proposed Model 2.20 2.96 0.91 3.91 1.21 2.23 

RMSE (W/m2) 

Naïve Predictor 4.42 5.91 3.30 6.31 4.33 4.85 

BPNN 3.56 4.63 2.91 5.91 3.54 4.11 

ELM 3.22 4.22 2.41 5.31 2.84 3.6 

RNN 3.13 4.10 2.23 4.12 2.35 3.18 

GRU 

LSTM                                                

2.91 

2.81 

3.91 

3.71 

1.90 

1.60 

3.91 

3.52 

2.21 

2.01         

2.96 

2.73 

Proposed Model 1.51 2.31 0.21 2.41 0.83 1.45 

 MAE(W/m2) 

Naïve Predictor 3.90 4.91 2.91 5.91 3.71 4.26 

BPNN 3.13 4.12 2.18 5.11 2.91 3.49 

ELM 2.61 3.81 1.81 4.61 2.13 2.99 

RNN 2.34 3.35 1.66 4.38 1.91 2.72 

GRU 

LSTM 

2.10 

2.01 

2.10 

1.99 

0.41 

0.39 

3.10 

3.01 

1.61 

1.51 

1.86 

1.78 

Proposed Model 1.16 1.81 0.61 2.82 0.31 1.34 

 
 

 

Table 3  

Performance comparison between proposed model and CEEMDAN models 

 

 

 

MAPE (%) 

 Models Winter Spring Summer Monsoon Autumn Annual 

 

 

 

 

 

 

 

 

1-hr ahead 

solar GHI 

forecasting 

CEEMDAN-BPNN 3.21 4.21 2.11 5.10 3.10 3.54 

CEEMDAN-ELM 2.91 3.81 1.81 4.91 2.21 3.13 

CEEMDAN-RNN 2.81 3.61 1.45 4.31 2.11 2.85 

CEEMDAN-GRU 

CEEMDAN-LSTM     

2.71 

2.51 

3.41 

3.26 

1.21 

1.10 

4.12 

4.02 

1.81 

1.76 

2.65 

2.54 

Proposed Model 2.20 2.96 0.91 3.91 1.21 2.23 

      RMSE (W/m2) 

CEEMDAN-BPNN 2.51 3.60 1.91 4.91 2.50 3.08 

CEEMDAN-ELM 2.20 3.21 1.41 4.32 1.81 2.59 

CEEMDAN-RNN 2.11 3.11 1.20 4.11 1.65 2.43 

CEEMDAN-GRU 

CEEMDAN-LSTM                             

1.97 

1.81 

2.91 

2.71 

0.91 

0.61 

3.20 

3.02 

1.21 

1.09                                

2.04 

1.84 

Proposed Model 1.51 2.31 0.21 2.41 0.83 1.45 

    MAE(W/m2) 

CEEMDAN-BPNN 2.10 3.10 1.19 4.10 1.99 2.49 

CEEMDAN-ELM 1.91 2.61 0.85 3.61 1.10 2.01 

CEEMDAN-RNN 1.84 2.21 0.67 3.31 0.91 1.78 

CEEMDAN-GRU 

CEEMDAN-LSTM                                   

1.68 

1.48 

2.10 

1.92 

0.41 

0.51 

3.01 

2.86 

0.61 

0.51 

1.56 

1.45 

Proposed Model 1.16 1.81 0.61 2.82 0.31 1.34 
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Case 3: Assessment of the chosen features 

 

In this case, BiLSTM models: standalone Bi-LSTM, 

CEEMDAN based Bi-LSTM model include all statistical 

features and CEEMDAN-GA-BiLSTM model are compared 

as an evaluation of selected features. On the basis of loss 

function, the representative training process on three 

feature sets uses 200 epochs for the same Bi-LSTM 

network. When EEMD-GA was included the training loss 

decreased gradually from 0.00666 for standalone BiLSTM 

to 0.00444 for EEMD based BiLSTM model and 0.00262 

when GA wrapper was included.  

Table 4 indicates the results of standalone BiLSTM, 

CEEMDAN based BiLSTM and proposed model with 

respect to MAPE, RMSE and MAE performance criterion

 

 
Table 4  

Performance comparison of Bi-LSTM models   

 

 

 

  

Fig.7 Proposed model Performance for the summer and monsoon season 

 

 

 

 

 
 

 

 

 
 

  

 

 

 

 
 

Fig.8 Steps of the distributed system in practical systems for the present framework 
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MAPE (%) 

 Models   Winter     Spring   Summer Monsoon Autumn Annual 

 

 

 

1-hr ahead 

solar GHI 

forecasting 

BiLSTM 3.21 3.20 1.91 4.10 2.21 2.92 

CEEMDAN-BiLSTM 2.51 3.30 1.11 4.11 1.43 2.49 

Proposed Model 2.20 2.96 0.91 3.91 1.21 2.23 

 RMSE (W/m2) 

BiLSTM 2.57 3.31 1.61 3.61 1.85 2.59 

CEEMDAN-BiLSTM 1.90 2.72 0.90 3.02 0.94 1.89 

Proposed Model 1.51 2.31 0.21 2.41 0.83 1.45 

    MAE(W/m2) 

BiLSTM 1.82 2.09 0.31 3.12 1.10 1.68 

CEEMDAN-BiLSTM 1.43 2.11 0.10 2.91 0.21 1.35 

Proposed Model 1.16 1.81 0.61 2.82 0.31 1.34 

Solar Farm 

Complete data 

Regularly updated 

model 

Forecasted value 
New data 

First offline 

System              Proposed 

                          Model 

Pre trained    online  

 Model            system                
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5. Discussion 

This research performs short term solar irradiance 

forecasting for the location of Delhi, India. Various 

experimental analyses are performed in this study to 

obtain precise model with improved forecasting accuracy. 

The prediction performance of the proposed model is 

compared with persistence model, standalone models 

(BPNN, ELM, GRU, LSTM and RNN) and CEEMDAN 

based models in order to demonstrate its superiority. 

Finally, based on features evaluation, the prediction 

results of proposed model are compared to standalone 

BiLSTM model and the CEEMDAN-BiLSTM model which 

consists all prospective features. From the results, it is 

clear that the CEEMDAN improves the forecasting 

accuracy of the standalone models. For a case of summer 

season, from the Table 2 to 3, it is observed that the 

CEEMDAN improved the RMSE (34.36% for BPNN, 

41.49% for ELM, 46.18% for RNN and 52.10% for GRU and 

61.87% for LSTM). However, in case of monsoon season, 

the accuracy decreased due to data instability of the 

season. But it is concluded that the CEEMDAN improved 

the forecasting performance of the standalone model. 

Similar observations can also be seen for MAPE and MAE. 

The proposed model uses GA as a feature extraction 

strategy over CEEMDAN based models. No doubt from the 

results, BiLSTM model outperforms all standalone models 

on all fronts. The lower RMSE, MAPE and MAE attained 

by BiLSTM prove its efficiency over other standalone 

models and encourages us to utilize this model for 

subsequent improvements. Therefore, GA with 

CEEMDAN process is applied on BiLSTM to prove the 

objective of the study. It is observed that GA with 

CEEMDAN credibly improves the forecasting performance 

of BiLSTM. The proposed model improves the results in 

terms of RMSE, MAPE and MAE as compared to all 

considered models. For a case of annual forecasting, the 

proposed model improves the RMSE (44.01% for BiLSTM; 

23.28% for CEEMDA-BiLSTM), MAPE (23.63% for 

BiLSTM; 10.44% for CEEMDAN-BiLSTM) and MAE 

(20.23% for BiLSTM; 9% for CEEMDAN-BiLSTM) over 

BiLSTM and CEEMDAN-BiLSTM models. It is clear from 

this graphic analysis that the proposed model not only 

improves the RMSE, MAPE and MAE of standalone 

models but also improve the performance of CEEMDAN 

based models. These results prove its efficacy for real world 

application also, with minimum chances of error in the 

forecasting of solar irradiation. 

Moreover, for a deeper examination of the findings, 

Fig.7 provides a graphic representation of real and 

predicted GHI for four consecutive days (2nd to 5thday) of 

summer and monsoon seasons. For clarity, only real and 

predicted GHI curve of suggested model is shown for 

selected seasons. It can be observed from fig 7 that those 

substantial fluctuations in real GHI generate a larger 

error in results. For example, smooth curve of summer 

season indicates clear environmental circumstances which 

are easily traceable by the model. On the other hand, 

monsoon season shows substantial fluctuations in real 

GHI due to existence of overcast or rainy days making it 

difficult for the model to trace resulting in maximum 

inaccuracies. From Figure 7, it can be deduced that if 

fluctuations in real GHI are higher than similarities 

existing between real and predicted GHI are lower. 

Similarly, resemblance between real and predicted GHI is 

higher when variance in real GHI is lower. However, with 

in a tolerated range of error, suggested model also faces a 

number of ambiguities associated withgenuine GHI. As a 

result of these findings, the suggested model is a good 

forecast model for stable as well as for unstable seasons. 

Suggested short-term solar irradiation prediction 

may be implemented in practical systems utilizing a 

distributed system (Fig.8), with one system training offline 

models and the other making online forecasting. The 

impact of a single future data point on the CEEMDAN 

spectrum may be small for large scale solar history. As a 

result, the online system may generate accurate 

predictions in a short amount of time using pre-trained 

models. Furthermore, as new records are received, the 

offline system can update the model at the same time. The 

model will be transmitted back into the web application for 

better operations as the volume of data grows significantly. 

For a detailed discussion of proposed model forecasting 

performance, Table 5 displays the forecasting skill (%) 

performance of BiLSTM, CEEMDAN-BiLSTM and 

proposed model for annual RMSE, MAPE and MAE with 

respect to persistence model. Forecast skill determines the 

association between predicted or prediction value to the 

observed value. 

 

 
Table 5  

Forecast skill (%) of proposed model on annual basis 

Model FSRMSE FSMAPE FSMAE 

BiLSTM 39% 38% 49% 

CEEMDAN-BiLSTM 50% 45% 55% 

Proposed Model 58% 49% 59% 

 

 

 

Table 6 

Performance comparison with previously published models 

Author and year of publication Model  Place Time 

horizon 

MAPE 

(%) 

RMSE(W/m2) MAE(W/m2) 

Zang et al. 2020  CNN-LSTM Texas, USA 1-hr - 69.26 37.20 

Huang et al. 2020  LSTM-MLP Colorado, USA 1-hr - 75.22 36.90 

Kumari et al. 2021  XGBF-DNN New Delhi, 

India 

1-hr - 51.35 - 

Singla  et al. 2021 WT-BiLSTM Ahmadabad, 

India 

24-hr 45.61 6.48 - 

This work CEEMDAN-GA-  

BiLSTM 

       New Delhi 1-hr 2.23 1.45 1.34 
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Finally, Table 6 shows the performance of the proposed 

model compared to previously published models in terms 

of MAPE, RMSE and MAE. The proposed model 

performance is excellent over the latest developed models. 

Table 6 presents that the proposed model offers a 

percentage improvement in RMSE (77.62%), MAPE 

(95.11%) respectively over WT-BiLSTM model (Singla et 

al. 2021). Likewise significant improvement in RMSE 

(97.17%) is shown by the proposed model against XGBF-

DNN (Kumari et al.  2021). In addition to this, the proposed 

model exhibits a remarkable percentage improvement in 

terms of RMSE (98.07%) and MAE (96.36%), respectively 

over LSTM-MLP (see Huang et al. 2020). Moreover, in 

literature various authors have used different techniques 

to forecast solar GHI using a combination of WT-BiLSTM 

to forecast solar GHI(see Singla et al 2021).However, WT 

based model produced satisfactory results due to its 

superior localization features in both time and frequency 

domain. But it is unclear how to choose the appropriate 

wavelet function for a given data set. Similar problem 

occurred when using variational mode decomposition-

based method. Implement XGBF-DNN model to forecast 

solar GHI and measure proposed model performance using 

RMSE (51.35W/m2) which is the lowest as compared to 

current proposed work because Extreme gradient boosting 

algorithm (XGBF) does not perform well on unstructured 

data. So, the proposed work uses CEEMDAN (advance 

version of EEMD) and Bi-LSTM (advance type of LSTM) to 

predict solar GHI. CEEMDAN removes the Gaussian 

white noise added with the EEMD may not be cancelled 

after reconstruction, while BiLSTM process information in 

both directions (forward and backward), so twice training 

of data is possible and prediction accuracy is better than 

single LSTM model. As a conclusion from the overall 

results, the proposed model is a better alternative for 

forecasting solar GHI for practical solar power system.   

 

4. Conclusions  

In this study, an ensemble deep learning-based 

architecture is introduced as a method of predicting solar 

irradiation using a dataset of solar history. When time 

resolution and recording period of solar dataset increase, 

then there is expansion of non-linearity in time series data. 

The number of IMFs will increase dramatically as a result 

of using CEEMDAN approach on increased time series 

data. It means more IMF components would result in more 

untrained data resulting in rising of overall training cost. 

Deep learning model is employed to predict IMF 

components and forecasting error of each component which 

them adds up to get final error, affecting the prediction 

accuracy of the model. To address this problem and to 

improve forecasting accuracy three major algorithms make 

up the proposed model: CEEMDAN, GA and LSTM. In the 

First step, CEEMDAN is used as a pre-processing 

technique to rectify and extract the inherent 

characteristics of time series data to obtain intrinsic mode 

functions. The well tuned deep learning model and the 

intuitively picked feature set are synchronized through an 

optimization method using the paired GA-BiLSTM 

technique. The procedure is totally automated when using 

the suggested framework, and no preceding functions are 

required. Because of the process's simplicity, it is ideal for 

applications that require end-to-end functionality. The 

model's feasibility and effectiveness are thoroughly 

validated using analytic research. The suggested method 

demonstrates its amazing superiority over conventional 

models using assessment criteria such as MAE (W/m2), 

RMSE(W/m2) and MAPE(%). To begin with, the current 

model prediction accuracy is increased by 44.96 percent on 

an average as compared to non-CEEMDAN models. On the 

other hand, when comparing with CEEMDAN approach 

with other learning prototypes there is a substantial 

improvement in prediction accuracy of 26.2 percent on an 

average. Furthermore, when comparing the outcomes of 

the same teaching method with multiple feature sets, the 

suggested technique is even more powerful from two 

perspectives: First and foremost it should be possible to use 

the GA wrapper for selecting features. The length of the 

model input data is reduced to around a 2/3 of the total 

population set of features, making it more compact and 

robust to data fluctuation. Moreover, when compared to all 

feature and non-feature models, it exceeds them in terms 

of prediction precision across a wide range of evaluation 

criteria, with increases by 35.58 percent and 21.74 percent, 

respectively. From all results, it is confirmed that proposed 

framework is good forecasting model from all perspectives. 

However, while constructing the proposed model, some 

challenges are faced by the researcher such as: selected 

features extraction and simulation time. So, in future there 

is scope of developing and enhancing present research by 

employing several searching algorithms such as: firefly 

algorithm, particle swarm optimization, etc. that 

investigate and compare as  feature selection strategy for 

present framework. Next, use of meteorological 

parameters: temperature, humidity etc. with selected 

features set and to check its effect on model performance. 

Last but not the least, larger scaled solar dataset from 

other solar farms with different specifications can be 

considered in order to validate the present framework on a 

wider global scale.   
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