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Study of Two Layered Immiscible Fluids Flow in a Channel with 
Obstacle by Using Lattice Boltzmann RK Color Gradient Model 
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Abstract. Lattice Boltzmann method (LBM) is employed in the current work to simulate two-phase flows of immiscible fluids over a square obstacle 
in a 2D computational domain using the Rothman-Keller color gradient model. This model is based on the multiphase Rothman-Keller description, it 
is used to separate two fluids in flow and to assess its efficacy when treating two fluids in flow over a square obstacle with the objective of reducing 
turbulence by adjusting the viscosities of the two fluids. This turbulence can cause major problems such as interface tracking techniques in gas-liquid 
flow and upward or downward co-current flows in pipes. So, the purpose of the study is to replace a single fluid with two fluids of different viscosities 
by varying these viscosities in order to reduce or completely eliminate the turbulence. The results show that to have stable, parallel and non-
overlapping flows behind the obstacle, it is necessary that the difference between the viscosities of the fluids be significant. Also, showing that the 
increase in the viscosity ratio decreases the time corresponding to the disappearance of the vortices behind the obstacle. The results presented in 
this work have some general conclusions: For M≥2, the increase in the viscosity difference leads to an increasing of friction between fluids, reducing 
of average velocity of flow and decreasing the time corresponding to the disappearance of the vortices behind the obstacle. However, for M≤1/2, the 
opposite occurs. 
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1. Introduction 

Immiscible fluids flow in a 2D channel are widely 
encountered in many scientific and industrial applications and 
they remain one of the challenges in computational fluid 
mechanics. These involve filtration systems, heat exchangers, 
recovery of hydrocarbons from oil and gas reservoirs, capillary 
networks, battery slurries, highly conductive pastes for solar 
cells and many other processing systems and many other that 
are a fundamental problem in fluid mechanics. Immiscible fluids 
e.g. oil and water can be described using chemical concept, 
when the fluids mix together, their bonds are not broken in 
order to form new bonds, and the two fluids will not form one 
cohesive solution. Numerically, several studies have been 
carried out (Bitsch et al., 2014, Bitsch et al., 2016, Schneider et 
al., 2016, Schneider et al., 2017), among these methods, we find 
the lattice Boltzmann method (LBM) which has achieved 
considerable success to simulate hydro-thermodynamics 
problems. It is especially suitable for the direct numerical 
simulation of immiscible multiphase fluid flows and also a 
numerical approach of the computational fluid dynamics (CFD) 
in engineering. It focuses on constructing simplified kinetic 
models that incorporate the physics of microscopic processes 
from which the macroscopic flow characteristics are computed 
on the basis of the Navier-Stokes (NS) macroscopic equations. 
LBM has been used to study several fluid flows problems such 
as viscous two layered fluids flow through a channel (Leclaire et 
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al., 2012), wetting and spreading phenomena (Huang et al., 
2007), collision and bubble rising phenomena (Huang et al., 
2014), Rayleigh–Taylor instability (He et al., 1999). 

Multiphase LBM models have been developed in past years, 
including the color-gradient model originally proposed by 
Rothman and Keller in 1988 and is labeled as Rothman-Keller 
(RK) model (Rothman et al., 1988). It is developed by 
Gunstensen et al. (Gunstensen et al., 1991) and Grunau et al. 
(Grunau et al., 1993) for binary fluids with different densities and 
viscosity ratios. Then, the pseudo-potential proposed by Shan 
and Chen (Shan et al., 1993) which is the very popular model in 
the LBM community for reason of conceptual simplicity and 
computational efficiency. Well after, Inamuro et al. (Inamuro et 
al., 2004) improved the free-energy model of Swift et al. (Swift et 
al., 1995) to achieve higher density ratios and make it more 
satisfactory. The fourth model is the interface tracking proposed 
by He et al. (He et al., 2000). Flow control is one of the main 
objectives of the fluid mechanics community and it is important 
in a wide range of systems and devices. For this, we are 
interested in this phenomenon in the present study. This paper 
focuses on 2D RK color-gradient model which is developed for 
immiscible two-phase fluids, the basic idea behind this model 
lies on the introduction of two distribution functions labeled 
’red’ and ’blue’ to represent two different fluids, through adding 
an extra binary fluid collision operator (perturbation term) to the 
lattice Boltzmann equation to generate the interfacial tension. In 
the RK model the surface tension, the density and viscosity 
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ratios can be adjusted independently. For this reason, we have 
chosen to use this model. However, RK model gives poor results 
for two-phase parallel flows with different densities in a channel. 
As a result, to overcome this deficiency, Huang et al. (Huang et 
al., 2015) found some extra terms in the recovered momentum 
equation. These extra terms may affect the numerical results 
significantly. Recently, several works are conducted using the 
RK color-gradiant as Lafarge et al. (Lafarge et al., 2021) who 
improved color-gradient method for lattice Boltzmann 
modeling of two-phase flows, Sadeghi et al. (Sadeghi et al. 2021) 
who studied immiscible displacement mechanisms in pore 
doublets and Mora et al. (Mora et al., 2021a, 2021b) who 
investigated the optimization isotropy of the gradient at small 
radius of curvature interfaces such as those that occur in flow 
through a porous medium for the choice of the interfacial 
thickness parameter 𝛽=0.5 and the optimal surface-tension 
isotropy in the RK color-gradient lattice Boltzmann method for 
multiphase flow. 

In this paper, we study two fluids having an immiscible 
character to determine their behaviors through a square 
obstacle by varying their viscosity ratio. This study is organized 
as follows: in Section 2, we describe the color-gradient LBM 
model. In section 3, we present the validation of our numerical 
code. In section 4, we discuss the numerical results obtained. 
The conclusion is presented in the last section.  

2. Numerical method used 

2.1. Description of RK color gradient LBM model 

In this paper, the two-dimensional nine velocity directions 
(𝐷2𝑄9) is considered as shown in Fig.1, this velocity (𝑒𝑖, 𝑖 =
 0, 1, . . . , 8) are done by  
 

𝑒𝑖 = {

(0,0)                                              𝑖 = 0
(1,0), (0,1), (−1,0), (0,−1)           𝑖 = 1, . . ,4
(1,1), (−1,1), (−1, −1), (1,−1)    𝑖 = 5, . . ,8

(1)

    

In the RK model, two distribution functions are used to 
represent two different fluids labeled ’R for red’ and ’B for blue’ 

𝑓𝑖
𝑘(𝑥, 𝑡), 𝑘 = 𝑅, 𝐵. The total distribution function is given by 

𝑓𝑖(𝑥, 𝑡) =  ∑ 𝑓𝑖
𝑘(𝑥, 𝑡)𝑘 . Each colored distribution function 

undergoes the collision and streaming steps. Thus, the evolution 

of the distribution of particles 𝑓𝑖
𝑘(𝑥, 𝑡) is expressed by the 

following equation: 
 

𝑓𝑖
𝑘(𝑥 + 𝑒𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) =  𝑓𝑖

𝑘+(𝑥, 𝑡) (2) 
             

where 𝑓𝑖
𝑘+(𝑥, 𝑡) represents the distribution function after the 

recoloring step and 𝛿𝑡 is the lattice spacing time which is equal 
to 1 in the simulation. 

 

Fig. 1 Illustration of a lattice node of the D2Q9 Model. 

The collision step can be described as (Mora et al., 2021): 

𝑓𝑖
𝑘∗(𝒙, 𝑡) =  𝑓𝑖

𝑘(𝒙, 𝑡) + (Ω𝑖
𝑘)
𝟏
+ (Ω𝑖

𝑘)𝟐 (3) 

where 𝑓𝑖
𝑘∗(𝒙, 𝑡) is the post-collision state, both terms (Ω𝑖

𝑘)1 and 

(Ω𝑖
𝑘)2 are used to describe two collision steps. The Bhatnagar, 

Gross and Krook (BGK) approximation is adopted for the first 

term (Ω𝑖
𝑘)1 as (Behrend et al., 1994):   

    

(Ω𝑖
𝑘)
𝟏
= −

𝛿𝑡

𝝉
( 𝑓𝑖

𝑘(𝒙, 𝑡) − 𝑓𝑖
𝑘,𝑒𝑞(𝒙, 𝑡)) (4)

               
𝜏 is the relaxation time that it related to the kinematic viscosity 

as 𝜐 =  𝑐𝑠
2(𝜏 − 0.5𝛿𝑡) and 𝑓𝑖

𝑘,𝑒𝑞
(𝒙, 𝑡) is the equilibrium 

distribution function defined below:  
 

𝑓𝑖
𝑘,𝑒𝑞(𝑥, 𝑡) = 𝜌𝑘(𝑥, 𝑡)( 𝐶𝑖

𝑘 +𝑤𝑖[1 +
𝑒𝑖 . 𝑢

𝑐𝑠
2 +

(𝑒𝑖 . 𝑢)
2

2𝑐𝑠
4 −

(𝑢)2

2𝑐𝑠
2 ]) (5) 

 

where 𝑐𝑠 =  1/√3 is the speed of sound and 𝑤𝑖 represents the 
weight factors defined by: 
 

𝑤𝑖 =

{
 
 

 
 
4

9
                     𝑖 = 0

1

9
            𝑖 = 1, . . ,4

1

36
          𝑖 = 5, . . ,8

(6) 

  

𝐶𝑖
𝑘 = {

𝛼𝑘                     𝑖 = 0
(1 − 𝛼𝑘)/5            𝑖 = 1, . . ,4
(1 − 𝛼𝑘)/20          𝑖 = 5, . . ,8

(7) 

                                                           
We can obtain the density of the fluid 𝜌𝑘(𝒙, 𝑡) and the velocity 
components 𝒖(𝒙, 𝑡) by the following equations: 
 

𝜌𝑘(𝒙, 𝑡) =∑𝑓𝑖
𝑘(𝒙, 𝑡)

𝒊

 ;  𝜌𝑘(𝒙, 𝑡)𝒖(𝒙, 𝑡) =∑𝑓𝑖
𝑘(𝒙, 𝑡)

𝒊

𝒆𝒊 (8) 

 

𝛼𝑘 represents a free parameter. Several phases of different 
densities can be presented simultaneously. It is therefore 
necessary to define the different density ratio 𝛾 in the following 
way to obtain stable interfaces between the different phases: 
 

𝛾 =
𝜌𝑅
𝜌𝐵
=
1 − 𝛼𝐵
1 − 𝛼𝑅

(9) 

 
Theoretically, it is true for  𝜌𝑅 ≥ 𝜌𝐵 and this constraint 0 ≤
𝛼𝐵 ≤ 𝛼𝑅 < 1 must be respected in order to avoid negative 
pressures which are presented as: 

             

𝑃𝑘(𝒙, 𝑡) =
𝟑𝜌𝑘(1 − 𝛼𝑘)

𝟓
= 𝜌𝑘(c𝑠

𝑘)𝟐 (10) 

 
The relaxation parameter 𝜏 can be given by the interpolation 
scheme constructed by Grunau et al. (Grunau et al., 1993)  

𝐶𝑖
𝑘 = {

𝜏𝑅                      𝜓 > 𝛿

𝑓𝑅(𝜓)      0 <  𝜓 ≤ 𝛿

𝑓𝐵(𝜓)  − 𝛿 ≤  𝜓 ≤ 0
𝜏𝐵                  𝜓 < −𝛿

(11) 

𝛿 is a free positive parameter that affects interface thickness and 
is usually set as 0 < 𝛿 ≤ 1. 𝜓 is a function that takes the value 1 
or −1, depending on whether it is evaluated at a position that 
contains only the red fluid or only the blue fluid. At the interface, 
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the color field is obviously between 1 and −1. It can be defined 
by: 
 

𝜓 =
𝜌𝑅 − 𝜌𝐵
𝜌𝑅 + 𝜌𝐵

 ;      −1 ≤ 𝜓 ≤ 1 (12) 

 
) 

The parameters 𝑓𝑅(𝜓) and 𝑓𝐵(𝜓) can be expressed by: 
 

𝑓𝑅(𝜓) = 𝜒 + 𝜅𝜓 + 𝜇𝜓
2 (13) 

 
𝑓𝐵(𝜓) = 𝜒 + 𝜂𝜓 + 𝜁𝜓

2 (14)                    
         

𝜒 = 2𝜏𝑅𝜏𝐵/(𝜏𝑅 + 𝜏𝐵), 𝜅 = 2(𝜏𝑅 − 𝜒)/𝛿, 𝜇 = −𝜅/2𝛿, 𝜂 =

2(𝜒 − 𝜏𝐵)/𝛿 and 𝜁 = 𝜂/2𝛿. For each component, we can 

present the viscosity as follows: 

 

𝜈𝑘 = (c𝑠
𝑘)𝟐(𝜏𝑘 − 0.5𝛿𝑡) (15) 

 
To get the average viscosity of the two fluids components, we 
approximate the viscosity as an extensive variable and it can 
be expressed by: 

𝜈𝑎𝑣𝑔 = (𝜈𝑅 + 𝜈𝐵)/2 (16)

                                       

In the RK model, the surface tension is modeled by means of 
the perturbation operator which is defined in the literature by 
(Mora et al., 2021): 
 

(Ω𝑖
𝑘)
𝟐
=
𝐴𝑘
𝟐
⌈𝒇⌉[𝑤𝑖 .

𝒆𝒊. 𝒇

⌈𝒇⌉
− 𝐵𝑖] (17) 

where 𝐴𝑘 is a parameter that affects the interfacial tension, 

𝒇(𝒙, 𝑡) is the color-gradient which is calculated by: 

 

𝒇(𝒙, 𝑡) =∑𝒆𝒊
𝒊

∑[𝑓𝑗
𝑅(𝒙 + 𝒆𝒊𝛿𝑡, 𝑡) − 𝑓𝑗

𝐵(𝒙 + 𝒆𝒊𝛿𝑡, 𝑡)]

𝒋

(18) 

 
The interfacial tension in the N–S equations can be 

recovered by adding the correct term 𝐵𝑖 presented in Eq. (17) 
which is defined for the 𝐷2𝑄9 model as follows: 

 

𝐵𝑖 =

{
 
 

 
 
−4

27
                     𝑖 = 0

2

27
            𝑖 = 1, . . ,4

5

108
          𝑖 = 5, . . ,8

(19) 

The recoloring step for each component is used to achieve 
separation of the two fluids and to maximize the amount of red 
fluid at the interface sent into the red fluid region and the 
amount of blue fluid at the interface sent into the blue fluid 
region, while respecting the principles of conservation of mass 
and total momentum. It was explained in (Latva-Kokko et al., 
2005) and it presented by the following equations: 

𝑓𝑖
𝑅,+ =

𝜌𝑅
𝜌
𝑓𝑖
∗ + 𝛽

𝜌𝑅𝜌𝐵
𝜌2

 𝑓𝑖
𝑒𝑞(𝜌, 𝒖 = 0) cos(𝜆𝑖) (20) 

𝑓𝑖
𝐵,+ =

𝜌𝐵
𝜌
𝑓𝑖
∗ − 𝛽

𝜌𝑅𝜌𝐵
𝜌2

 𝑓𝑖
𝑒𝑞(𝜌, 𝒖 = 0) cos(𝜆𝑖) (21) 

𝑓𝑖
∗ = ∑ 𝑓𝑖

𝑘∗
𝑘 , 𝛽 is the parameter which adjusts the interfacial 

thickness, its values are between 0 and 1 to ensure positive 

particle distribution functions and cos(𝜆𝑖) =
𝑒𝑖 . 𝑓

|𝑒𝑖|. |𝑓|
⁄  is the 

cosinus of the angle between the color gradient 𝑓(𝑥, 𝑡) and the 

discrete velocity 𝑒𝑖. 𝑓𝑖
𝑒𝑞
(𝜌, 𝑢 = 0) represents the equilibrium 

distribution function, which are evaluated using zero speed. We 
can note that when two components have identical densities, it 
is not necessary to calculate both collision step Eqs. (4) and (17) 
separately for each component. The two collision steps become:
    

(Ω𝑖
𝑘)
1
= −

𝛿𝑡

𝜏
( 𝑓𝑖

𝑘(𝑥, 𝑡) − 𝑓𝑖
𝑘,𝑒𝑞(𝑥, 𝑡)) (22) 

 

(Ω𝑖
𝑘)
2
=

𝐴𝑘

2
⌈𝑓⌉[𝑤𝑖 .

𝑒𝑖.𝑓

⌈𝑓⌉
− 𝐵𝑖] (23)       

where 𝐴 =  ∑ 𝐴𝑘/2𝑘  and 𝑓𝑖 = ∑ 𝑓𝑖
𝑘

𝑘 . A is a parameter, which 
determines the interfacial tension. 
 

2.2. Elimination of the unwanted extra term 
 
The RK model gives poor results for two-phase parallel 

immiscible fluid flows with different densities in a channel. 
Therefore, Huang et al. (Huang et al., 2013) found some extra 
terms which added to the lattice Boltzmann transport equation. 
These terms are defined by: 

 
𝜕𝑡(𝜌𝑘𝑢𝛼) + 𝜕𝛽(𝜌𝑘𝑢𝛼𝑢𝛽) = −𝜕𝛼𝑝 + 𝜌𝑘𝑣𝛼𝜕𝛽(𝜕𝛼𝑢𝛽 + 𝜕𝛽𝑢𝛼)

+ (𝜏𝑘 −
1

2
) (
1

3
− (c𝑠

𝑘)𝟐) ∆𝑡𝜕𝛽[𝑢𝛽𝜕𝛼(𝜌𝑘) + 𝑢𝛼𝜕𝛽(𝜌𝑘) + 𝜕𝛾(𝜌𝑘𝑢𝛾)𝛿𝛼𝛽](24)
 

 

The term 𝜌𝑘𝜐𝑘𝜕𝛽(𝜕𝛼𝑢𝛽 + 𝜕𝛽𝑢𝛼) is related to the kinematic 

viscosity 𝜐𝑘.  

The last term (𝜏𝑘 −
1

2
) (

1

3
− (𝑐𝑠

𝑘)2)∆𝑡𝜕𝛽[𝑢𝛽𝜕𝛼(𝜌𝑘) +

 𝑢𝛼𝜕𝛽(𝜌𝑘) + 𝜕𝛾(𝜌𝑘𝑢𝛾)𝛿𝛼𝛽] is an unwanted extra term that 

appears in the momentum N-S Eq. (24). This extra term can be 
considered as a forced term in N-S equations and can affect 
numerical results significantly. It can be defined as (Huang et al., 
2015): 

𝑆𝑖
𝑘 = −𝑤𝑖𝑈𝑖

𝑘Δ𝑡𝑒𝑖𝛼
1

𝑐𝑠
2

(25) 

 

Where 𝑈𝑖
𝑘 = (𝜏𝑘 −

1

2
) (

1

3
− (𝑐𝑠

𝑘)2)∆𝑡𝜕𝛽[𝑢𝛽𝜕𝛼(𝜌𝑘) +

 𝑢𝛼𝜕𝛽(𝜌𝑘) + 𝜕𝛾(𝜌𝑘𝑢𝛾)𝛿𝛼𝛽]. 

 

The derivative terms appear in the extra unwanted term 
are evaluated over y-direction and we adopt the velocity 𝑢𝑥. 
Because, the vertical velocity 𝑢𝑦 is assumed to be zero 

everywhere inside the computational domain and the flow is 
steady over x-direction. Therefore, the flow also depends on the 
x-direction and the derivate of parameter over x-direction is 
equal to zero 𝜕𝛽𝜙 = 0, where 𝜙 denotes density, velocity, and 

pressure. The central finite difference method is used to 
calculate the density gradient and derivatives terms 𝜕𝑦(𝜌𝑘) and 

𝜕𝑦(𝑢𝑥𝜕𝑦(𝜌𝑘)) as (Huang et al., 2015): 

 

𝜕𝑦(𝜌𝑘)(𝑖,𝑗) =
1

2∆𝑦
[(𝜌𝑘)(𝑖,𝑗+1) − (𝜌𝑘)(𝑖,𝑗−1)] (26) 

 

𝜕𝑦(𝑢𝑘𝜕𝑦(𝜌𝑘))(𝑖,𝑗) =

1

2∆𝑦
[(𝑢𝑘)(𝑖,𝑗+1)𝜕𝑦(𝜌𝑘)(𝑖,𝑗+1) − (𝑢𝑘)(𝑖,𝑗+1)𝜕𝑦(𝜌𝑘)(𝑖,𝑗−1)] (27)
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The N-S Eq. (24) can be simplified as (Huang et al., 2015)
 

𝜌𝑘𝑣𝑘𝜕𝑦
2(𝑢𝑘) + 𝐺

+ (𝜏𝑘 −
1

2
) (

1

3
− (𝑐𝑠

𝑘)2) ∆𝑡𝜕𝑦[𝑢𝑥𝜕𝑦(𝜌𝑘)] = 0 (28)
 

      
G is a body force. In our simulation, the body force is added to 
lattice Boltzmann equation as (Nie et al., 2015): 

𝐹𝑏𝑜𝑑𝑦 = 𝑤𝑖GΔ𝑡𝑒𝑖𝑥
1

𝑐𝑠
2                                                       (29)

     

2.3. Drag coefficient expression 

The average drag coefficient 𝐶𝐷 is a critical parameter 
that is calculated in the channel to quantify the drag resistance 
of the obstacle, here we define it by: 

𝐶𝐷 =
𝐶
𝐷𝑎𝑣𝑔
𝑅 +𝐶

𝐷𝑎𝑣𝑔
𝐵

2
(30)

                
where 𝐶𝐷𝑎𝑣𝑔𝑅  and 𝐶𝐷𝑎𝑣𝑔𝐵  are the average drag coefficients of fluid 

1 and fluid 2, respectively. They are defined by: 

𝐶𝐷𝑎𝑣𝑔𝑘 = ∑
𝐹𝑥
𝑘

(
1

2
)𝜌𝑘𝐷𝑢𝑚𝑎𝑥

2𝑫     ;     𝑘 = 𝐵, 𝑅                         (31)

                     
𝐹𝑥
𝑘(𝒙, 𝑡) is the drag force which is related to the velocities 𝒆𝑖 

and distribution function 𝑓𝑖
𝑘(𝒙, 𝑡) by: 

𝐹𝑥
𝑘(𝒙, 𝑡) = ∑∑𝒆𝒊

𝒊

[𝑓𝑖
𝑘(𝒙, 𝑡) − 𝑓𝑖−

𝑘 (𝒙, 𝑡)]

𝑫

  ;     𝑘 = 𝐵, 𝑅 (32) 

 

where 𝑓𝑖−
𝑘  is the reverse direction of the distribution function 

𝑓𝑖
𝑘. D is the solid body boundary cells.  

3. Model validation 

The validation of our study is done in two steps, the first is 
to compare our results using the color gradient model with the 
case of two- phase immiscible fluids flow carried out by Huang 
et al. (Huang et al., 2013). The second step, we investigated the 
single-phase flow around a square obstacle using the color 
gradient model by giving the same density and viscosity values 
i.e. 𝜌𝑅 = 𝜌𝐵 and 𝜏𝑅 = 𝜏𝐵 by comparing our results with the 
work reported by Breuer et al. (Breuer et al., 2000). 

 

 
Fig. 2 Illustration of the computational physical problem. 

 

 

 
3.1 Two immiscible layered fluids flow in a 2D channel 

 
In this part, we simulate immiscible layered two-phase 

flow between two stationary parallel plates as shown in Fig. 2. 
The periodic boundary was applied for both left and right sides 
of the channel (Periodic flow). The bounce-back boundary 
conditions were selected for the upper and lower plates. The 
viscosities for both fluids are calculated as 𝜐𝑘 = 𝑐𝑠

2(𝜏 − 0.5𝛿𝑡) 
and 𝑀 = 𝜐𝐵 𝜐𝑅⁄  is the viscosity ratio. The wetting phase (Fluid 
1) is placed in the region 𝑎 < |𝑦| ≤ 𝑏 and the non-wetting phase 
(Fluid 2) in the central region 0 ≤  |𝑦| ≤  𝑎. At the inlet the 
velocity parabolic profil is considered. 

 

3.1.1 Viscosity effect 
 

The purpose of this test case is to verify the efficiency of 
our numerical code to simulate the immiscible layered fluids. 
The velocity profiles for identical fluid densities are presented 
in Fig. 3. The viscosity ratio is the only parameter that changed 
in this calculation. For the same values of 𝑀 (1/
50 and 50) and mesh size (10 × 100) used in the reference 
(Huang et al., 2013), we find the same curves of velocities. We 
note that our simulation errors between the analytical and 
numerical LBM model are: Fig. 3(a): err = 2.26%, Fig. 3(b): err 
= 3.9% and the errors between our numerical results and those 
of the reference are: Fig. 3(a): err = 1.89%, Fig. 3(b): err = 1.28 
%. Then, we can conclude that our results are in good 
agreement with the analytical solution and with the work of 
Huang et al. (Huang et al., 2013). For both cases, the maximum 
velocity is localized in the center region of the channel. As the 
flow progresses inside this channel, it can also be shown that the 
shape of the velocity profile changes with the viscosity ratio. 
 

  
                (a) 𝑀 = 1 50⁄  ; 𝜏𝑅 = 0.51 ; 𝜏𝐵 = 1                  (b) 𝑀 = 50 ; 𝜏𝑅 = 1 ; 𝜏𝐵 = 0.51  

Fig. 3 Velocity profiles for the flow of immiscible layered fluids of identical densities 𝜌𝑅 = 𝜌𝐵 . 
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Table 1 
Different cases for immiscible layered fluids for different densities,  𝜏𝑅 = 𝜏𝐵 = 1 and body force 𝐺 =  1, 5. 10−8. 

Case     𝛼𝐵      𝛼𝑅      𝛽          𝛾                                               Elimination of the unwanted term 

 a         0.8      0.4     0.5      1/3                                                                   No 

 b         0.8      0.4     0.5      1/3                                                                   Yes 

 c         0.4      0.8     0.5        3                                                                      No 

 d         0.4      0.8     0.5        3                                                                     Yes 

 
 
 

The error between numerical and analytical solutions is 
defined as:  

𝑒𝑟𝑟(𝑡) =  
∑ |𝑢(𝑗, 𝑡) − 𝑢0(𝑗)|𝑗

∑ 𝑢0(𝑗)𝑗

(33) 

                    
Here the summation is over the lattice nodes j and 𝑢0 is the 
analytical solution. The convergence criterion is: 
 

|
𝑒𝑟𝑟(𝑡) − 𝑒𝑟𝑟(𝑡 − 10−4∆𝑡)

𝑒𝑟𝑟(𝑡 − 10−4∆𝑡)
| < 10−4 (34) 

 
3.1.2 Density effect and elimination of the extra unwanted term 
 

Table 1 presents different cases used in this study with 
identical viscosities and different density ratios. Further, this 
test is performed to show the effect of the unwanted extra term 

that appears in equation (24) and the parameter 𝛽 which adjusts 
the interfacial thickness. Fig. 4 shows the different velocity 
profiles obtained by the RK-Color gradient model in comparison 
with the analytical solution and the work of Huang et al. (Huang 
et al., 2013). In our study, the unwanted term plays an important 
role and its effect is clearer for different densities cases. We can 
observe that when the extra unwanted term is eliminated, the 
numerical solution agrees with the analytical solution with an 
estimated errors of 2.64% and 1.11% for both cases (b) and (d), 
respectively. Again, it agrees with the numerical solution of the 
reference with an estimated errors of 0.029% and 0.0098% for 
both cases (b) and (d), respectively. Hence, the parameter 𝛽 is 
one of the important and free parameters in this simulation, it is 
used to adjust the thick of the interface between the two fluids 
which gives a good precision for an important difference density 
as illustrated in the reference (Huang et al., 2013). 

 
 
 

 
Fig. 4 Compared results with those of Huang et al. (Huang et al., 2013) and the analytical solution ((a), (b), (c) and (d) are the cases of Table 1). 

 

 
Fig 5 Illustration of the numerical problem. 
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      (a) 𝑅𝑒 =  1 (our result)  

(b) 𝑅𝑒 =  1 (Breuer et al., 2000) 

 
(c) 𝑅𝑒 =  30 (our result)   

(d) 𝑅𝑒 =  30 (Breuer et al., 2000) 

 

(e)  𝑅𝑒 =  60 (our result 
 

(f) 𝑅𝑒 =  60 (Breuer et al., 2000) 
Fig. 6 Streamlines patterns for Reynolds number ranging from 1 to 60. 

 
 

3.2 Single phase flow in a channel with obstacle 

In this study, as shown in Fig. 5, we consider a rectangular 
channel of length L and height H in which a square obstacle of 
dimension D = 40 (l.u) is placed in the middle of the horizontal 
walls of the channel of dimension 2000 × 320(l.u)2. The upper 
and lower walls of the channel are assumed to be solid (fixed 
plate) in which Bounce-back conditions have been adopted, the 
sides of the channel are assumed to be open and the conditions 
of Zou and He (Zou et al, 1997) are implemented. The flow is 
assumed to have maximum velocity 𝑈𝑚𝑎𝑥 equal to 0.057. 

In this part, our numerical code is used to simulate a 
single-phase flow through a channel containing an obstacle. 
This problem was studied in detail by (Breuer et al., 2000). Here, 
we present a comparison between our results and those of these 
authors. The Reynolds number 𝑅𝑒 is the main parameter which 
influences the flow behavior, the numerical calculations are 
performed for 𝑅𝑒 = 1, 30, 60 and 100. The computed results 
comparison is based on streamlines, drag coefficient and 
velocity profiles at different positions. It’s noted that the 
different regimes flow is captured by our numerical code. 
Indeed, for 𝑅𝑒 < 60, the regime is steady. In this case, the flow 
is unidirectional and uniform as shown in Fig. 6(a). Two counter 
rotating vortices appear symmetrically about the flow axis 
behind the square obstacle as shown in Fig. 6(c). From 𝑅𝑒 = 60 
(Fig. 6(e)), the flow becomes unsteady with the well-known von 
Karman vortex street with periodic vortex shedding from the 
cylinder (Admi et al. 2022(a), Admi et al. 2022(b)). For this flow 
regime, we are interested in the velocity following the main flow 
direction (𝑢𝑥) and therefore, we compared the velocity profiles 
to those of the reference. 

Figures 7(a) and 7(b) illustrate the velocity components 
profiles 𝑢𝑥(𝑥) and 𝑢𝑦(𝑥) along a centerline 𝑦 =  𝐻/2 over 

x−direction for 𝑅𝑒  =  100 and at a time instant at which the 
cross-stream velocity u at an axial position of 10D behind the 
cylinder changes its sign from minus to plus. We can show that 
before the obstacle, the component of the velocity 𝑢𝑥(𝑥) is 
uniform along the center line until it is equal to zero at the solid. 
Just after this obstacle, it becomes negative, this is due to the 
disturbance caused by the obstacle and far from it, the flow 
tends to become regular accompanied by oscillations until it 
reaches its value at the entrance of the channel. However, for 
the orthoradial component 𝑢𝑦(𝑥), the curve shows the same 

behavior noted for 𝑢𝑥(𝑥) before the obstacle. Whereas, after the 
obstacle, 𝑢𝑦(𝑥) follows a wave variation and takes an 

amortissement from maximum to minimum values. 
The last validated result is the drag coefficient 𝐶𝐷 which is 

calculated on the obstacle and it depicted in Fig. 8. This 
coefficient gives information about the resisting force of a body 
immersed in a fluid environment that depends on flow direction, 
size, shape and placement of the body. We note that the drag 
coefficient decreases with increasing 𝑅𝑒. This behavior is 
exactly similar to that noted in the reference (Breuer et al., 2000). 
Once again, we can conclude that for all the results found, 
graphical comparisons are made and show a good agreement 
between our results and those of the reference. Thus, we can 
say that our code is reliable and able to simulate single phase 
flows in channels with obstacles. This prompted us to study the 
same geometry with multi-component flow. In what follows, the 
calculations are carried out for 𝑅𝑒 =  100. This value 
corresponds to a drag coefficient 𝐶𝐷 =  1.378. 
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               (a) Streamwise velocity 𝑢𝑥

∗(𝑥)            (b) Cross-stream velocity 𝑢𝑦
∗ (𝑥) 

Fig. 7 Components of velocity vector 𝒖∗  = 𝒖/𝑢𝑚𝑎𝑥 for 𝑅𝑒 =  100 along a centerline (𝑦 = 𝐻/2);    : our results, − : (Breuer et al., 2000). 

 
 

 
Fig. 8 Drag coefficient vs Reynolds number; NQ: Non-Equidistant mesh, EQ: Equidistant mesh, LBA: Lattice Boltzmann Automate and FVM: Finite 

volume method. 

 
 

4. Results and Discussions 
 
4.1 Physical problem studied 
 

In the case of a single-phase flow in a channel with block, 
the increase in 𝑅𝑒 produces Von Karman vortices behind this 
block (Moussaoui et al, 2009a, 2010b). The amplitude of these 
oscillations increases with Re and consequently, the friction 
coefficient and the drag force increase on the walls of the 
channel. In some cases, this can cause technical problems. 
Thus, the aim of our study is to show how these vortices can be 
reduced. For this, we propose to replace the single-phase flow 
by two fluids flow. Indeed, we simulate immiscible layered fluids 
flows between two plates past a square obstacle in 2D channel 
with a wetting phase (high density) located between 0 ≤ 𝑦 ≤ 𝑎 
and a non-wetting phase (low density) located between a ≤ 𝑦 ≤
𝑏. Fluids 1 and 2 are defined in red and blue, respectively. At 

the channel inlet and outlet, Zou and He (Zou et al, 1997) 
boundary conditions are applied. No-slip (bounce-back) 
boundary conditions are used at the solid boundaries. Midway 
the plates, a square obstacle of length D = H/8 is placed at 
distance 𝑙 =  𝐿/3 from inlet of the channel. The inlet velocity is 
parabolic with a maximum value 𝑢𝑚𝑎𝑥 in the middle as shown 
in Fig. 9.  

Around the obstacle, the boundary conditions used are 
bounce-back. For both distribution functions, the values of 

𝑓𝑖
𝑘(𝑥, 𝑦)  =  0 inside the obstacle. The non-wetting condition is 

set by the parameter 𝐴 = 10−4. The ratio of densities is  = 3 
because these densities are adjusted by the parameters α1 = 0.8 
and α2 = 0.4. It should be noted that the obtained results are 
validated in the case of a single phase by giving the same values 
of the densities and viscosities.
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Fig. 9 Illustration of the computational physical problem. 

 
 
 
 
Table 2    
Average drag coefficient as a function of mesh size for 𝑅𝑒 =  100. 

𝜈𝑎𝑣𝑔 Mesh 𝐶𝐷𝑎𝑣𝑔 

0.0227 500 × 80 
1000 × 160 
2000 × 320 
4000 × 640 

1.498 
1.406 
1.378 
1.365 

0.0557 500 × 80 
1000 × 160 
2000 × 320 
4000 × 640 

No data 
1.485 
1.384 
1.379 

Breuer et al., 2000 2000 × 320 1.378 
UI-Islam et al. 2009 921 × 301 1.405 

Sohanker et al., 1998 921 × 301 1.408 
Benamour et al., 2015 3000 × 480 1.362 

 
 
 
 
 

 
Fig. 10 Fluids behavior over time for 𝑀 = 2. 
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Fig. 11 Fluids behavior over time for 𝑀 = 1/2 

 

 
4.2 Mesh size sensitivity 

The grid size is varied to find the best compromise between 
computational costs and accuracy. For this, the average drag 
coefficient around the obstacle (𝐶𝐷𝑎𝑣𝑔) is calculated for different 

meshes and fluid viscosities (𝜐𝑎𝑣𝑔). Table 2 illustrates these 

results and those of references (Breuer et al., 2000, UI-Islam et 
al., 2009, Sohanker et al., 1998, Benamour et al., 2015). It can be 
seen from this table that the mesh (1000 × 160) gives results 
which are very close to those of the literature and as 𝜐𝑎𝑣𝑔 = 

0.0887 is not considered here, this mesh is chosen to carry out 
the present study.  
 
4.3 Density behavior over time t* 
 

Fluid flow motion control is one of the major concerns of the 
mechanical fluids engineering. For this reason, we have 
proposed a method that allows us to control two immiscible 
fluids by adjusting their viscosities. At the beginning, the effect 
of viscosity on fluids flow after being distorted by the square 
obstacle is evaluated. Reynolds number is set to be 𝑅𝑒 =  100 
(𝑅𝑒 = 𝑢𝑚𝑎𝑥𝐷/𝜈𝑎𝑣𝑔). In a first calculation, the viscosity of fluid 1 

is chosen to be twice the viscosity of fluid 2. Fig. 10 shows the 
hydrodynamic behavior of fluids from their densities for a 
double viscosity rate noted 𝑀 = 𝜐1 𝜐2⁄ =  2 over time t* which 
describes the characteristic time, it is defined by t* = t/1000. As 
for a single phase and before reaching the obstacle, the flows 
are juxtaposed, stable and parallel to the two plates. However, 
after the obstacle, the fluids mix and vortices appear. Contrary 
to the case of a single fluid, these vortices decrease in frequency 
and amplitude over time and disappear around t* = 400 and the 
flow becomes steady. In a second calculation, the viscosity of 
fluid 1 is chosen such that it is half of the viscosity of the fluid 2. 

This case is presented in Fig. 11, from this figure, we note a very 
large difference compared to 𝑀 =  2. In fact, the oscillations are 
strongly damped and disappear completely around t*= 200. 
The fluids flow becomes stable and steady for a very short time 
(t* = 120). Thus, it can be concluded that the fluids behavior and 
the disappearance of vortices strongly depend on the viscosity 
ratio M. 

4.4 Effect of viscosity ratio on f luids f low 

A short time (t* = 50) corresponding to strong oscillations is 
chosen to present the behaviors of fluids due to the change of 
the viscosity ratio 𝑀. These results are illustrated in Fig. 12 and 
13. It is noted that in the case where fluid 1 is less viscous than 
fluid 2 (𝑀 ≤ 1/3), the fluids circulate in parallel without 
overlapping over the entire channel. Thus, in this case, the 
obstacle does not disturb the flow. However, slight oscillations 
appear behind and further from this obstacle for 𝑀 = 1/2. As 𝑀 
continues to increase and becomes greater than 2 i.e. fluid 1 
becomes more viscous than fluid 2, these oscillations change 
shape and become larger indicating a large overlap between the 
fluids. 

An unexpected result shows that the oscillations are 
damped with the further increase of M. This is due to the 
increase in viscous effects between the fluids. We notice that for 
the present value of t*, the oscillations disappear for 𝑀 = 5, 
whereas for other values of t*, the behavior of the fluids 
changes. For this, we have defined the parameter h* = h/H 
which expresses the ratio between the height of the first 
oscillation of fluid 1 after the obstacle and the height of the 
channel. Then we have plotted its variations as a function of 
time in Fig. 14. This figure shows that this parameter decreases 
in amplitude until the zero-value indicating the total 
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disappearance of the vibrations in a time which decreases with 
the increase of M for 𝑀 > 2. Indeed, the oscillations disappear 
around 385, 250, 175 and 100 for 𝑀 = 2, 3, 4 and 5, respectively. 
For 𝑀 < 1/2 the opposite fluids behavior is noted. Thus, to have 
a more stable flow behind the obstacle, the difference between 
the two viscosities of the fluids must be very large. In fact, in the 
case of a single phase, the effect of viscosity decreases from the 

wall towards the central axis of the channel. This allows the 
Karman vortex to form and move a bit freely behind the 
obstacle. However, in the case of two fluids with different 
viscosities, at the interface which generally exists in the central 
zone of the channel, there is a braking phenomenon between 
the two fluids. This prevents vortex from forming and moving 
freely compared to the single fluid case. 

 

 

 
Fig 12. Behaviours of fluids for a viscosity ratio ranging from 2 to 5 at t* = 50. 

 
 

 
Fig 13. Behaviours of fluids for a viscosity ratio ranging from 1/2 to 1/5 at t* = 50. 
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Fig. 14 Variation of characteristic height h* as a function of t* and 𝑀. 

 
Fig. 15 Velocity component 𝑢𝑥

∗(𝑥) = 𝑢𝑥(𝑥)/𝑢𝑚𝑎𝑥 over x-direction for 2 ≤ 𝑀 ≤ 5 along a centerline (𝑦 =  𝐻/2). 
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4.5 Variation of velocity components as a function of the viscosity 
ratio 𝑀 at time t* = 50 

The velocities 𝑢𝑥(𝑥) and 𝑢𝑦(𝑥) along a centerline 𝑦 =

 𝐻/2 over x-direction for 𝑢𝑚𝑎𝑥 = 0.1328 and for different values 
of M are depicted in Figs. 15 and 16, respectively. We can 
clearly notice that for all viscosity ratio M, the velocity 
component 𝑢𝑥(𝑥) varies in the same way as in a single phase 
with a small perturbation at the canal inlet due to the friction 
between the two fluids which caused a reducing of their average 

velocity. For 𝑀 ≤ 1/2, the velocity keeps almost the same 
shape for all values of M. However, for 𝑀 > 2, The velocity 
component 𝑢𝑥(𝑥)decreases with increasing viscosity and tends 
to become linear as it moves away from the obstacle. Contrary 
to the single-phase case and at the channel outlet, the velocity 
not regains its initial value due to the viscous effect. From Fig. 
16, it is very interesting to note that the oscillatory behavior of 
𝑢𝑦(𝑥) after the obstacle noted for a single fluid disappears in the 

case of two fluids of very high or very low viscosity ratio. 
 

 

 
Fig. 16 Velocity component 𝑢𝑦

∗ (𝑥) = 𝑢𝑦(𝑥)/𝑢𝑚𝑎𝑥 over x-direction for 2 ≤ 𝑀 ≤ 5 along a centerline (𝑦 =  𝐻/2). 

 
Fig. 17 Drag coefficient versus time for different viscosity ratios 

 
 

 



S. Channouf  et al  Int. J. Renew. Energy Dev 2023, 12(1), 22-35 

| 34 

 

ISSN: 2252-4940/© 2023. The Author(s). Published by CBIORE 

 
4.6 Effect of the viscosity on the drag coefficient 
 

  Figure 17 shows the evolution of average drag coefficient 
𝐶𝐷 versus the viscosity ratio 𝑀 for different times spaced by a 
step of 100 except for the first two values. It should be noted 
that for all values of 𝑀 (𝑀 1 and 𝑀 1), 𝐶𝐷 decreases with 
time. For 𝑀 1, 𝐶𝐷 becomes almost constant for a time which 
exceeds that which corresponds to the disappearance of the 
oscillations. Also, when the viscosity of the fluid 1 increases (𝑀 
increases), the drag force exerted by this fluid on the obstacle 
increases and consequently 𝐶𝐷 increases. However, for 
𝑀 1, this last remark remains valid when the viscosity of the 
fluid 2 increases (𝑀 decreases).  

5. Conclusion  

Numerical computations were performed to simulate the 
two layered immiscible fluids flow in 2D channel past a square 
cylinder obstacle. The RK color-gradient model is used. The 
main objective of this article was to investigate the dynamic 
behaviors of the two fluids through the obstacle by varying their 
viscosity ratio in unsteady regime (𝑅𝑒 =  100), and to verify the 
important effect of viscosity on flow control. The results were 
presented in terms of figures showing the behavior of density 
and components of velocity over time. From these results, we 
can draw the following conclusions: 
- To have stable, parallel and non-overlapping flows 

behind the obstacle, it is necessary that the difference 
between the viscosities of the fluids be significant i.e. 
𝑀 =  5 or 𝑀 =  1/3. 

- For 𝑀 ≥ 2, the increase in the viscosity difference leads 
to an increasing of friction between fluids and a reducing 
of average velocity of flow. 

- For 𝑀 ≥ 2, the increase in the viscosity ratio decreases 
the time corresponding to the disappearance of the 
vortices behind the obstacle. However, for 𝑀 ≤ 1/2, the 
opposite occurs. 

- The average drag coefficient increases with viscosity 
ratio for 𝑀 ≥ 2. 
These results show that the effect of the obstacle on the 

fluids flow can be eliminated by varying the viscosity ratio. 
Indeed, the vortices caused by the obstacle can be reduced or 
eliminated. At the same time, a good compromise must be 
sought between this objective and the drag coefficient which 
increases with the viscosity ratio. In addition, the numerical 
results obtained for all cases show that this method can be used 
for other flows with multiple phases and components in 3D. This 
will be the subject our future work. 

 

References 

Admi, Y., Channouf, S., Lahmer, E. B., Moussaoui, M. A., Jami, M., & 
Mezrhab, A. (2022). Effect of a Detached Bi-Partition on the Drag 
Reduction for Flow Past a Square Cylinder. International Journal 
of Renewable Energy Development, 11(4), 902-915, 
doi: https://doi.org/10.14710/ijred.2022.43619 

Admi, Y., Moussaoui, M. A., and Mezrhab, A. (2022).  Numerical 
Investigation of Convective Heat Transfer and Fluid Flow Past a 
Three-Square Cylinders Controlled by a Partition in 
Channel. International Journal of Renewable Energy Development, 
11(3), 766-781, doi: https://doi.org/10.14710/ijred.2022.43790 

Behrend O., Harris R. and Warren P. B. (1994). Hydrodynamic behavior 
of lattice Boltzmann and lattice Bhatnagar-Gross-Krook models, 
Physical Review E, 50(6), 4586, doi: 
https://doi.org/10.1103/PhysRevE.50.4586 

Benamour M., Liberge E., Ghein C. B. and Hamdouni A. (1994). 
Numerical simulation of flow around obstacles using lattice 
Boltzmann method, In AIP Conference Proceedings, 1648(1), 
850039, AIP Publishing LLC, doi: 
https://doi.org/10.1063/1.4913094 

Bitsch B., Dittmann J., Schmitt M., Scharfer P., Schabel W. and 
Willenbacher N. (2014).  A novel slurry concept for the fabrication 
of lithiumion battery electrodes with beneficial properties, J. 
Power Sources, 265, 81–90, doi: 
https://doi.org/10.1016/j.jpowsour.2014.04.115 

Bitsch B., Gallasch T., Schroeder M., Borner M., Winter M. and 
Willenbacher N. (2016). Capillary suspensions as beneficial 
formulation concept for high energy density Li-ion battery 
electrodes, J. Power Sources, 328, 114–123, doi: 
https://doi.org/10.1016/j.jpowsour.2016.07.102 

Breuer M., Bernsdorf J., Zeiser T. and Durst F. (2000), Accurate 
computations of the laminar flow past a square cylinder based on 
two different methods: lattice-Boltzmann and finite-volume, 
International journal of heat and fluid flow, 21(2), 186-196, doi: 
https://doi.org/10.1016/S0142-727X(99)00081-8 

Grunau D., Chen S. and Eggert K., (1993). A lattice Boltzmann model for 
multiphase fluid flows, Physics of Fluids, 10, 2557–2562, doi: 
https://doi.org/10.1063/1.858769 

Gunstensen A. K. and Rothman D. H., Lattice Boltzmann model of 
immiscible fluids (1991). Physical Review A, 43(8), 4320–4327, 
doi: https://doi.org/10.1103/PhysRevA.43.4320 

He X., Chen S. and Zhang R. (1999). A lattice Boltzmann scheme for 
incompressible multiphase flow and its application in simulation 
of Rayleigh–Taylor instability, Journal of computational physics, 
152(2), 642-663, doi: https://doi.org/10.1006/jcph.1999.6257 

He X., Zhang R. and Chen S. (2000). Interface and surface tension in 
incompressible lattice Boltzmann multiphase model, Computer 
Physics Communications, 129(1-3), 121-130, doi: 
https://doi.org/10.1016/S0010-4655(00)00099-0 

Huang H., Thorne D. T., Schaap M. G. and Sukop M. C. (2007). Proposed 
approximation for contact angles in Shan-and-Chen-type 
multicomponent multiphase lattice Boltzmann models, Physical 
Review E, 76(6), 698-701, doi: 
https://doi.org/10.1103/PhysRevE.76.066701 

Huang H., Lu J. J., Yun X. and Sukop M. C. (2013). On simulations of 
high-density ratio flows using color-gradient multiphase lattice 
Boltzmann models, International Journal of Modern Physics C, 
24.04, 1350021, doi: 
https://doi.org/10.1142/S0129183113500216 

Huang H., Huang J. J. and Lu X. Y. (2014). A mass-conserving 
axisymmetric multiphase lattice Boltzmann method and its 
application in simulation of bubble rising, Journal of 
Computational Physics, 269, 386-402, doi: 
https://doi.org/10.1016/j.jcp.2014.03.028 

Huang, H., Sukop, M. and Lu, X., (2015). Multiphase Lattice Boltzmann 
Methods: Theory and Application, John Wiley & Sons Ltd., 
Chichester, 
doi: https://doi.org/10.1002/9781118971451 

Inamuro T., Ogata T., Tajima S. and Konishi N. (2004). A lattice 
boltzmann method for incompressible two-phase flows with large 
density differences, Journal of Computational physics,  198(2), 628–
644, doi: https://doi.org/10.1016/j.jcp.2004.01.019 

Lafarge, T., Boivin, P., Odier, N., and Cuenot, B. (2021). Improved color-
gradient method for lattice Boltzmann modeling of two-phase 
flows, Physics of Fluids, 33(8), 082110, doi: 
https://doi.org/10.1063/5.0061638 

Latva-Kokko M. and Rothman D. H. (2005). Diffusion properties of 
gradient-based lattice Boltzmann models of immiscible fluids, 
Physical Review E, 71(5), 056702, doi: 
https://doi.org/10.1103/PhysRevE.71.056702 

Leclaire S., Reggio M. and Tr panier J. Y. (2012). Numerical evaluation 
of two recoloring operators for an immiscible two-phase flow 
lattice Boltzmann model, Applied Mathematical Modelling, 36(5), 
2237-2252, doi:  https://doi.org/10.1016/j.apm.2011.08.027 

Mora P., Morra G. and Yuen D. A. (2021). Optimal surface-tension 
isotropy in the Rothman- Keller color-gradient lattice Boltzmann 
method for multiphase flow, Physical Review E, 103(3), 033302, 
doi: https://doi.org/10.1103/PhysRevE.103.033302 

https://doi.org/10.14710/ijred.2022.43619
https://doi.org/10.14710/ijred.2022.43790
https://doi.org/10.1063/1.4913094
https://doi.org/10.1016/j.jpowsour.2014.04.115
https://doi.org/10.1016/j.jpowsour.2016.07.102
https://doi.org/10.1016/S0142-727X(99)00081-8
https://doi.org/10.1063/1.858769
https://doi.org/10.1006/jcph.1999.6257
https://doi.org/10.1016/S0010-4655(00)00099-0
https://doi.org/10.1142/S0129183113500216
https://doi.org/10.1016/j.jcp.2014.03.028
https://doi.org/10.1016/j.jcp.2004.01.019
https://doi.org/10.1063/5.0061638
https://doi.org/10.1103/PhysRevE.71.056702
https://doi.org/10.1016/j.apm.2011.08.027


S. Channouf  et al  Int. J. Renew. Energy Dev 2023, 12(1), 22-35 

| 35 

 

ISSN: 2252-4940/© 2023. The Author(s). Published by CBIORE 

Mora, P., Morra, G., Yuen, D. A., and Juanes, R. (2021). Influence of 
Wetting on Viscous Fingering Via 2D Lattice Boltzmann 
Simulations, Transport in Porous Media, 1-28, doi: 
https://doi.org/10.1007/s11242-021-01629-8 

Moussaoui M. A., Jami M., Mezrhab A. and Naji H. (2010). MRT-Lattice 
Boltzmann simulation of forced convection in a plane channel 
with an inclined square cylinder, International Journal of Thermal 
Sciences, 49(1), 131-142, doi: 
https://doi.org/10.1016/j.ijthermalsci.2009.06.009 

Moussaoui M. A., Jami M., Mezrhab A. and Naji H. (2009). Convective 
heat transfer over two blocks arbitrary located in a 2D plane 
channel using a hybrid lattice Boltzmann-finite difference method, 
Heat and mass transfer, 45(11), 1373-1381, doi: 
https://doi.org/10.1007/s00231-009-0514-9 

Nie D., Jianzhong L., Limin Q. and Xiaobin Z. (2015). Lattice Boltzmann 
simulation of multiple bubbles motion under gravity, In Abstract 
and Applied Analysis, Hindawi, doi: 
https://doi.org/10.1155/2015/706034 

Rothman D. H. and Keller J. M. (1988). Immiscible Cellular Automaton 
Fluids, Journal of Statistical Physics, 52, 1119–1127, doi: 
https://doi.org/10.1007/BF01019743 

Sadeghi, M., Sadeghi, H., and Choi, C. E. (2021). A lattice Boltzmann 
study of dynamic immiscible displacement mechanisms in pore 
doublets, In MATEC Web of Conferences, 337(02011), EDP 
Sciences, doi: 
https://doi.org/10.1051/matecconf/202133702011 

Schneider M., Koos E., and Willenbacher N. (2016). Highly conductive, 
printable pastes from capillary suspensions, Sci. Rep., vol (6), p 
31367. doi: https://doi.org/10.1038/srep31367 

Schneider M., Maurath J., Fischer S.B., Wei M., Willenbacher N. and 
Koos E. (2017). Suppressing crack formation in particulate 
systems by utilizing capillary forces, ACS Appl. Mater, Interfaces, 
9, 11095–11105. doi: https://doi.org/10.1021/acsami.6b13624 

Shan X. and Chen H. (1993). Lattice Boltzmann model for simulating 
flows with multiple phases and components, Physical Review E, 
47(3), 1815, doi: https://doi.org/10.1103/PhysRevE.47.1815 

Sohankar A., Norberg C. and Davidson L. (1998). Low-Reynolds-
number flow around a square cylinder at incidence: study of 
blockage onset of vortex shedding and outlet boundary condition, 
International journal for numerical methods in fluids, 26(1),  39-56, 
doi: https://doi.org/10.1002/(SICI)1097-
0363(19980115)26:1<39::AID-FLD623>3.0.CO;2-P 

Swift M. R., Osborn W. and Yeomans J. (1995). Lattice boltzmann 
simulation of nonideal fluids, Physical review letters, 75(5), 830, doi: 
https://doi.org/10.1103/PhysRevLett.75.830 

Ul-Islam S. and Zhou C. Y. (2009). Characteristics of flow past a square 
cylinder using the lattice Boltzmann method, Information 
Technology Journal, 8, 1094-1114, doi: https://doi.org/ 
10.3923/itj.2009.1094.1114 

Zhu, X., Wang, S., Feng, Q., Zhang, L., Chen, L., and Tao, W. (2021). 
Pore-scale numerical prediction of three-phase relative 
permeability in porous media using the lattice Boltzmann 
method, International Communications in Heat and Mass 
Transfer, 126, 105403, doi: 
https://doi.org/10.1098/rsta.2012.0320 

Zou Q. and He X., On pressure and velocity boundary conditions for the 
lattice Boltzmann BGK model (1997), Physics of fluids, 9(6), 1591-
1598, doi: https://doi.org/10.1063/1.869307

 

 
 

 © 2023. The Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons 
Attribution-ShareAlike 4.0 (CC BY-SA) International License (http://creativecommons.org/licenses/by-sa/4.0/) 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.ijthermalsci.2009.06.009
https://doi.org/10.1155/2015/706034
https://doi.org/10.1051/matecconf/202133702011
https://doi.org/10.1021/acsami.6b13624
https://doi.org/10.1002/(SICI)1097-0363(19980115)26:1%3C39::AID-FLD623%3E3.0.CO;2-P
https://doi.org/10.1002/(SICI)1097-0363(19980115)26:1%3C39::AID-FLD623%3E3.0.CO;2-P
https://dx.doi.org/10.3923/itj.2009.1094.1114
https://doi.org/10.1098/rsta.2012.0320
https://doi.org/10.1063/1.869307
http://creativecommons.org/licenses/by-sa/4.0/

