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Abstract. Numerical study of various physical phenomena in three dimensions has become a necessity to better understand the physical 

process than in two dimensions. Thus, in this paper, the code is elaborated to be adapted to the simulation of heat transfer in three 

dimensions. The numerical simulations are performed using a hybrid method. This method is based on the lattice Boltzmann approach 

for the computation of velocities, and on the finite difference technique for the calculation of temperature. The used numerical code is 

validated by examining the free convection in a cubic enclosure filled with air. Then, the analysis of the heat exchange between two cold 

vertical walls and a heated block located at the center of a cubic cavity is considered.  The performed simulations showed that for a small 

value of the Rayleigh number (Ra=103 for example), the fluid exchanges its heat almost equally with all hot surfaces of the obstacle. 

However, for large values of Ra (Ra≥104), the numerical results found showed that the heat exchange rate is greater on the bottom face 

compared to the other faces of the obstacle. 
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1. Introduction 

Heat transfer or thermal transfer is a transit of energy 

in a disordered microscopic form. It occurs as a result of a 

complex interaction in or between environments with 

different temperatures. It is widely present in nature and 

many industrial sectors. There are generally three main 

modes of heat transfer such as conduction, convection, and 

radiation. Convection is a heat exchange that takes place 

through the movement of matter in a liquid or gaseous 

medium. Thermal conduction is the transfer of internal 

energy by microscopic diffusion and collisions of molecules, 

atoms, and electrons. Heat transfer by radiation is caused 

by electromagnetic radiation, called thermal radiation 

(Minkowycz et al., 2000; Bejan & Kraus, 2003).   

In 2D, Karki et al. (2019) numerically studied the effect 

of adiabatic blocks on free convection in a square cavity. 

For the case of a block in the center of the cavity, they 

found that the average heat transfer increases along the 

hot surface with increasing block size until reaching an 

optimal value. Then, with a further increase in size, the 

heat transfer rate degrades. They also found that the 

presence of obstacles outside the central conduction zone 

decreases the heat exchange despite the adiabatic nature 

of the obstacles. Nouni et al. (2021) studied the effect of 

obstacles on the natural convection inside a differentially 

heated square cavity using the lattice Boltzmann method. 

Xiong et al. (2021) performed numerical simulations of 
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mixed convection flow and heat transfer in a lid-driven 

triangular cavity with different obstacle configurations. 

Khan et al. (2021) analyzed the natural non-equilibrium 

thermal convection in a trapezoidal porous enclosure. They 

introduced heated cylindrical obstacles inside the cavity to 

examine the thermal behavior. Subhani & Kumar (2021) 

examined the improvement of heat transfer by free 

convection of a circular obstacle in a square cavity. Yousif 

et al. (2022) studied the effect of using triple adiabatic 

blocks on free convection inside a porous enclosure. 

In 3D, Ghachem et al. (2018) numerically examined the 

free convection and entropy generation in a cubic cavity 

equipped with a baffle. In particular, they analyzed the 

influence of the position and thickness of the baffle on the 

hydrodynamic and thermal behaviors of the fluid studied. 

Lee (2018) studied the effect of the presence of an obstacle 

placed in the middle of a parallele piped enclosure on the 

Rayleigh-Benard natural convection. Purusothaman et al. 

(2019) performed a 3D study of free convection heat 

exchange from a variable solid rectangular heat source. 

Chorin et al. (2020) experimentally studied a natural 

convection flow in a differentially heated cavity in the 

presence of a localized obstacle. They analyzed the 

influence of length and vertical position for an insulating 

and a conducting obstacle. Vesper et al. (2022) analyzed 

the influence of horizontal conductive walls and conductive 

fins on free air convection in laterally heated enclosures. 
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Ugurlubilek et al. (2022) numerically studied the laminar 

free convection heat transfer in differentially heated air-

filled cubic cavities with partitions attached to the walls at 

different positions. 

This paper proposes a hybrid numerical method to 

study the natural convection in 3D between two cold 

sidewalls of a cubic cavity and a hot obstacle located at its 

center. This method is composed of two different 

approaches. The first one is the mesoscopic lattice 

Boltzmann approach and the second one is the macroscopic 

finite difference technique. Indeed, the association of these 

methods is commonly used in two dimensions to analyze 

different thermal systems in various geometries ( 

Lallemand & Luo, 2003; Shi et al., 2006; Xu et al., 2006; 

Bettaibi et al., 2014; Hasnaoui et al., 2018). In three 

dimensions, FDM methods have been used for many years 

to perform various numerical simulations, while the LBM 

approach is relatively new. Their coupling in 3D has 

recently started, in particular the coupling between FDM 

and LBM-SRT (Liu et al., 2018; Nee, 2020a, 2020b, 2021). 

In this work, a more accurate hybrid model is chosen to 

study the dynamic and thermal behaviors of air inside an 

air-filled 3D cavity. It concerns the implementation of the 

LBM-MRT model with the FDM technique based on the 

fourth-order central scheme.  

The LBM and FDM numerical methods are applied at 

two different levels of description. Indeed, the LBM is 

founded on statistical calculations. It has been developed 

very significantly since the early 2000s. It is based on the 

computation of the velocity distribution of molecules. The 

usual quantities are then deduced by calculating the 

moments of the velocity distribution. This approach can be 

seen as a discretization of the Boltzmann equation, which 

corresponds to the probability density of the velocities of 

the molecules in a diluted gas over an infinitesimal volume 

(Mohamad, 2019). On the other hand, finite difference 

methods are a class of numerical techniques for solving 

differential equations by approximating derivatives with 

finite differences. The spatial domain and time interval are 

discretized or divided into a finite number of steps, and the 

value of the solution at these discrete points is 

approximated by solving algebraic equations containing 

finite differences and values from adjacent points (Özişik 

et al., 2017). 

The present paper focuses on the study of free 

convection between a hot solid and cold walls of an air-

filled cavity. The main objective of this study is to get closer 

to the practice of cooling electronic components by thermal 

convection. Here, the electronic component is represented 

by the hot solid. The characterization of the heat exchange 

between this solid and the cold air is performed by 

calculating the local and average Nusselt numbers. The 

results found and the numerical methods used to perform 

the simulations are discussed in the following sections. 

 

2. Numerical methods 

2.1. D3Q19-MRT lattice Boltzmann model  

This paper uses the D3Q19-MRT lattice Boltzmann 

lattice model to calculate the velocities and density. This is 

performed by numerically solving the Boltzmann equation 

(Eq. (1)) (Benhamou et al., 2020, 2022; Lahmer et al., 2022; 

Admi et al., 2022). 

𝑓𝑖(𝑥𝑖 + 𝑐𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓𝑖(𝑥𝑖 , 𝑡) + 𝑀−1𝑆[𝑚𝑖
𝑒𝑞

− 𝑚𝑖]   (1) 

The D3Q19 lattice is a three-dimensional scheme with 

nineteen directions of propagation of fluid particles (Figure 

1). The velocities ci of this lattice are defined in equation (2) 

(Benhamou & Jami, 2022; D’Humières et al., 2002). 𝑚𝑖 is a 

vector composed of 19 physical quantities (Eq. (3)) such as 

density, momentum (𝑗𝑥,  𝑗𝑦,  𝑗𝑧), heat flux quantities (𝑞𝑥, 𝑞𝑦, 

𝑞𝑧), kinetic energy (𝑒) and its square (𝑒2), and others. All 

the components of the vector 𝑚𝑖 are given in detail in the 

references (Benhamou & Jami, 2022; D’Humières et al., 

2002). 

The matrix 𝑆 is a diagonal matrix. It is composed of 

19 relaxation times 𝑠𝑖. Its mathematical representation is 

given by equation (4). The diagonal matrix 𝑆 used in this 

study is the one used in our previous work (Benhamou & 

Jami, 2022). The elements 𝑠0, 𝑠3, 𝑠5 and 𝑠7 are fixed at 

unity (𝑠0 = 𝑠3 = 𝑠5 = 𝑠7 = 1). They are related to the 

density 𝜌 and the impulses 𝑗𝑥 ,  𝑗𝑦 and  𝑗𝑧, respectively. The 

relaxation times 𝑠9, 𝑠11, 𝑠13, 𝑠14 and 𝑠15 are given as a 

function of the LBM kinematic viscosity as s9 = s11 = s13 =
s14 = s15 = 1/(3ν + 0.5). 𝑠1 can be set to 1.19. The other 

elements (𝑠2, 𝑠4, 𝑠6, 𝑠10, 𝑠12, 𝑠16,  𝑠17 and 𝑠18) are free 

parameters.  

The mathematical form of the transformation matrix 

𝑀 is given in reference (Benhamou et al., 2021). The vector 

𝑚𝑖
𝑒𝑞

 can be defined from the density and the momentum by 

equation (5) (Li et al., 2016). For the LBM method, physical 

quantities like density (𝜌) and velocities (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) are 

determined using equation (6). 

 

 

Fig 1. The D3Q19-LBM lattice. 
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mi = (ρ, e, e2, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pzx, mx, my, mz )
T

                                                        (3) 

S = diag(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18)                                 (4) 
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2.2 Finite difference technique based on the fourth-order 

central scheme 

The solution of differential equations, or more generally 

partial differential equations, occupies an important place 

in engineering and applied mathematics. There are several 

techniques for resolving partial differential equations such 

as finite element methods, finite difference techniques, 

finite volume methods, spectral methods, and so on. The 

finite difference method is one of the oldest numerical 

simulation methods that is still used for some applications, 

in particular, in the field of compressible fluid mechanics.  

To model free convection, the governing equations for 

the conservation of mass, momentum, and energy are 

expressed in (7-11) (Benhamou & Jami, 2022). The 

temperature  can be determined from the average 

dimensional temperature (𝑇𝑚 = (𝑇ℎ + 𝑇𝑐)/2), the cold 

temperature 𝑇𝑐, and the hot temperature 𝑇ℎ as  =
(𝑇 − 𝑇𝑚)/(𝑇ℎ − 𝑇𝑐). 

In this work, the FDM technique is applied to 

compute the temperature by resolving the macroscopic 

energy equation (Eq. (11). There are many finite difference 

schemes to give partial derivatives in the discretized form 

(Özişik et al., 2017). They can be classified according to 

their order of discretization. For accuracy, the fourth-order 

centered finite difference scheme is employed in this paper 

to approximate the first and second spatial derivatives 

given in equation (11). In the 𝒚 −direction, for example, the 

derivatives 𝝏/𝝏𝒚 and 𝝏𝟐/𝝏𝒚𝟐 are approximated by 

equations (12) and (13), respectively (Benhamou & Jami, 

2022). 

The temporal derivative 𝜕/𝜕𝑡 is given by using the 

forward difference approximation (Eq. (14)).  
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2.3.Boundary conditions 

In general, boundary conditions are very important for the 

stability of numerical calculations and the precision of 

results. They allow defining the limits of the studied 

geometry. In this article, two types of boundary conditions 

are considered. 

The first is the LBM conditions to define the solid 

surfaces of the cubic cavity. These surfaces cause fluid 

backflow when it encounters them. This fluid return is 

adopted at the limits using the bounce-back boundary 

conditions (Benhamou et al., 2020, 2021; Mohamad, 2019). 

The second type is the thermal conditions. These 

conditions allow specifying the adiabatic and isothermal 

boundaries. In this study, the adiabatic surfaces are 

determined by the zero spatial derivatives of the 

temperature  at the boundaries (𝜕/𝜕𝑛 = 0) (Benhamou & 

Jami, 2022). The cold surfaces are maintained at a 

temperature (𝑐) of −0.5. The hot walls are set at a 

dimensionless temperature (ℎ) of 0.5 (Mezrhab et al., 

2010).  

Since an unsteady partial differential equation is 

considered to determine the temperature (energy 

equation), the use of initial conditions is also necessary. At 

the input of our LBM code, the temperature is set to 𝑐 at 

the cold walls and ℎ at the hot walls. The velocities 𝑣𝑥, 𝑣𝑦 

and 𝑣𝑧 are fixed at zero (immobile walls). 

3. Results and discussions 

3.1. Code validation 

The present hybrid numerical code is tested by studying 

the free convection created in a cubic cavity filled with air 

and heated in a differential manner. This thermal problem 

has been studied numerically and experimentally in 2D 

and 3D in the literature for many years. It has many 

advantages including the simplicity of the studied 

geometry. It is considered a well-known reference problem 

to validate various new numerical methods. In this 

document, the geometry illustrated in Figure 2 is 

considered. The left vertical wall is hot. Its opposite is cold. 

The other surfaces are adiabatic. A gravity field is present 

in the cavity to force the flow of fluid.  

Our calculations started first with the mesh study. 

Several meshes were arbitrarily used to discretize the 

cubic cavity. Numerical tests were necessary to optimize 

the time and accuracy of the calculations. Table 1 shows 

the value of the average Nusselt number that is calculated 

at the central plane (𝑦 = 0.5) for various tested meshes and 

different values of 𝑅𝑎. 

 

 
Fig 2. Cubic cavity differentially heated. 

Table 1 

Values of 〈𝑁𝑢〉 computed at 𝑦 = 0.5 for different meshes and 

different 𝑅𝑎. 

Ra Mesh 〈𝑁𝑢〉 

 
103 

20 × 20 × 20 

40 × 40 × 40 
60 × 60 × 60 

1.151 

1.112 

1.101 

 
104 

20 × 20 × 20 
40 × 40 × 40 
60 × 60 × 60 

2.421 

2.333 

2.281 

 
105 

20 × 20 × 20 
40 × 40 × 40 

60 × 60 × 60 

4.867 

4.712 

4.612 

 
106 

20 × 20 × 20 
40 × 40 × 40 
60 × 60 × 60 

9.301 

9.147 

8.931 

 

 

 

To compare the 〈𝑁𝑢〉 values found for each mesh, a 

comparison with the results obtained by Fusegi et al. 

(1991) and Wang et al. (2017) was performed. Table 2 

illustrates this comparison. The 〈𝑁𝑢〉 values found for the 

case of a small mesh (20 × 20 × 20) are not similar to those 

obtained by these references. This led us to increase the 

number of nodes defining the LBM lattice. For example, for 

the mesh 60×60×60, the results found are very close to 

those of the literature. This is confirmed by the low value 

of the relative error between our results and those of the 

references (Fusegi et al., 1991; Wang et al., 2017). Thus, it 

can be said that our LBM code is well validated. To further 

verify this validation, the temperature fields are traced in 

Figures 3(a) and 3(b) for low (103) and high (106) values of 

the Rayleigh number. The shapes of the curves obtained 

are similar to those found in the literature. 

The average Nusselt number is computed using 

equation (15) (Mezrhab et al., 2010; Wang et al., 2017). 

〈𝑁𝑢〉 = −
Lz

ℎ − 𝑐
 (

𝜕

𝜕𝑥
)

𝑦=0.5
                                                (15) 

where Lz represents here the characteristic length. 

3.2.   Study of the heat exchange between two cold vertical 

walls of a cubic cavity and a hot obstacle 

After validating our numerical code with reference results 

available in the published literature, we proceeded to the 

investigation of the free convection of air confined in a 

cubic cavity exposed to a horizontal temperature gradient. 

The cubic enclosure is characterized by a width Ly, a length 

Lx,  and a height Lz. Its vertical walls located at 𝑥 = 0 and 

𝑥 = Lx are cold and the other surfaces are assumed to be 

adiabatic. A hot obstacle of length lx, width ly, and height 

lz is placed in the center of the cavity (see Figure 4) to 

examine its thermal exchange with the cold surfaces. The 

height of the solid is equal to its length (lz = lx = Lx/5) and 

the width is set to Ly (ly = Ly). 
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Table 2 

Comparison of 〈𝑁𝑢〉 calculated at 𝑦 = 0.5 for a mesh 60 × 60 × 60 and different Rayleigh numbers with the 

literature results. 

𝑅𝑎 103                        104                        105                        106                        

 Wang et al. (2017) 1.088 2.247 4.599 8.779 

Fusegi et al. (1991) 1.105 2.320 4.646 9.012 

𝑂ur results 1.101 2.281 4.612 8.931 

𝐸𝑟 () (Wang et al. (2017)) 1.19 1.51 0.28 1.73 

𝐸𝑟 ()  (Fusegi et al. (1991)) 0.36 1.68 0.73 0.89 

 

 

 
(a)   

 

 
(b)     

Fig 3. 3D (A) and 2D (B) representations of isotherms plotted in the cavity for 𝑅𝑎 = 103 (a) and 106 (b). The 2D representation is given 

for a vertical section at 𝑦 = 0.5. 

 

 

 
Fig 4. Illustration of the simulated thermal problem. 

Numerically, to take into account the natural convection, 

the buoyancy force must be introduced in the LBM code. 

There are several models for implementing a body force in 

the lattice Boltzmann method (Krivovichev, 2019). The 

most popular and widely used models in the bibliography 

are the model of Shan and Chen (1993, 1994) and the 

model proposed by Luo (1998). The first one consists of 

integrating the force into the momentum. However, the 

second one proposes to add a discretized force (𝐹𝑖) to the 

Boltzmann equation. In this work, the model proposed by 

Luo is used. Thus, the mathematical form of equation (1) 

becomes that given by equation (16). 

𝑓𝑖(𝑥𝑖 + 𝑐𝑖𝛥𝑡, 𝑡 + 𝛥𝑡)

= 𝑓𝑖(𝑥𝑖 , 𝑡) + 𝑀−1𝑆[𝑚𝑖
𝑒𝑞

− 𝑚𝑖]

+ 𝛥𝑡𝐹𝑖                                                      (16) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig 5. 3D (A) and 2D (B) representations of the temperature field for 𝑅𝑎 =  103 (a), 104 (b), 105 (c) and 106 (d).  The 2D representation is 

given for a vertical section at 𝑦 = 0.5.
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The mathematical form of the discretized force can be 

written as in equation (17) (Benhamou et al., 2020; 

Mohamad & Kuzmin, 2010). 

𝐹𝑖 = 3𝑊𝑖𝑐𝑖 𝑔 ( − 𝑚)                                                         (17) 

Figure 5(a) shows the 2D (A) and 3D (B) representations of 

the isotherms obtained in the cavity shown in Figure 4 for 

a low Rayleigh number (𝑅𝑎 = 103). It shows that they have 

cylindrical shapes near the obstacle where they take 

maximum values. Their shapes flatten near the cold walls 

where they are minimal. Indeed, for 𝑅𝑎 = 103, the free 

convection is weak. Therefore, the temperature is almost 

equally distributed upward and downward along 𝑧 and -𝑧, 

as illustrated by the 2D temperature representation given 

for the vertical section at 𝑦 = 0.5Ly. The increase in 𝑅𝑎 

modifies the shape of the temperature distribution in the 

cavity. For example, for 𝑅𝑎 = 104, the temperature takes a 

curved shape from the top to the bottom as shown in Figure 

5(b). Part of the curves becomes horizontal indicating the 

existence of a horizontal gradient (Figures 5(c) and (d)). 

Indeed, for low values of 𝑅𝑎 (𝑅𝑎 105), the heat flows 

mainly by conduction inside the cavity. When 𝑅𝑎 becomes 

important (𝑅𝑎 ≥ 106), convection becomes dominant 

compared to conduction. The fluid in contact with the hot 

block heats up and rises quickly to the top. The 

temperature becomes significant in the upper region and 

is minimal below the obstacle and near the two cold faces 

of the cavity (Purusothaman et al., 2016; Ibrahim et al., 

2021).  

Figures 6(a)-(d) show the velocity field plotted at the 

center plane of the cavity (�⃗�, 𝑧) for different Rayleigh 

numbers. For the case of 𝑅𝑎 = 103 and 104, it is clear that 

the fluid flows symmetrically through the cavity and it 

creates symmetrical recirculations on the right and left of 

the obstacle. When the natural convection starts to become 

important (𝑅𝑎 = 105), Figure 6(c) shows that the 

recirculations tend to rise towards the upper region. This 

is very visible in the case of 𝑅𝑎 = 106 (Figure 6(d)). This is 

due to the fluid movement that becomes important in the 

upper zone of the cavity. 

The work presented in this article can be considered 

as a direct application of the cooling of an electronic 

component which is represented here by the hot solid. To 

characterize the heat transfer between the block and the 

cold fluid, the average and local Nusselt numbers are 

calculated at the different faces of this obstacle. Figure 7(a) 

presents the evolution of 𝑁𝑢 calculated in the middle of the 

left face of the obstacle. It can be noted from this figure 

that the rate of heat exchange increases with increasing 

𝑅𝑎. This figure also shows that, for all Rayleigh numbers, 

𝑁𝑢 starts with a maximum value, decreases to a minimum 

value, and then rises again. Due to the symmetry, the heat 

exchange is similar for the right face and the same remark 

can be given. On the other hand, for the upper and lower 

faces, the heat exchange is not similar. Figures 7(b) and (c) 

show that 𝑁𝑢 behaves in a parabolic way. However, the 

rate of heat exchange is greater at the lower face (Figure 

7(c) of the obstacle than at the top (Figure 7(b) and 

increases with the Rayleigh number. This is due to the 

significant decrease in the density of the hot fluid moving 

upward and the descent of the cold fluid downward below 

the obstacle 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig 6. Velocity field plotted at the center plane of the cavity (𝑥,⃗⃗⃗ ⃗ 𝑧) 

for 𝑅𝑎 = 103 (a), 104 (b), 105 (c) and 106 (d). 
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Thus, the fluid gives up its heat to the lower face of the hot 

block, and the heat exchange on this face increases. These 

remarks can be well deduced from Table 3, which gives the 

average Nusselt number calculated at each face of the 

obstacle for different 𝑅𝑎 values. This table shows that for 

𝑅𝑎 = 103, 〈𝑁𝑢〉 is almost the same on all faces. This 

indicates that these faces exchange heat with the cold fluid 

in the same way. When 𝑅𝑎 ≥ 104, the exchange starts to 

become maximum on the lower face and minimum on the 

upper one. Table 3 also illustrates 〈𝑁𝑢〉 calculated at the 

four surfaces of the solid. In this case, it can be deduced 

that the exchange is almost the same for 𝑅𝑎 ≤ 104 and 

increases significantly by augmenting 𝑅𝑎. This is due to 

the change in the thermal regime of the medium, which 

passes from a conductive one to a convective one. 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig 7: Evolution of 𝑁𝑢 calculated at the middle of the left (a), top (b) and bottom (c) faces of the hot obstacle. 

 
Table 3 

 〈𝑁𝑢〉 calculated in the middle of different faces of the obstacle for various 𝑅𝑎. 

Ra 103                        104                        105                        106                        

Left face 0.898 1.016 1.936 3.286 

Right face 0.898 1.016 1.936 3.286 

Top face 0.748 0.563 0.731 1.193 

Bottom face 0.822 1.173 2.243 3.344 

Four faces 3.366 3.768 6.46 11.109 
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4. Conclusions 

This paper presented a three-dimensional numerical study 

of free convection between a hot obstacle and two cold 

vertical walls of an air-filled cubic cavity. The lattice 

Boltzmann approach based on the MRT-D3Q19 model has 

been applied to calculate the velocities and density. The 

finite-difference technique based on the centered fourth-

order scheme was used to calculate the temperature. In a 

first step, a numerical study focused on the simulation of 

natural convection inside a differentially heated cubic 

cavity was performed and considered as a validation of our 

hybrid numerical approach.  Then, the study of the heat 

exchange between the hot block and the cold walls was 

considered. Through this study, the temperature and fluid 

flow behaviors have been discussed. To characterize our 

numerical study, the average and local Nusselt numbers 

were calculated. A distinction in the calculation of these 

dimensionless numbers at each face of the obstacle has 

been presented. For a low value of 𝑅𝑎 (𝑅𝑎 = 103 for 

example), the calculations showed that the fluid exchanges 

its heat almost equally with all the hot surfaces of the 

obstacle. However, for significant values of Ra ( 𝑅𝑎 ≥ 104), 

the results showed that the rate of heat exchange is more 

important on the lower face of the obstacle compared with 

the other surfaces.   

References 

Admi, Y., Moussaoui, M. A., & Mezrhab, A. (2022). Numerical 

Investigation of Convective Heat Transfer and Fluid Flow 

Past a Three-Square Cylinders Controlled by a Partition in 

Channel. International Journal of Renewable Energy 

Development, 11(3), 766-781. doi: 

10.14710/ijred.2022.43790  

 Baïri, A., Zarco-Pernia, E., & De María, J. M. G. (2014). A review 

on natural convection in enclosures for engineering 

applications. The particular case of the parallelogrammic 

diode cavity. Applied Thermal Engineering, 63(1), 304-322. 

doi: 10.1016/j.applthermaleng.2013.10.065 

Bejan, A., & Kraus, A. D. (2003). Heat transfer handbook (Vol. 1). 

John Wiley & Sons. 

Benhamou, J., Jami, M., Mezrhab, A., Botton, V., & Henry, D. 

(2020). Numerical study of natural convection and acoustic 

waves using the lattice Boltzmann method. Heat 

Transfer, 49(6), 3779-3796. doi: 10.1002/htj.21800 

Benhamou, J., Jami, M., Mezrhab, A., Henry, D., & Botton, V. 

(2022). Numerical simulation study of acoustic waves 

propagation and streaming using MRT-lattice Boltzmann 

method. International Journal for Computational Methods 

in Engineering Science and Mechanics, 1-14. doi: 

10.1080/15502287.2022.2050844 

Benhamou, J., & Jami, M. (2022). Three-dimensional numerical 

study of heat transfer enhancement by sound waves using 

mesoscopic and macroscopic approaches. Heat Transfer. 

doi: 10.1002/htj.22482 

Benhamou, J., Channouf, S., Jami, M., Mezrhab, A., Henry, D., & 

Botton, V. (2021). Three-Dimensional Lattice Boltzmann 

Model for Acoustic Waves Emitted by a 

Source. International Journal of Computational Fluid 

Dynamics, 35(10), 850-871. doi: 

10.1080/10618562.2021.2019226 

Bettaibi, S., Kuznik, F., & Sediki, E. (2014). Hybrid lattice 

Boltzmann finite difference simulation of mixed convection 

flows in a lid-driven square cavity. Physics Letters 

A, 378(32-33), 2429-2435.. doi: 

10.1016/j.physleta.2014.06.032 

Chorin, P., Moreau, F., & Saury, D. (2020). Heat transfer 

modification of a natural convection flow in a differentially 

heated cavity by means of a localized 

obstacle. International Journal of Thermal Sciences, 151, 

106279. doi: 10.1016/j.ijthermalsci.2020.106279 

D’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., & Luo, 

L. S. (2002). Multiple–relaxation–time lattice Boltzmann 

models in three dimensions. Philosophical Transactions of 

the Royal Society of London. Series A: Mathematical, 

Physical and Engineering Sciences, 360(1792), 437-451. doi: 

10.1098/rsta.2001.0955 

Fusegi, T., Hyun, J. M., Kuwahara, K., & Farouk, B. (1991). A 

numerical study of three-dimensional natural convection in 

a differentially heated cubical enclosure. International 

Journal of Heat and Mass Transfer, 34(6), 1543-1557. doi: 

10.1016/0017-9310(91)90295-P 

Ghachem, K., Hassen, W., Maatki, C., Kolsi, L., Al-Rashed, A. A., 

& Naceur, M. (2018). Numerical simulation of 3D natural 

convection and entropy generation in a cubic cavity 

equipped with an adiabatic baffle. International Journal of 

Heat and Technology, 36(3), 1047-1054. doi: 

10.18280/ijht.360335 

Hasnaoui, S., Amahmid, A., Beji, H., Raji, A., Hasnaoui, M., El 

Mansouri, A., & Alouah, M. (2018). Hybrid lattice 

Boltzmann finite difference simulation of Soret convection 

flows in a square cavity with internal heat 

generation. Numerical Heat Transfer, Part A: 

Applications, 74(1), 948-973. doi: 

10.1080/10407782.2018.1487690 

Ibrahim, M., Saeed, T., Algehyne, E. A., Alsulami, H., & Chu, Y. 

M. (2021). Optimization and effect of wall conduction on 

natural convection in a cavity with constant temperature 

heat source: Using lattice Boltzmann method and neural 

network algorithm. Journal of Thermal Analysis and 

Calorimetry, 144(6), 2449-2463. doi: 10.1007/s10973-021-

10654-0 

Karki, P., Yadav, A. K., & Arumuga Perumal, D. (2019). Study of 

adiabatic obstacles on natural convection in a square cavity 

using lattice Boltzmann method. Journal of Thermal 

Science and Engineering Applications, 11(3). doi: 

10.1115/1.4041875 

Khan, Z. H., Hamid, M., Khan, W. A., Sun, L., & Liu, H. (2021). 

Thermal non-equilibrium natural convection in a 

trapezoidal porous cavity with heated cylindrical 

obstacles. International Communications in Heat and Mass 

Transfer, 126, 105460. doi: 

10.1016/j.icheatmasstransfer.2021.105460 

Krivovichev, G. V. (2019). Stability analysis of body force action 

models used in the single-relaxation-time single-phase 

lattice Boltzmann method. Applied Mathematics and 

Computation, 348, 25-41. doi: 10.1016/j.amc.2018.11.056 

Lahmer, E. B., Benhamou, J., Admi, Y., Moussaoui, M. A., Jami, 

M., Mezrhab, A., & Phanden, R. K. (2022). Assessment of 

Conjugate and Convective Heat Transfer Performance over 

a Partitioned Channel within Backward-Facing Step using 

the Lattice Boltzmann Method. Journal of Enhanced Heat 

Transfer, 29(3), 51-77. 

doi: 10.1615/JEnhHeatTransf.2022040357  

Lallemand, P., & Luo, L. S. (2003). Hybrid finite-difference 

thermal lattice Boltzmann equation. International Journal 

of Modern Physics B, 17(01n02), 41-47.. doi: 

10.1142/s0217979203017060 

Lee, J. R. (2018). On the three-dimensional effect for natural 

convection in horizontal enclosure with an adiabatic body: 

Review from the 2D results and visualization of 3D flow 

structure. International Communications in Heat and Mass 

Transfer, 92, 31-38. doi: 

10.1016/j.icheatmasstransfer.2018.02.010 

Li, Z., Yang, M., & Zhang, Y. (2016). Lattice Boltzmann method 

simulation of 3-D natural convection with double MRT 

model. International Journal of Heat and Mass 

Transfer, 94, 222-238. doi: 

10.1016/j.ijheatmasstransfer.2015.11.042 

Liu, H., Ba, Y., Wu, L., Li, Z., Xi, G., & Zhang, Y. (2018). A hybrid 

lattice Boltzmann and finite difference method for droplet 

dynamics with insoluble surfactants. Journal of Fluid 

Mechanics, 837, 381-412. doi: 10.1017/jfm.2017.859 

Luo, L. S. (1998). Unified theory of lattice Boltzmann models for 

https://doi.org/10.14710/ijred.2022.43790
https://doi.org/10.1016/j.applthermaleng.2013.10.065
https://doi.org/10.1002/htj.21800
https://doi.org/10.1080/15502287.2022.2050844
https://doi.org/10.1002/htj.22482
https://doi.org/10.1080/10618562.2021.2019226
https://doi.org/10.1016/j.physleta.2014.06.032
https://doi.org/10.1016/j.ijthermalsci.2020.106279
https://doi.org/10.1098/rsta.2001.0955
https://doi.org/10.1016/0017-9310(91)90295-P
https://doi.org/10.18280/ijht.360335
https://doi.org/10.1080/10407782.2018.1487690
https://doi.org/10.1007/s10973-021-10654-0
https://doi.org/10.1007/s10973-021-10654-0
https://doi.org/10.1115/1.4041875
https://doi.org/10.1016/j.icheatmasstransfer.2021.105460
https://doi.org/10.1016/j.amc.2018.11.056
https://doi.org/10.1615/JEnhHeatTransf.2022040357
https://doi.org/10.1142/s0217979203017060
https://doi.org/10.1016/j.icheatmasstransfer.2018.02.010
https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.042
https://doi.org/10.1017/jfm.2017.859


J. Benhamou et al  Int. J. Renew. Energy Dev 2022, 11(4), 916-925 
| 925 

ISSN: 2252-4940/© 2022. The Author(s). Published by CBIORE 

nonideal gases. Physical review letters, 81(8), 1618. doi: 

10.1103/PhysRevLett.81.1618 

Mezrhab, A., Moussaoui, M. A., Jami, M., Naji, H., & Bouzidi, M. 

H. (2010). Double MRT thermal lattice Boltzmann method 

for simulating convective flows. Physics Letters A, 374(34), 

3499-3507. doi: 10.1016/j.physleta.2010.06.059 

Minkowycz, W. J., Sparrow, E. M., & Murthy, J. Y. (2000). 

Handbook of Numerical Heat Transfer, Second Edition. In 

John Wiley & Sons. doi: 10.1002/9780470172599 

Mohamad, A. A. (2019). Lattice Boltzmann Method: 

Fundamentals and Engineering Applications with 

Computer Codes: Second Edition. Springer London. doi: 

10.1007/978-1-4471-7423-3 

Mohamad, A. A., & Kuzmin, A. (2010). A critical evaluation of 

force term in lattice Boltzmann method, natural convection 

problem. International Journal of Heat and Mass Transfer, 

53(5–6), 990–996. doi: 

10.1016/j.ijheatmasstransfer.2009.11.014 

Nee, A. (2020a). Hybrid lattice Boltzmann––Finite difference 

formulation for combined heat transfer problems by 3D 

natural convection and surface thermal 

radiation. International Journal of Mechanical 

Sciences, 173, 105447. doi: 10.1016/j.ijmecsci.2020.105447 

Nee, A. (2020b). Hybrid meso-macroscopic simulation of three-

dimensional natural convection combined with conjugate 

heat transfer. Thermal Science and Engineering 

Progress, 19, 100584.. doi: 10.1016/j.tsep.2020.100584 

Nee, A. (2021). Hybrid Lattice Boltzmann Simulation of Three-

Dimensional Natural Convection. Journal of 

Computational and Theoretical Transport, 50(4), 280-296. 

doi: 10.1080/23324309.2021.1942061 

Nouni, M., Bendaraa, A., Ouhroum, M., Charafi, M. M., & 

Hasnaoui, A. (2021). Numerical study of obstacles effect on 

natural convection inside square cavity: Lattice Boltzmann 

method. AIP Conference Proceedings, 2345(1), 020010. doi: 

10.1063/5.0050208 

Özişik, M. N., Orlande, H. R., Colaco, M. J., & Cotta, R. M. 

(2017). Finite difference methods in heat transfer: Second 

Edition. CRC press. doi: 10.1201/9781315121475 

Purusothaman, A., Murugesan, K., & Chamkha, A. J. (2019). 3D 

modeling of natural convective heat transfer from a varying 

rectangular heat generating source. Journal of Thermal 

Analysis and Calorimetry, 138(1), 597-608. doi: 

10.1007/s10973-019-08259-9 

Purusothaman, A., Baïri, A., & Nithyadevi, N. (2016). 3D natural 

convection on a horizontal and vertical thermally active 

plate in a closed cubical cavity. International Journal of 

Numerical Methods for Heat & Fluid Flow, 26(8), 2528-

2542. doi: 10.1108/HFF-08-2015-0341 

Rahimi, A., Dehghan Saee, A., Kasaeipoor, A., & Hasani 

Malekshah, E. (2019). A comprehensive review on natural 

convection flow and heat transfer: The most practical 

geometries for engineering applications. In International 

Journal of Numerical Methods for Heat and Fluid Flow. doi: 

10.1108/HFF-06-2018-0272 

Shan, X., & Chen, H. (1993). Lattice Boltzmann model for 

simulating flows with multiple phases and components. 

Physical Review E, 47(3), 1815. doi: 

10.1103/PhysRevE.47.1815 

Shan, X., & Chen, H. (1994). Simulation of nonideal gases and 

liquid-gas phase transitions by the lattice Boltzmann 

equation. Physical Review E, 49(4), 2941. doi: 

10.1103/PhysRevE.49.2941 

Shi, Y., Zhao, T. S., & Guo, Z. L. (2006). Finite difference-based 

lattice Boltzmann simulation of natural convection heat 

transfer in a horizontal concentric annulus. Computers and 

Fluids, 35(1), 1-15. doi: 10.1016/j.compfluid.2004.11.003 

Subhani, S., & Kumar, R. S. (2021). Natural Convection Heat 

Transfer Enhancement of Circular Obstacle within Square 

Enclosure. Journal of Thermal Analysis and Calorimetry, 

1-19. doi: 10.1007/s10973-021-10829-9 

Theodore, L. (2011). Heat Transfer Applications for the Practicing 

Engineer. John Wiley & Sons. doi: 10.1002/9780470937228 

Ugurlubilek, N., Sert, Z., Selimefendigil, F., & Öztop, H. F. (2022). 

3D laminar natural convection in a cubical enclosure with 

gradually changing partitions. International 

Communications in Heat and Mass Transfer, 133, 105932. 

doi: 10.1016/j.icheatmasstransfer.2022.105932 

Vesper, J. E., Tietjen, S. C., Chakkingal, M., & Kenjereš, S. (2022). 

Numerical analysis of effects of fins and conductive walls 

on heat transfer in side heated cavities — Onset of three-

dimensional phenomena in natural convection. 

International Journal of Heat and Mass Transfer, 183, 

122033. doi: 10.1016/j.ijheatmasstransfer.2021.122033 

Wang, P., Zhang, Y., & Guo, Z. (2017). Numerical study of three-

dimensional natural convection in a cubical cavity at high 

Rayleigh numbers. International Journal of Heat and Mass 

Transfer, 113, 217-228. doi: 

10.1016/j.ijheatmasstransfer.2017.05.057 

Xiong, P. Y., Hamid, A., Iqbal, K., Irfan, M., & Khan, M. (2021). 

Numerical simulation of mixed convection flow and heat 

transfer in the lid-driven triangular cavity with different 

obstacle configurations. International Communications in 

Heat and Mass Transfer, 123, 105202. doi: 

10.1016/j.icheatmasstransfer.2021.105202 

Xu, A., Gonnella, G., & Lamura, A. (2006). Simulations of complex 

fluids by mixed lattice Boltzmann - Finite difference 

methods. Physica A: Statistical Mechanics and Its 

Applications, 362(1), 42-47. doi: 

10.1016/j.physa.2005.09.015 

Yousif, A. A., Alomar, O. R., & Hussein, A. T. (2022). Impact of 

using triple adiabatic obstacles on natural convection inside 

porous cavity under non-darcy flow and local thermal non-

equilibrium model. International Communications in Heat 

and Mass Transfer, 130, 105760. doi: 

10.1016/j.icheatmasstransfer.2021.105760 
 

 

 

 

 
 © 2022. The Author(s.) This article is an open access article distributed under the terms and conditions of the Creative 

Commons Attribution-ShareAlike 4.0 (CC BY-SA) International License (http://creativecommons.org/licenses/by-sa/4.0/) 

https://doi.org/10.1103/PhysRevLett.81.1618
https://doi.org/10.1016/j.physleta.2010.06.059
https://doi.org/10.1002/9780470172599
https://doi.org/10.1007/978-1-4471-7423-3
https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.014
https://doi.org/10.1016/j.ijmecsci.2020.105447
https://doi.org/10.1016/j.tsep.2020.100584
https://doi.org/10.1080/23324309.2021.1942061
https://doi.org/10.1063/5.0050208
https://doi.org/10.1201/9781315121475
https://doi.org/10.1007/s10973-019-08259-9
https://doi.org/10.1108/HFF-08-2015-0341
https://doi.org/10.1108/HFF-06-2018-0272
https://doi.org/10.1103/PhysRevE.47.1815
https://doi.org/10.1103/PhysRevE.49.2941
https://doi.org/10.1016/j.compfluid.2004.11.003
https://doi.org/10.1007/s10973-021-10829-9
https://doi.org/10.1016/j.icheatmasstransfer.2022.105932
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122033
https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.057
https://doi.org10.1016/j.icheatmasstransfer.2021.105202
https://doi.org/10.1016/j.physa.2005.09.015
https://doi.org/10.1016/j.icheatmasstransfer.2021.105760

